1
|
Cáceres M, Kesternich V, Pérez-Fehrmann M, Castroagudin M, Nelson R, Quezada V, Christen P, Castro-Alvarez A, Cárcamo JG. Ultrasound-Assisted Synthesis of Substituted Chalcone-Linked 1,2,3-Triazole Derivatives as Antiproliferative Agents: In Vitro Antitumor Activity and Molecular Docking Studies. Int J Mol Sci 2025; 26:3389. [PMID: 40244239 PMCID: PMC11989946 DOI: 10.3390/ijms26073389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/18/2025] Open
Abstract
The synthesis of (E)-1-(1-benzyl-5-methyl-1H-1,2,3-triazol-4-yl)-3-phenyl-2-propen-1-one derivatives was carried out in two steps, using benzylic chloride derivatives as starting material. The structural determination of intermediates and final products was performed by spectroscopic methods: infrared spectroscopy, nuclear magnetic resonance spectroscopy and mass spectrometry (IR, NMR, and MS). In vitro evaluation of cytotoxic activity on adherent and non-adherent cells showed that triazole chalcones exhibited significant activity against three of the five cell lines studied: non-Hodgkin lymphoma U937, glioblastoma multiform tumor T98G, and gallbladder cancer cells Gb-d1. In contrast, the cytotoxic activity observed for cervical cancer HeLa and gallbladder adenocarcinoma G-415 was considerably lower. Additionally, in the cell lines where activity was observed, some compounds demonstrated an In vitro inhibitory effect superior to that of the control, paclitaxel. Molecular docking studies revealed specific interactions between the synthesized ligands and therapeutic targets in various cell lines. In U937 cells, compounds 4a and 4c exhibited significant inhibition of vascular endothelial growth factor receptor (VEGFR) kinase, correlating with their biological activity. This effect was attributed to favorable interactions with key residues in the binding site. In T98G cells, compounds 4r and 4w showed affinity for transglutaminase 2 (TG2) protein, driven by their ability to form hydrophobic interactions. In Gb-d1 cells, compounds 4l and 4p exhibited favorable interactions with mitogen-activated protein kinase (MEK) protein, similar to those observed with the known inhibitor selumetinib. In HeLa cells, compounds 4h and 4g showed activity against dihydrofolate reductase (DHFR) protein, driven by hydrogen bonding interactions and favorable aromatic ring orientations. On the other hand, compounds 4b and 4t exhibited no activity, likely due to unfavorable interactions related to halogen substitutions in the aromatic rings.
Collapse
Affiliation(s)
- Manuel Cáceres
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte, Avda. Angamos 0610, Antofagasta 1270709, Chile; (M.C.); (M.P.-F.); (M.C.); (R.N.); (V.Q.)
| | - Víctor Kesternich
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte, Avda. Angamos 0610, Antofagasta 1270709, Chile; (M.C.); (M.P.-F.); (M.C.); (R.N.); (V.Q.)
| | - Marcia Pérez-Fehrmann
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte, Avda. Angamos 0610, Antofagasta 1270709, Chile; (M.C.); (M.P.-F.); (M.C.); (R.N.); (V.Q.)
| | - Mariña Castroagudin
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte, Avda. Angamos 0610, Antofagasta 1270709, Chile; (M.C.); (M.P.-F.); (M.C.); (R.N.); (V.Q.)
| | - Ronald Nelson
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte, Avda. Angamos 0610, Antofagasta 1270709, Chile; (M.C.); (M.P.-F.); (M.C.); (R.N.); (V.Q.)
| | - Víctor Quezada
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte, Avda. Angamos 0610, Antofagasta 1270709, Chile; (M.C.); (M.P.-F.); (M.C.); (R.N.); (V.Q.)
| | - Philippe Christen
- School of Pharmaceutical Sciences and Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1205 Geneva, Switzerland;
| | - Alejandro Castro-Alvarez
- Departamento de Ciencias Preclínicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile
| | - Juan G. Cárcamo
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5091000, Chile;
- Centro FONDAP, Interdisciplinary Center for Aquaculture Research (INCAR), Valdivia 5091000, Chile
| |
Collapse
|
2
|
Bhukal A, Kumar V, Raman APS, Kumar A, Singh P, Lal K. Pyrazoline Spiro-oxindole tethered 1,2,3-triazole hybrids: Design, synthesis, antimicrobial efficacy and molecular modelling studies. Mol Divers 2025; 29:1479-1492. [PMID: 39060857 DOI: 10.1007/s11030-024-10928-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024]
Abstract
Inspired from the important applications of spirocyclic compounds in medicinal chemistry, a new series of pyrazoline Spiro-oxindole tethered 1,2,3-triazole hybrids was reported via Cu(I)-catalyzed click reaction from isatin-pyrazoline linked terminal alkynes with in situ derived benzyl azides. Antimicrobial evaluation data showed that all hybrids exhibited promising efficacy towards the tested microbial strains. Antimicrobial screening as well as docking studies suggested that hybrid 6a was found to be most potent towards Aspergillus niger (MIC = 0.0122 μmol/mL) and Escherichia coli (MIC = 0.0061 μmol/mL). Molecular docking studies of 6a within the binding pockets of antibacterial and antifungal targets revealed good interactions with the binding energies of - 144.544 kcal/mol and - 154.364 kcal/mol against 1KZN (E. coli) and 3D3Z (A. niger), respectively. Further, MD simulations were performed to study the stability of the complexes formed at 300 K. Based on the RMSD trajectories, it is evident that 3D3Z-6a complex exhibits minimal deviation, whereas the 1KZN-6a complex displayed little more deviation compared to the protein but, both are in acceptable range. Moreover, 3D3Z-6a and 1KZN-6a showed maximum number of hydrogen bonds at 50 ns and 70 ns, respectively, thereby complementing the stability of these complexes.
Collapse
Affiliation(s)
- Akanksha Bhukal
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, 125001, India
| | - Vijay Kumar
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, 125001, India
| | | | - Anil Kumar
- Department of Biotechnology, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, 125001, India
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, India
| | - Kashmiri Lal
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, 125001, India.
| |
Collapse
|
3
|
Upadhyay D, Mokariya JA, Patel PJ, Patel SG, Parmar MP, Vala DP, Ferro F, Rajani DP, Narayan M, Kumar J, Banerjee S, Patel HM. Antimicrobial Efficacy of 1,2,3-Triazole-Incorporated Indole-Pyrazolone against Drug-Resistant ESKAPE Pathogens: Design and Synthesis. ACS BIO & MED CHEM AU 2025; 5:66-77. [PMID: 39990953 PMCID: PMC11843341 DOI: 10.1021/acsbiomedchemau.4c00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 02/25/2025]
Abstract
In the current study, we report the synthesis of novel 4-((1-((1H-1,2,3-triazole-4-yl)methyl)-1H-indol-3-yl)methylene)-5-methyl-2-phenyl-2,4-dihydro-3H-pyrazole-3-one derivatives 5a-o. The compounds were prepared through a Knoevenagel condensation reaction and copper-catalyzed azide-alkyne cycloaddition (CuAAC) Click chemistry approach. The synthesized compounds exhibited promising antimicrobial activity against both Gram-positive and Gram-negative bacteria. Compounds 5e, 5h, and 5i displayed potent activity with MIC value 10 μg/mL against Acinetobacter baumannii, in comparison to standard drugs chloramphenicol and ampicillin. Compounds 5d, 5h, 5i, 5l, 5m, and 5n exhibited good-to-moderate antifungal activity against Candida albicans and Aspergillus niger equivalent to standard drugs nystatin and fluconazole. In this study, the cytotoxicity profile of a series of compounds was assessed using SHSY-5Y cells. The results indicate that compounds 5a-o exhibit no significant cytotoxicity at concentrations up to 100 μg/mL, in comparison to both untreated and vehicle control groups. These findings highlight the safety and tolerability of compounds as well as the potential of the synthesized compounds as effective agents against bacterial and fungal infections.
Collapse
Affiliation(s)
- Dipti
B. Upadhyay
- Department
of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat 388120, India
| | - Jaydeep A. Mokariya
- Department
of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat 388120, India
| | - Paras J. Patel
- Department
of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat 388120, India
| | - Subham G. Patel
- Department
of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat 388120, India
| | - Mehul P. Parmar
- Department
of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat 388120, India
| | - Disha P. Vala
- Department
of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat 388120, India
| | - Febe Ferro
- Division
of Cancer Research, School of Medicine, University of Dundee, Dundee DD1 9SY, U.K.
| | - Dhanji P. Rajani
- Microcare
Laboratory and Tuberculosis Diagnosis & Research Center, Surat 395003, India
| | - Mahesh Narayan
- Department
of Chemistry and Biochemistry, The University
of Texas at El Paso, El Paso, Texas 79968, United States
| | - Jyotish Kumar
- Department
of Chemistry and Biochemistry, The University
of Texas at El Paso, El Paso, Texas 79968, United States
| | - Sourav Banerjee
- Division
of Cancer Research, School of Medicine, University of Dundee, Dundee DD1 9SY, U.K.
| | - Hitendra M. Patel
- Department
of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat 388120, India
| |
Collapse
|
4
|
Ahsan R, Paul S, Alam MS, Rahman AFMM. Synthesis, Biological Properties, In Silico ADME, Molecular Docking Studies, and FMO Analysis of Chalcone Derivatives as Promising Antioxidant and Antimicrobial Agents. ACS OMEGA 2025; 10:4367-4387. [PMID: 39959036 PMCID: PMC11822702 DOI: 10.1021/acsomega.4c06897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 12/31/2024] [Accepted: 01/13/2025] [Indexed: 02/18/2025]
Abstract
A series of chalcone derivatives were synthesized and characterized using UV-vis, FT-IR, 1H NMR, and mass spectrometry, followed by the evaluation of their antimicrobial and antioxidant properties. In vitro screening against six bacterial strains (Staphylococcus aureus, Bacillus subtilis, Salmonella typhimurium, Escherichia coli, Pseudomonas aeruginosa, and Citrobacter freundii) and two fungal strains (Aspergillus niger and Trichoderma harzianum) revealed outstanding antibacterial activities, particularly with compound 5b, 5d, and 5e against S. aureus, and compounds 5c and 5h against B. subtilis. Notably, compounds 5f and 5g exhibited significant effects against P. aeruginosa, while compound 5b showed the highest antifungal activity against T. harzianum. All compounds demonstrated remarkable antioxidant activities, with 5h (IC50 values of 0.005 μM) and 5c (IC50 values of 0.006 μM) being the most potent, comparable to ascorbic acid (IC50 values of 0.007 μM). In silico evaluations confirmed favorable drug-likeness and pharmacokinetic properties for all analogues, adhering to both Lipinski's rule of Five and Veber's rule. Molecular docking studies of potent antibacterial compounds (5e and 5h) indicated strong binding affinities to the PBP-1b receptor in S. aureus, while DFT calculations provided valuable insights into their molecular reactivity and biological properties. Ligand-based enzymatic target predictions indicate that chalcone analogues (5a-m) show potential as inhibitors of oxidoreductases, kinases, enzymes, proteases, or ligands for family A GPCR. These findings position chalcone derivatives as promising candidates for therapeutic applications in combating bacterial infections and oxidative stress.
Collapse
Affiliation(s)
- Rashedul Ahsan
- Department
of Chemistry, Jagannath University, Dhaka 1100, Bangladesh
| | - Sumi Paul
- Department
of Chemistry, Jagannath University, Dhaka 1100, Bangladesh
| | | | - A. F. M. Motiur Rahman
- Department
of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
5
|
Raman APS, Aslam M, Awasthi A, Ansari A, Jain P, Lal K, Bahadur I, Singh P, Kumari K. An updated review on 1,2,3-/1,2,4-triazoles: synthesis and diverse range of biological potential. Mol Divers 2025; 29:899-964. [PMID: 39066993 DOI: 10.1007/s11030-024-10858-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/22/2024] [Indexed: 07/30/2024]
Abstract
The synthesis of triazoles has attracted a lot of interest in the field of organic chemistry because of its versatile chemical characteristics and possible biological uses. This review offers an extensive overview of the different pathways used in the production of triazoles. A detailed analysis of recent research indicates that triazole compounds have a potential range of pharmacological activities, including the ability to inhibit enzymes, and have antibacterial, anticancer, and antifungal activities. The integration of computational and experimental methods provides a thorough understanding of the structure-activity connection, promoting sensible drug design and optimization. By including triazoles as essential components in drug discovery, researchers can further explore and innovate in the synthesis, biological assessment, and computational studies of triazoles as drugs, exploring the potential therapeutic significance of triazoles.
Collapse
Affiliation(s)
- Anirudh Pratap Singh Raman
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Dhaula Kuan, New Delhi, India
- Department of Chemistry, SRM Institute of Science & Technology, Delhi-NCR Campus, Ghaziabad, Modinagar, India
| | - Mohd Aslam
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Dhaula Kuan, New Delhi, India
- Department of Chemistry, SRM Institute of Science & Technology, Delhi-NCR Campus, Ghaziabad, Modinagar, India
| | - Amardeep Awasthi
- Department of Chemistry, North western University, Evanston, IL, USA
| | - Anas Ansari
- Department of Chemistry, North western University, Evanston, IL, USA
| | - Pallavi Jain
- Department of Chemistry, SRM Institute of Science & Technology, Delhi-NCR Campus, Ghaziabad, Modinagar, India
| | - Kashmiri Lal
- Department of Chemistry, Guru Jambheshwar of Science and Technology, Hisar, India
| | - Indra Bahadur
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng Campus, Mmabatho, 2745, South Africa
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Dhaula Kuan, New Delhi, India.
| | - Kamlesh Kumari
- Department of Zoology, University of Delhi, Delhi, India.
| |
Collapse
|
6
|
Mukhtar NA, Suleiman M, Al-Maqtari HM, Theva Das K, Bhat AR, Jamalis J. New Insights into the Modifications and Bioactivities of Indole-3- Carboxaldehyde and its Derivatives as a Potential Scaffold for Drug Design: A Mini-Review. Mini Rev Med Chem 2025; 25:480-503. [PMID: 39781713 DOI: 10.2174/0113895575351704241120060746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/27/2024] [Accepted: 10/11/2024] [Indexed: 01/12/2025]
Abstract
Indole, a ubiquitous structural motif in bioactive compounds, has played a pivotal role in drug discovery. Among indole derivatives, indole-3-carboxaldehyde (I3A) has emerged as a particularly promising scaffold for the development of therapeutic agents. This review delves into the recent advancements in the chemical modification of I3A and its derivatives, highlighting their potential applications in various therapeutic areas. I3A derivatives have demonstrated a wide range of biological activities, including anti-inflammatory, anti-leishmanial, anti-cancer, anti-bacterial, antifungal, and anti-HIV properties. The structural modifications introduced to the I3A scaffold, such as substitutions on the indole ring (alkylation/arylation/halogenation), variations in the aldehyde group via condensation (Aldol/Claisen/Knoevenagel), and molecular hybridization with other reputable bioactive compounds like coumarins, chalcones, triazoles, and thiophenes, contribute to these activities. Beyond its therapeutic potential, I3A has also found applications as a ligand for Schiff base synthesis, a polymer, and a chromophore. This review provides a comprehensive overview of the latest research on I3A and its derivatives, focusing on the key reactions, modification pathways, reaction conditions, yields, and associated therapeutic activities. By understanding these advancements, researchers can gain valuable insights into the potential applications and future directions for I3A-based drug discovery.
Collapse
Affiliation(s)
- Nuhu Abdullahi Mukhtar
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, 81310, Johor, Malaysia
- Department of Chemistry, Sa'adatu Rimi University of Education, Kumbotso, Kano State, Nigeria
| | - Mustapha Suleiman
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, 81310, Johor, Malaysia
- Department of Chemistry, Sokoto State University, Sokoto State, Nigeria
| | | | - Kumitaa Theva Das
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
| | - Ajmal R Bhat
- Department of Chemistry, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, India
| | - Joazaizulfazli Jamalis
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, 81310, Johor, Malaysia
| |
Collapse
|
7
|
Ellouz M, Ihammi A, Baraich A, Farihi A, Addichi D, Loughmari S, Sebbar NK, Bouhrim M, A. Mothana R, M. Noman O, Eto B, Chigr F, Chigr M. Synthesis and In Silico Analysis of New Polyheterocyclic Molecules Derived from [1,4]-Benzoxazin-3-one and Their Inhibitory Effect against Pancreatic α-Amylase and Intestinal α-Glucosidase. Molecules 2024; 29:3086. [PMID: 38999038 PMCID: PMC11243342 DOI: 10.3390/molecules29133086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
This study focuses on synthesizing a new series of isoxazolinyl-1,2,3-triazolyl-[1,4]-benzoxazin-3-one derivatives 5a-5o. The synthesis method involves a double 1,3-dipolar cycloaddition reaction following a "click chemistry" approach, starting from the respective [1,4]-benzoxazin-3-ones. Additionally, the study aims to evaluate the antidiabetic potential of these newly synthesized compounds through in silico methods. This synthesis approach allows for the combination of three heterocyclic components: [1,4]-benzoxazin-3-one, 1,2,3-triazole, and isoxazoline, known for their diverse biological activities. The synthesis procedure involved a two-step process. Firstly, a 1,3-dipolar cycloaddition reaction was performed involving the propargylic moiety linked to the [1,4]-benzoxazin-3-one and the allylic azide. Secondly, a second cycloaddition reaction was conducted using the product from the first step, containing the allylic part and an oxime. The synthesized compounds were thoroughly characterized using spectroscopic methods, including 1H NMR, 13C NMR, DEPT-135, and IR. This molecular docking method revealed a promising antidiabetic potential of the synthesized compounds, particularly against two key diabetes-related enzymes: pancreatic α-amylase, with the two synthetic molecules 5a and 5o showing the highest affinity values of 9.2 and 9.1 kcal/mol, respectively, and intestinal α-glucosidase, with the two synthetic molecules 5n and 5e showing the highest affinity values of -9.9 and -9.6 kcal/mol, respectively. Indeed, the synthesized compounds have shown significant potential as antidiabetic agents, as indicated by molecular docking studies against the enzymes α-amylase and α-glucosidase. Additionally, ADME analyses have revealed that all the synthetic compounds examined in our study demonstrate high intestinal absorption, meet Lipinski's criteria, and fall within the required range for oral bioavailability, indicating their potential suitability for oral drug development.
Collapse
Affiliation(s)
- Mohamed Ellouz
- Laboratory of Molecular Chemistry, Materials and Catalysis (LCMMC), Faculty of Sciences and Technology, Sultan Moulay Slimane University, P.O. Box 523, Beni-Mellal 23000, Morocco; (D.A.); (S.L.); (M.C.)
| | - Aziz Ihammi
- Laboratory of Molecular Chemistry, Materials and Catalysis (LCMMC), Faculty of Sciences and Technology, Sultan Moulay Slimane University, P.O. Box 523, Beni-Mellal 23000, Morocco; (D.A.); (S.L.); (M.C.)
| | - Abdellah Baraich
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Boulevard Mohamed VI, P.O. Box 717, Oujda 60000, Morocco;
| | - Ayoub Farihi
- Laboratory of Biology and Health, Faculty of Sciences, Ibn Tofail University, Kenitra 14000, Morocco;
- Oriental Center for Water and Environmental Sciences and Technologies (COSTE), Mohammed Premier University, Oujda 60000, Morocco
| | - Darifa Addichi
- Laboratory of Molecular Chemistry, Materials and Catalysis (LCMMC), Faculty of Sciences and Technology, Sultan Moulay Slimane University, P.O. Box 523, Beni-Mellal 23000, Morocco; (D.A.); (S.L.); (M.C.)
| | - Saliha Loughmari
- Laboratory of Molecular Chemistry, Materials and Catalysis (LCMMC), Faculty of Sciences and Technology, Sultan Moulay Slimane University, P.O. Box 523, Beni-Mellal 23000, Morocco; (D.A.); (S.L.); (M.C.)
| | - Nada Kheira Sebbar
- Laboratory of Organic and Physical Chemistry, Applied Bioorganic Chemistry Team, Faculty of Sciences, Ibnou Zohr University, Agadir 80000, Morocco;
| | - Mohamed Bouhrim
- Biological Engineering Laboratory, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, Beni Mellal 23000, Morocco; (M.B.); (F.C.)
- Laboratoires TBC, Laboratory of Pharmacology, Pharmacokinetics, and Clinical Pharmacy, Faculty of Pharmaceutical and Biological Sciences, P.O. Box 83, F-59000 Lille, France;
| | - Ramzi A. Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (R.A.M.); (O.M.N.)
| | - Omar M. Noman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (R.A.M.); (O.M.N.)
| | - Bruno Eto
- Laboratoires TBC, Laboratory of Pharmacology, Pharmacokinetics, and Clinical Pharmacy, Faculty of Pharmaceutical and Biological Sciences, P.O. Box 83, F-59000 Lille, France;
| | - Fatiha Chigr
- Biological Engineering Laboratory, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, Beni Mellal 23000, Morocco; (M.B.); (F.C.)
| | - Mohammed Chigr
- Laboratory of Molecular Chemistry, Materials and Catalysis (LCMMC), Faculty of Sciences and Technology, Sultan Moulay Slimane University, P.O. Box 523, Beni-Mellal 23000, Morocco; (D.A.); (S.L.); (M.C.)
| |
Collapse
|
8
|
Tahghighi A, Azerang P. Click chemistry beyond metal-catalyzed cycloaddition as a remarkable tool for green chemical synthesis of antifungal medications. Chem Biol Drug Des 2024; 103:e14555. [PMID: 38862260 DOI: 10.1111/cbdd.14555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 06/13/2024]
Abstract
Click chemistry is widely used for the efficient synthesis of 1,4-disubstituted-1,2,3-triazole, a well-known scaffold with widespread biological activity in the pharmaceutical sciences. In recent years, this magic ring has attracted the attention of scientists for its potential in designing and synthesizing new antifungal agents. Despite scientific and medical advances, fungal infections still account for more than 1.5 million deaths globally per year, especially in people with compromised immune function. This increasing trend is definitely related to a raise in the incidence of fungal infections and prevalence of antifungal drug resistance. In this condition, an urgent need for new alternative antifungals is undeniable. By focusing on the main aspects of reaction conditions in click chemistry, this review was conducted to classify antifungal 1,4-disubstituted-1,2,3-triazole hybrids based on their chemical structures and introduce the most effective triazole antifungal derivatives. It was notable that in all reactions studied, Cu(I) catalysts generated in situ by the reduction in Cu(II) salts or used copper(I) salts directly, as well as mixed solvents of t-BuOH/H2O and DMF/H2O had most application in the synthesis of triazole ring. The most effective antifungal activity was also observed in fluconazole analogs containing 1,2,3-triazole moiety and benzo-fused five/six-membered heterocyclic conjugates with a 1,2,3-triazole ring, even with better activity than fluconazole. The findings of structure-activity relationship and molecular docking of antifungal derivatives synthesized with copper-catalyzed azide-alkyne cycloaddition (CuAAC) could offer medicinal chemistry scientists valuable data on designing and synthesizing novel triazole antifungals with more potent biological activities in their future research.
Collapse
Affiliation(s)
- Azar Tahghighi
- Medicinal Chemistry Laboratory, Department of Clinical Research, Pasteur Institute of Iran, Tehran, Iran
| | - Parisa Azerang
- Medicinal Chemistry Laboratory, Department of Clinical Research, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
9
|
Upadhyay DB, Mokariya JA, Patel PJ, Patel SG, Das A, Nandi A, Nogales J, More N, Kumar A, Rajani DP, Narayan M, Kumar J, Banerjee S, Sahoo SK, Patel HM. Indole clubbed 2,4-thiazolidinedione linked 1,2,3-triazole as a potent antimalarial and antibacterial agent against drug-resistant strain and molecular modeling studies. Arch Pharm (Weinheim) 2024; 357:e2300673. [PMID: 38247229 DOI: 10.1002/ardp.202300673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024]
Abstract
In the face of escalating challenges of microbial resistance strains, this study describes the design and synthesis of 5-({1-[(1H-1,2,3-triazol-4-yl)methyl]-1H-indol-3-yl}methylene)thiazolidine-2,4-dione derivatives, which have demonstrated significant antimicrobial properties. Compared with the minimum inhibitory concentrations (MIC) values of ciprofloxacin on the respective strains, compounds 5a, 5d, 5g, 5l, and 5m exhibited potent antibacterial activity with MIC values ranging from 16 to 25 µM. Almost all the synthesized compounds showed lower MIC compared to standards against vancomycin-resistant enterococcus and methicillin-resistant Staphylococcus aureus strains. Additionally, the majority of the synthesized compounds demonstrated remarkable antifungal activity, against Candida albicans and Aspergillus niger, as compared to nystatin, griseofulvin, and fluconazole. Furthermore, the majority of compounds exhibited notable inhibitory effects against the Plasmodium falciparum strain, having IC50 values ranging from 1.31 to 2.79 μM as compared to standard quinine (2.71 μM). Cytotoxicity evaluation of compounds 5a-q on SHSY-5Y cells at up to 100 μg/mL showed no adverse effects. Comparison with control groups highlights their noncytotoxic characteristics. Molecular docking confirmed compound binding to target active sites, with stable protein-ligand complexes displaying drug-like molecules. Molecular dynamics simulations revealed dynamic stability and interactions. Rigorous tests and molecular modeling unveil the effectiveness of the compounds against drug-resistant microbes, providing hope for new antimicrobial compounds with potential safety.
Collapse
Affiliation(s)
- Dipti B Upadhyay
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
| | - Jaydeep A Mokariya
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
| | - Paras J Patel
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
| | - Subham G Patel
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
| | - Anwesha Das
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat, India
| | - Arijit Nandi
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Joaquina Nogales
- Department of Cellular and Systems Medicine, University of Dundee, Dundee, UK
| | - Nachiket More
- School of Chemistry, University of St. Andrews, St. Andrews, UK
| | - Amit Kumar
- School of Chemistry, University of St. Andrews, St. Andrews, UK
| | - Dhanji P Rajani
- Microcare Laboratory and Tuberculosis Diagnosis & Research Center, Surat, Gujarat, India
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas, USA
| | - Jyotish Kumar
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas, USA
| | - Sourav Banerjee
- Department of Cellular and Systems Medicine, University of Dundee, Dundee, UK
| | - Suban K Sahoo
- Department of Chemistry, SV National Institute of Technology, Surat, Gujarat, India
| | - Hitendra M Patel
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
| |
Collapse
|
10
|
de Oliveira AS, Cenci AR, Gonçalves L, Thedy MEC, Justino A, Braga AL, Meier L. Chalcone Derivatives as Antibacterial Agents: An Updated Overview. Curr Med Chem 2024; 31:2314-2329. [PMID: 36803761 DOI: 10.2174/0929867330666230220140819] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/20/2022] [Accepted: 12/01/2022] [Indexed: 02/22/2023]
Abstract
BACKGROUND The indiscriminate use of antibiotics brings an alarming reality: in 2050, bacterial resistance could be the main cause of death in the world, resulting in the death of 10 million people, according to the World Health Organization (WHO). In this sense, to combat bacterial resistance, several natural substances, including chalcones, have been described in relation to antibacterial, representing a potential tool for the discovery of new antibacterial drugs. OBJECTIVE The objective of this study is to perform a bibliographic survey and discuss the main contributions in the literature about the antibacterial potential of chalcones in the last 5 years. METHODS A search was carried out in the main repositories, for which the publications of the last 5 years were investigated and discussed. Unprecedented in this review, in addition to the bibliographic survey, molecular docking studies were carried out to exemplify the applicability of using one of the molecular targets for the design of new entities with antibacterial activity. RESULTS In the last 5 years, antibacterial activities were reported for several types of chalcones, for which activities were observed for both gram-positive and gram-negative bacteria with high potency, including MIC values in the nanomolar range. Molecular docking simulations demonstrated important intermolecular interactions between chalcones and residues from the enzymatic cavity of the enzyme DNA gyrase, one of the validated molecular targets in the development of new antibacterial agents. CONCLUSION The data presented demonstrate the potential of using chalcones in drug development programs with antibacterial properties, which may be useful to combat resistance, a worldwide public health problem.
Collapse
Affiliation(s)
- Aldo S de Oliveira
- Department of Exact Sciences and Education, Federal University of Santa Catarina, Blumenau-SC, Brazil
| | - Arthur R Cenci
- Department of Exact Sciences and Education, Federal University of Santa Catarina, Blumenau-SC, Brazil
| | - Lucas Gonçalves
- Department of Exact Sciences and Education, Federal University of Santa Catarina, Blumenau-SC, Brazil
| | - Maria Eduarda C Thedy
- Department of Chemistry, Federal University of Santa Catarina, Florianópolis-SC, Brazil
| | - Angelica Justino
- Department of Chemistry, Federal University of Santa Catarina, Florianópolis-SC, Brazil
| | - Antônio L Braga
- Department of Chemistry, Federal University of Santa Catarina, Florianópolis-SC, Brazil
| | - Lidiane Meier
- Department of Exact Sciences and Education, Federal University of Santa Catarina, Blumenau-SC, Brazil
| |
Collapse
|
11
|
Nasir Shah S, Khan I, Tul Muntaha S, Hayat A, Ur Rehman M, Ali Shah T, Siddique F, Salamatullah AM, Mekonnen AB, Bourhia M. Bioactive, antioxidant and antimicrobial properties of chemically fingerprinted essential oil s extracted from Eucalyptus globulus: in-vitro and in-silico investigations. Front Chem 2023; 11:1287317. [PMID: 38188929 PMCID: PMC10768562 DOI: 10.3389/fchem.2023.1287317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024] Open
Abstract
Innovative approaches are urgently required to treat divestating bacterial diseases in the face of rising bacterial resistance rates. The current investigative work focused on hydro-distilling Tasmanian blue gum (Eucalyptus globulus) to isolate the essential oil, which was then tested for bioactivity, antioxidant capacity, and antibacterial activity using in-vitro and in silico assays. The antioxidant activity was avualated against DPPH and FRAP. With results of 69.63 RSA (%) (µL/L AAE) at a concentration of 5 mL/L and 51.56 (µL/L AAE) at concentration of 90 ppm in the 2,20-diphenyl-1-picryl hydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) assays, respectively, the extracted oil indicated considerable antioxidant activity. The extracted oil demonstrated powerful antibacterial activity in in-vitro tests against both Gram-positive and Gram-negative bacterial strains, including Bordetella bronchiseptica (21 mm), Staphylococcus epidermidis (19 mm), and Staphylococcus aureus (19 mm), with significant minimal inhibitory (MIC) and minimum bactericidal (MIB) concentrations. Additionally, GC-MS analysis of the oil from E. globulus identified several low-molecular-weight compounds, including Eucalyptol, γ-Terpinene, Shisool acetate, 1,3-trans,5-cis-Octatriene, 2,6-Dimethyl-1,3,5,7-octatetraene, E,E, Cyclohexene, 1-methyl-4-(1-methylethylidene), Benzene, 1-methyl-4-(1-methylethenyl), Butanoic acid, 3-methyl-, 3-methylbutyl ester, and 1,3,8-p-Menthatriene. Several other compounds were also identified, including Fenchol, 2-Methyl-trans-3a,4,7,7a-tetrahydroindane, (E,E,E)-2,4,6-Octatriene, 1,2,3,6-Tetrahydrobenzylalcohol, acetate, Alloaromadendrene, Phenol, 2-ethyl-4,5-dimethyl, Phenol, 2-methyl-5-(1-methylethyl)-, p-Cymen-7-ol, 1,5,5-Trimethyl-6-methylene-cyclohexene, 1,3-Cyclohexadiene, 1-methyl-4-(1-methylethyl)-, 2,6-Octadien-1-ol, 3,7-dimethyl-, acetate, (Z), and more. The bioactive potential of Eucalyptus globulus essential oil against 1AJ6 and 1R4U was highlighted by molecular docking analyses, suggesting its utility as a natural source of antioxidant and antibacterial compounds with the potential to replace chemical disinfectants in a variety of applications.
Collapse
Affiliation(s)
- Said Nasir Shah
- Department of Microbiology, Abbottabad University of Science & Technology, Abbottabad, Pakistan
| | - Ibrar Khan
- Department of Microbiology, Abbottabad University of Science & Technology, Abbottabad, Pakistan
| | - Sidra Tul Muntaha
- Department of Zoology, Abbottabad University of Science & Technology, Abbottabad, Pakistan
| | - Azam Hayat
- Department of Microbiology, Abbottabad University of Science & Technology, Abbottabad, Pakistan
| | - Mujaddad Ur Rehman
- Department of Microbiology, Abbottabad University of Science & Technology, Abbottabad, Pakistan
| | - Tawaf Ali Shah
- Department of Biotechnology, University of Okara, Okara, Pakistan
| | - Farhan Siddique
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Linköping, Sweden
| | - Ahmad Mohammad Salamatullah
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | | | - Mohammed Bourhia
- Laboratory of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Agadir, Morocco
| |
Collapse
|
12
|
Tian G, Song Q, Liu Z, Guo J, Cao S, Long S. Recent advances in 1,2,3- and 1,2,4-triazole hybrids as antimicrobials and their SAR: A critical review. Eur J Med Chem 2023; 259:115603. [PMID: 37478558 DOI: 10.1016/j.ejmech.2023.115603] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/17/2023] [Accepted: 06/25/2023] [Indexed: 07/23/2023]
Abstract
With the widespread use and sometimes even abuse of antibiotics, the problem of bacterial resistance to antibiotics has become very serious, and it is posing a great threat to global health. Therefore, development of new antibiotics is imperative. Triazoles are five-membered, nitrogen-containing aromatic heterocyclic scaffolds, with two isomeric forms, i.e. 1,2,3-triazole and 1,2,4-triazole. Triazole-containing compounds have a wide range of biological activities such as antibacterial, antifungal, anticancer, antioxidant, antitubercular, antimalarial, anti-HIV, anticonvulsant, anti-inflammatory, antiulcer, analgesic, and etc. The bioactivities and the diversity of triazole-containing drugs have attracted wide interest in these heterocycles. Various antibiotic triazole hybrids have been developed, and most of which have shown potent antimicrobial activities. In this review, we summarized the recent advances in triazole hybrids as potential antibacterial agents and their structure-activity relationships (SARs). The information gained through SAR studies will provide further insights into the development of new triazole antimicrobials.
Collapse
Affiliation(s)
- Guimiao Tian
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China
| | - Qiuyi Song
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China
| | - Ziwei Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China
| | - Ju Guo
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China
| | - Shuang Cao
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China.
| | - Sihui Long
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China.
| |
Collapse
|
13
|
Kumar A, Lal K, Murtaza M, Jaglan S, Rohila Y, Singh P, Singh MB, Kumari K. Antimicrobial, antibiofilm, docking, DFT and molecular dynamics studies on click-derived isatin-thiosemicarbazone-1,2,3-triazoles. J Biomol Struct Dyn 2023; 42:9919-9938. [PMID: 37695672 DOI: 10.1080/07391102.2023.2253912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/24/2023] [Indexed: 09/12/2023]
Abstract
In an effort to develop new antimicrobial and antibiofilm agents, we have designed and synthesized a novel class of isatin-thiosemicarbazone-1,2,3-triazoles through the CuAAC approach. All the synthesized hybrids were characterized by several spectral techniques such as FTIR, 1H NMR, 13C NMR, 2D NMR and HRMS. All the derivatives were evaluated for their antimicrobial and antibiofilm efficacy towards various microbial species. Triazole hybrid 8d exhibited the highest efficacy towards E. coli (MIC = 0.0067 µmol/mL) and S. aureus (MIC = 0.0067 µmol/mL), whereas, compounds 8b, 8c, 8d, 8e, 9a and terminal alkyne (10) significantly inhibited biofilm formation against S. aureus, B. subtilis and E. coli. To find out the structure-activity relationship and binding interactions of synthesized hybrids with enzymes 1KZN and 5TZ1, molecular docking for all the synthesized hybrids was carried out. DFT calculations for all hybrids and the molecular dynamics studies for compounds 9e and 9f were also performed to support the biological behavior of these hybrids.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aman Kumar
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, India
| | - Kashmiri Lal
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, India
| | - Mohd Murtaza
- Fermentation & Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Sundeep Jaglan
- Fermentation & Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Yajat Rohila
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, India
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, India
| | - Madhur Babu Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, India
| | - Kamlesh Kumari
- Department of Zoology, University of Delhi, Delhi, India
| |
Collapse
|
14
|
Kumar V, Lal K, Kumar R, Kumar A, Mathpati RS, Singh MB, Kumari K. Click synthesis, antimicrobial, DNA photocleavage and computational studies of oxindole-tethered 1 H-1,2,3-triazoles. Future Med Chem 2023; 15:1115-1131. [PMID: 37565342 DOI: 10.4155/fmc-2023-0075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023] Open
Abstract
Aim: To obtain new hybrids derived from isatin and triazole. Materials & methods: A series of oxindole-1-H-1,2,3-triazole hybrids (4a-l) were synthesized from 3-sulfenylated N-propargylated oxindoles and organic azides employing Cu(I)-catalyzed azide-alkyne cycloaddition. These compounds were evaluated in vitro for antimicrobial activity by the standard serial dilution method and DNA photocleavage activity. Results: Antimicrobial assay revealed that compounds 4l and 4f exhibited promising efficacy against Candida albicans and Rhizopus oryzae, respectively, with a minimum inhibitory concentration value of 0.0008 μmol/mL. Compounds 4h and 4k completely degraded plasmid DNA. Further molecular docking of compounds with 1KZN (4j and 4k) and 5TZ1 (4h and 4l) revealed good binding interactions. Conclusion: Results of the current research can help in the development of new antimicrobial agents with high efficacy.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, 125001, India
| | - Kashmiri Lal
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, 125001, India
| | - Ravinder Kumar
- Department of Bio & Nano Technology, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, 125001, India
| | - Anil Kumar
- Department of Bio & Nano Technology, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, 125001, India
| | - Ramling S Mathpati
- Department of Chemistry, National Institute of Technology, Kurukshetra, Haryana, 136119, India
| | - Madhur Babu Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, 110021, India
| | - Kamlesh Kumari
- Department of Zoology, University of Delhi, Delhi, 110007, India
| |
Collapse
|
15
|
Osmaniye D, Sağlık BN, Khalilova N, Levent S, Bayazıt G, Gül ÜD, Özkay Y, Kaplancıklı ZA. Design, Synthesis, and Biological Evaluation Studies of Novel Naphthalene-Chalcone Hybrids As Antimicrobial, Anticandidal, Anticancer, and VEGFR-2 Inhibitors. ACS OMEGA 2023; 8:6669-6678. [PMID: 36844559 PMCID: PMC9947975 DOI: 10.1021/acsomega.2c07256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Cancer is a progressive disease that is frequently encountered worldwide. The incidence of cancer is increasing with the changing living conditions around the world. The side-effect profile of existing drugs and the resistance developing in long-term use increase the need for novel drugs. In addition, cancer patients are not resistant to bacterial and fungal infections due to the suppression of the immune system during the treatment. Rather than adding a new antibacterial or antifungal drug to the current treatment plan, the fact that the drug with anticancer activity has these effects (antibacterial and antifungal) will increase the patient's quality of life. For this purpose, in this study, a series of 10 new naphthalene-chalcone derivatives were synthesized and their anticancer-antibacterial-antifungal properties were investigated. Among the compounds, compound 2j showed activity against the A549 cell line with an IC50 = 7.835 ± 0.598 μM. This compound also has antibacterial and antifungal activity. The apoptotic potential of the compound was measured by flow cytometry and showed apoptotic activity of 14.230%. The compound also showed 58.870% mitochondrial membrane potential. Compound 2j inhibited VEGFR-2 enzyme with IC50 = 0.098 ± 0.005 μM. Molecular docking studies of the compounds were carried out by in silico methods against VEGFR-2 and caspase-3 enzymes.
Collapse
Affiliation(s)
- Derya Osmaniye
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
- Doping
and Narcotic Compounds Analysis Laboratory, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Begüm Nurpelin Sağlık
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
- Doping
and Narcotic Compounds Analysis Laboratory, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Narmin Khalilova
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Serkan Levent
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
- Doping
and Narcotic Compounds Analysis Laboratory, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Gizem Bayazıt
- Vocational
School of Health Services, Biotechnology Application and Research
Center, Bilecik Seyh Edebali University, 11230 Bilecik, Turkey
| | - Ülküye Dudu Gül
- Vocational
School of Health Services, Biotechnology Application and Research
Center, Bilecik Seyh Edebali University, 11230 Bilecik, Turkey
| | - Yusuf Özkay
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
- Doping
and Narcotic Compounds Analysis Laboratory, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Zafer Asım Kaplancıklı
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| |
Collapse
|
16
|
Click reaction inspired synthesis, antimicrobial evaluation and in silico docking of some pyrrole-chalcone linked 1,2,3-triazole hybrids. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Evren AE, Karaduman AB, Sağlik BN, Özkay Y, Yurttaş L. Investigation of Novel Quinoline-Thiazole Derivatives as Antimicrobial Agents: In Vitro and In Silico Approaches. ACS OMEGA 2023; 8:1410-1429. [PMID: 36643421 PMCID: PMC9835529 DOI: 10.1021/acsomega.2c06871] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Infectious diseases are a major concern around the world. Today, it is an urgent need for new chemotherapeutics for infectious diseases. Because of that, our group designed, synthesized, and analyzed 14 new quinoline derivatives endowed with the pharmacophore moiety of fluoroquinolones primarily for their antimicrobial effects. Their cytotoxicity effects were tested against six bacterial and four fungal strains and NIH/3T3 cell line. Additionally, their action mechanisms were evaluated against DNA gyrase and lanosterol 14α-demethylase (LMD). Furthermore, to eliminate the potential side effects, the active compounds were evaluated against the aromatase enzyme. The experimental enzymatic results were evaluated for active compounds' binding modes using molecular docking and molecular dynamics simulation studies. The results were utilized to clarify the structure-activity relationship (SAR). Finally, compound 4m was the most potent compound for its antifungal activity with low cytotoxicity against healthy cells and fewer possible side effects, while compounds 4j and 4l can be used alone for special patients who are suffering from fungal infections in addition to the primer disease.
Collapse
Affiliation(s)
- Asaf Evrim Evren
- Department
of Pharmacy Services, Vocational School of Health Services, Bilecik Şeyh Edebali University, Bilecik 11000, Turkey
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| | - Abdullah Burak Karaduman
- Department
of Pharmaceutical Toxicology, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| | - Begüm Nurpelin Sağlik
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
- Central
Research Laboratory, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| | - Yusuf Özkay
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
- Central
Research Laboratory, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| | - Leyla Yurttaş
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| |
Collapse
|
18
|
Biologically Oriented Hybrids of Indole and Hydantoin Derivatives. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020602. [PMID: 36677661 PMCID: PMC9866919 DOI: 10.3390/molecules28020602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023]
Abstract
Indoles and hydantoins are important heterocycles scaffolds which present in numerous bioactive compounds which possess various biological activities. Moreover, they are essential building blocks in organic synthesis, particularly for the preparation of important hybrid molecules. The series of hybrid compounds containing indoles and imidazolidin-2-one moiety with direct C-C bond were synthesized using an amidoalkylation one-pot reaction. All compounds were investigated as a growth regulator for germination, growth and development of wheat seeds (Triticum aestivum L). Their effect on drought resistance at very low concentrations (4 × 10-5 M) was evaluated. The study highlighted identified the leading compounds, 3a and 3e, with higher growth-regulating activity than the indole-auxin analogues.
Collapse
|
19
|
Kumar V, Lal K, Kumar A, Tittal RK, Singh MB, Singh P. Efficient synthesis, antimicrobial and molecular modelling studies of 3-sulfenylated oxindole linked 1,2,3-triazole hybrids. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04933-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
20
|
Kumar R, Kumar D, Upadhyay RK, Deswal N, Takkar P, Kareem A, Kumar V, Kumar LS. Design, Synthesis, Antimicrobial Screening and Docking Studies of Newer 1,4‐Dihydropyridine tethered Chalcone Hybrids. ChemistrySelect 2022. [DOI: 10.1002/slct.202202928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Rakesh Kumar
- Department of Chemistry Bio-organic Laboratory University of Delhi Delhi 110007
| | - Dhiraj Kumar
- IndiaDepartment of Chemistry Bio-organic Laboratory Kirori Mal College University of Delhi Delhi 110 007 India
| | | | - Nidhi Deswal
- Department of Chemistry Bio-organic Laboratory University of Delhi Delhi 110007
| | - Priya Takkar
- Department of Chemistry Bio-organic Laboratory University of Delhi Delhi 110007
| | | | - Vinod Kumar
- Department of Microbiology University of Delhi, South Campus Benito Juarez Marg Delhi 110021 India
| | | |
Collapse
|
21
|
Synthesis, antimicrobial evaluation and docking studies of fluorinated imine linked 1,2,3-triazoles. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [PMCID: PMC9146814 DOI: 10.1007/s11164-022-04737-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
A diverse series of imine linked 1,2,3-triazole hybrids has been synthesized via Cu(I)-promoted click reaction, with an aim to develop some new antimicrobial molecules. The structural characterization of the synthesized triazole hybrids was accomplished using various spectral techniques like 1H NMR, 13C NMR, FTIR and HRMS. Among the synthesized hybrids, 7d exhibited highest antimicrobial efficacy against R. oryzae and S. aureus with MIC of 0.0123 µmol/mL and 0.0061 µmol/mL, respectively. Docking studies of the terminal alkynes (4a, 4b) and triazole hybrids (6a, 6d, 7c, 7g) showing high potency towards E. coli DNA gyrase and C. albicans sterol 14-α demethylase were also undertaken to understand the binding behaviour.
Collapse
|
22
|
Hybrid Catalysts from Copper Biosorbing Bacterial Strains and Their Recycling for Catalytic Application in the Asymmetric Addition Reaction of B2(pin)2 on α,β-Unsaturated Chalcones. Catalysts 2022. [DOI: 10.3390/catal12040433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The recycling of heavy metal contaminants from wastewater as a source of valuable products perfectly fits with the principles of a Circular Economy system in view of restoring pollutants back into the system endowed with new social and economic benefits. Heavy metals are often present in such a low concentration that it makes the removal efficiency difficult to realize through the conventional physicochemical methods with high selectivity. Biosorption, conversely, by EPSs (extracellular polymeric substances) produced by several bacterial cells’ strains, is gaining a great deal of attention as an economic, efficient and sustainable depolluting process of wastewater from metal cations such as copper. Metal coordination to EPS components was thus deeply investigated by 1H NMR titration experiments. The 1,10–Phenanthroline–copper complex was exploited for quantifying the ability of different strains to sequester copper by a practical UV-Vis spectrophotometric method. The obtained data distinguished Serratia plymuthica strain SC5II as the bacterial strain displaying copper-adsorbing properties higher than any other, with Stenotrophomonas sp. strain 13a resulting in the worst one. Different analytical techniques, i.e., Dynamic Light Scattering (DLS), FT-IR analysis and SEM spectroscopy were thus employed to rationalize these results. Finally, the obtained copper chelates were successfully employed as hybrid catalysts in the asymmetric boron addition to α,β-unsaturated chalcones for the synthesis of valuable pharmaceutical intermediates, thus placing waste management in a new circular perspective.
Collapse
|