1
|
Habibnejad N, Azizi N, Hajibeygi M. Sulfonated asphaltene as a highly efficient catalyst for the Mannich reaction with excellent diastereoselectivity and recyclability. Sci Rep 2024; 14:30736. [PMID: 39730466 DOI: 10.1038/s41598-024-80297-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/18/2024] [Indexed: 12/29/2024] Open
Abstract
This study investigates the repurposing of asphaltene, a petroleum waste product, as a catalyst for organic reactions. Sulfonated asphaltene was synthesized and evaluated for its efficacy in catalyzing the Mannich reaction, displaying notable diastereoselectivity and operating effectively under mild conditions. Characterization of the catalyst's chemical composition, structure, and thermal stability was conducted using FT-IR, TGA, XRD, CHN, BET-BJH, SEM, and EDS analyses. Employing the sulfonated asphaltene catalyst in a one-pot multi-component reaction to generate β-amino carbonyl derivatives in ethanol resulted in high product yields after 4-7 h. Notably, the catalyst exhibited recyclability, demonstrating reusability for at least 10 reaction cycles.
Collapse
Affiliation(s)
- Navid Habibnejad
- Chemistry and Chemical Engineering Research Center of Iran, P.O. Box 14335‑186, Tehran, Iran
| | - Najmedin Azizi
- Chemistry and Chemical Engineering Research Center of Iran, P.O. Box 14335‑186, Tehran, Iran.
| | - Mohsen Hajibeygi
- Department of Organic and Polymer Chemistry, Faculty of Chemistry, Kharazmi University, Tehran, 15719-14911, Iran
| |
Collapse
|
2
|
Daraie M, Tajbakhsh M, Ayati A, Rashidi S. Ag nanoparticles on arginine-cyanoguanidine functionalized magnetic g-C 3N 4: A catalyst for nitroaromatic hydrogenation and regioselective click reactions. Heliyon 2024; 10:e38956. [PMID: 39435055 PMCID: PMC11491912 DOI: 10.1016/j.heliyon.2024.e38956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/20/2024] [Accepted: 10/03/2024] [Indexed: 10/23/2024] Open
Abstract
This study describes the development of a novel hybrid nanocatalyst that was obtained by doping magnetic g-C3N4 with Ag nanoparticles and modifying it with arginine and cyanoguanidine (Ag@Fe3O4-g-C3N4-Arg-CG). Comprehensive characterization of the nanocatalyst using techniques such as FTIR, XRD, SEM, and TGA confirmed its structural and morphological properties. The catalytic efficiency of the synthesized nanostructure was evaluated in two key reactions: the reduction of nitroaromatic compounds and a click reaction for 1,2,3-triazole synthesis. The results demonstrate that Ag@Fe3O4-g-C3N4-Arg-CG effectively reduced various nitroaromatic compounds to substituted anilines at room temperature using NaBH4 as the reducing agent. Nitrobenzene reduction did not proceed in aprotic solvents such as acetonitrile, CH2Cl2, and dimethylformamide, whereas it exhibited a high reaction yield in protic solvents such as ethanol and water. The highest yield (100 %) was observed in water at 50 °C using H2O solvent. Additionally, the nanohybrid exhibited significant potential for "green" click chemistry by efficiently synthesizing 1,2,3-triazoles under mild conditions, with low catalyst loading. Its magnetic properties facilitated easy recovery, and the catalyst maintained high activity over six cycles, making it suitable for sustainable applications in organic transformations.
Collapse
Affiliation(s)
- Mansoureh Daraie
- Department of Chemistry, Science and Research Branch, Islamic Azad University, P.O. Box 14515/775, Tehran, Iran
| | - Mahmood Tajbakhsh
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Ali Ayati
- Department of Chemical Engineering, Faculty of Advanced Technologies, Quchan University of Technology, Quchan, Iran
| | - Sara Rashidi
- Department of Chemistry, Science and Research Branch, Islamic Azad University, P.O. Box 14515/775, Tehran, Iran
| |
Collapse
|
3
|
Hosseini S, Azizi N. CSA@g-C 3N 4 as a novel, robust and efficient catalyst with excellent performance for the synthesis of 4H-chromenes derivatives. Sci Rep 2023; 13:18961. [PMID: 37923798 PMCID: PMC10624862 DOI: 10.1038/s41598-023-46122-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/27/2023] [Indexed: 11/06/2023] Open
Abstract
A pioneering robust and green heterogeneous acidic catalyst (CSA@g-C3N4) was rationally designed via immobilization of camphorsulfonic acid (CSA) on the g-C3N4 surface under mild conditions. Grafting CSA in the g-C3N4 lattice is distinguished as the root cause of facilitating the structure change of g-C3N4, leading to a unique morphology, accordingly the remarkable catalytic efficiency of CSA@g-C3N4. The morphology of new as-prepared nano-catalyst was specified by means of FT-IR, XRD, SEM, EDS, TEM, TGA, and BET. For the first time, it is exhibited that the efficient catalyst CSA@g-C3N4 can productively accomplish the three-component reactions with high yields and also serve as an inspiration for easily performing various sorts of MCRs based on our finding. The recommended synthesis pathway of chromenes derivatives is facile and cost-effective which applies a condensation reaction of salicylaldehyde, thiophenol, and malononitrile followed by ready purification in a benign manner. Moreover, the CSA@g-C3N4 nanocomposite can be promptly reused, illustrating no sensational decrease in the catalytic activity after ten times.
Collapse
Affiliation(s)
- Saber Hosseini
- Chemistry and Chemical Engineering Research Center of Iran, P.O. Box 14335-186, Tehran, Iran.
| | - Najmedin Azizi
- Chemistry and Chemical Engineering Research Center of Iran, P.O. Box 14335-186, Tehran, Iran.
| |
Collapse
|
4
|
Mahmoudi E, Baghdadi M, Mehrdadi N, Moeinpour F. Boosting environmental remediation: harnessing the efficiency of graphitic carbon nitride stabilized on red ocher surface for enhanced photocatalytic remove of Escherichia coli. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1267. [PMID: 37787789 DOI: 10.1007/s10661-023-11907-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/26/2023] [Indexed: 10/04/2023]
Abstract
In the present study, the antibacterial effect of graphitic carbon nitride coated on the red ocher was investigated by the photocatalytic process to remove Gram-negative Escherichia coli bacteria. The concentration effects (0.025, 0.05, and 0.1 g/mL) of disinfectant, contact time (30, 60, and 90 min), and the number of bacteria (102, 104, and 106 CFU/mL) were examined. In this research, in each experiment, 100 mL of the sample was taken, and the test work was performed. The red ocher required for this project was obtained from Hormoz Island, Hormozgan Province, Iran. Melamine was used for the synthesis and manufacture of graphitic carbon nitride. A general-purpose media was used for microbial culture using the pour and spread plate methods, as well as an LED lamp with a wavelength of 420 nm as a light source for the photocatalytic process. To obtain the important factors, the interaction of the factors and the optimal experimental design were used through the response surface methodology (RSM) based on the Box-Behnken design. According to research findings, this method is effective in eliminating E. coli. The results showed that the increase in the amount of disinfectant from 0.025 to 0.1 g/mL and also the increase of contact time from 30 to 90 min accelerated the removal rate of E. coli. The numerical value of R2 obtained for the removal of E. coli was 0.9728, indicating good agreement between experimental and predicted data. Therefore, its utilization in water disinfection seems necessary, both to ensure human health and environmental protection.
Collapse
Affiliation(s)
- Ebrahim Mahmoudi
- Department of Environmental Engineering, Kish International Campus of Tehran University, Kish, Iran.
| | - Majid Baghdadi
- Department of Environmental Engineering, Graduate Faculty of Environment, University of Tehran, P.O. Box 1417853111, Tehran, Iran
| | - Naser Mehrdadi
- Department of Environmental Engineering, Graduate Faculty of Environment, University of Tehran, P.O. Box 1417853111, Tehran, Iran
| | - Farid Moeinpour
- Department of Chemistry, Islamic Azad University, Bandar Abbas Branch, Bandar Abbas, Iran
| |
Collapse
|
5
|
Formation of ionic carbon nitride towards an environmentally friendly synthesis of 2-amino-5-alkylidene-thiazol-4-one. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Zhu Y, He L, Ni Y, Li G, Li D, Lin W, Wang Q, Li L, Yang H. Recent Progress on Photoelectrochemical Water Splitting of Graphitic Carbon Nitride (g-CN) Electrodes. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2374. [PMID: 35889598 PMCID: PMC9321715 DOI: 10.3390/nano12142374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 02/04/2023]
Abstract
Graphitic carbon nitride (g-CN), a promising visible-light-responsive semiconductor material, is regarded as a fascinating photocatalyst and heterogeneous catalyst for various reactions due to its non-toxicity, high thermal durability and chemical durability, and "earth-abundant" nature. However, practical applications of g-CN in photoelectrochemical (PEC) and photoelectronic devices are still in the early stages of development due to the difficulties in fabricating high-quality g-CN layers on substrates, wide band gaps, high charge-recombination rates, and low electronic conductivity. Various fabrication and modification strategies of g-CN-based films have been reported. This review summarizes the latest progress related to the growth and modification of high-quality g-CN-based films. Furthermore, (1) the classification of synthetic pathways for the preparation of g-CN films, (2) functionalization of g-CN films at an atomic level (elemental doping) and molecular level (copolymerization), (3) modification of g-CN films with a co-catalyst, and (4) composite films fabricating, will be discussed in detail. Last but not least, this review will conclude with a summary and some invigorating viewpoints on the key challenges and future developments.
Collapse
Affiliation(s)
- Ying Zhu
- State Key Laboratory of Superhard Material, College of Physics, Jilin University, Changchun 130012, China; (Y.Z.); (G.L.); (D.L.); (W.L.); (H.Y.)
| | - Liang He
- No. 5 Electronics Research Institute of the Ministry of Industry and Information Technology, Guangzhou 510610, China; (L.H.); (Y.N.)
| | - Yiqiang Ni
- No. 5 Electronics Research Institute of the Ministry of Industry and Information Technology, Guangzhou 510610, China; (L.H.); (Y.N.)
| | - Genzhuang Li
- State Key Laboratory of Superhard Material, College of Physics, Jilin University, Changchun 130012, China; (Y.Z.); (G.L.); (D.L.); (W.L.); (H.Y.)
| | - Dongshuai Li
- State Key Laboratory of Superhard Material, College of Physics, Jilin University, Changchun 130012, China; (Y.Z.); (G.L.); (D.L.); (W.L.); (H.Y.)
| | - Wang Lin
- State Key Laboratory of Superhard Material, College of Physics, Jilin University, Changchun 130012, China; (Y.Z.); (G.L.); (D.L.); (W.L.); (H.Y.)
| | - Qiliang Wang
- State Key Laboratory of Superhard Material, College of Physics, Jilin University, Changchun 130012, China; (Y.Z.); (G.L.); (D.L.); (W.L.); (H.Y.)
- Yibin Research Institute, Jilin University, Yibin 644000, China
| | - Liuan Li
- State Key Laboratory of Superhard Material, College of Physics, Jilin University, Changchun 130012, China; (Y.Z.); (G.L.); (D.L.); (W.L.); (H.Y.)
- Yibin Research Institute, Jilin University, Yibin 644000, China
| | - Haibin Yang
- State Key Laboratory of Superhard Material, College of Physics, Jilin University, Changchun 130012, China; (Y.Z.); (G.L.); (D.L.); (W.L.); (H.Y.)
| |
Collapse
|
7
|
Superhydrophilic photocatalytic g-C3N4/SiO2 composite membranes for effective separation of oil-in-water emulsion and bacteria removal. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120917] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|