1
|
Shankar G, Kumar P, Rai S, Ghosh A, Varma T, Wani MA, Kumar S, Mandloi U, Singh GK, Garg P, Kulkarni O, Srikrishna S, Kumar S, Modi G. Discovery of novel hybrid tryptamine-rivastigmine molecules as potent AChE and BChE inhibitors exhibiting multifunctional properties for the management of Alzheimer's disease. Eur J Med Chem 2025; 283:117066. [PMID: 39667052 DOI: 10.1016/j.ejmech.2024.117066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 11/06/2024] [Accepted: 11/14/2024] [Indexed: 12/14/2024]
Abstract
Contemporary research evidence has corroborated a gradual loss of central cholinergic neurons in Alzheimer's Disease (AD). This progressive deterioration leads to cognitive dysfunction and impaired motor activity, culminating in the brain cell's death in the disease. The approved drugs for AD treatment can only offer relief from symptoms without addressing the underlying pathological hallmarks of the disease. To address the limitations associated with rivastigmine (RIV), a marketed drug for AD, a series of tryptamine derivatives was designed, synthesized, and evaluated in various in-vitro and in-vivo AD models. Enzyme inhibition studies identified compounds 6d and 6e as the lead molecules with potent inhibitors against AChE (6d, IC50: 0.99 ± 0.009 nM and 6e IC50: 7.97 ± 0.016 nM and BChE (6d, IC50: 27.79 ± 0.21 nM and 6e, IC50: 0.79 ± 0.005 nM), compared to the marketed drug Riv (AChE, IC50: 6630 ± 0.76 nM, BChE IC50 = 91 ± 0.40 nM). The molecular docking and dynamics studies corroborated the enzyme inhibition studies. The PAMPA assay strongly suggested the BBB crossing ability of the lead molecules. Further, 6d and 6e demonstrated the capability to counteract oxidative stress and Aβ1-42 in various in-vitro studies. Compound 6e exhibited remarkable radical scavenging activity in the DPPH assay (IC50: 22.91 ± 1.73 μM) compared to rivastigmine (% radical scavenging activity: 3.71 ± 0.09 at 200 μM). Interestingly, 6d and 6e exhibited promising activity in the AD Drosophila model by protecting eye phenotypes from degeneration induced by Aβ1-42 toxicity and reduced mitochondrial and cellular oxidative stress in this model. Furthermore, upon oral administration, 6d and 6e could reverse scopolamine-induced amnesia by improving spatial and cognitive memory in mice at 0.3 and 0.5 mg/kg compared to rivastigmine at 3 mg/kg and were found to have potent ex-vivo anti-ChEs properties, which are correlated with the observed pro-cognitive effects in the Morris Water Maze, likely mediated through the inhibition of both cholinesterases. The expression of various neuroprotection markers, such as BDNF and TRKB, was significantly overexpressed compared to the disease control group.
Collapse
Affiliation(s)
- Gauri Shankar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, U.P, 221005, India
| | - Prabhat Kumar
- Cell and Neurobiology Laboratory, Department of Biochemistry, Institute of Science, BHU, Varanasi, 221005, India
| | - Sanskriti Rai
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Aparajita Ghosh
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawaharnagar Shamirpet Mandal, 500078, Hyderabad, India
| | - Tanmaykumar Varma
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, 160062, India
| | - Mushtaq Ahmad Wani
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, 160062, India
| | - Sunil Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, U.P, 221005, India
| | - Upesh Mandloi
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, U.P, 221005, India
| | - Gireesh Kumar Singh
- Department of Pharmacy, School of Health Science, Central University of South Bihar, Gaya, 824236, India
| | - Prabha Garg
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, 160062, India
| | - Onkar Kulkarni
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawaharnagar Shamirpet Mandal, 500078, Hyderabad, India
| | - Saripella Srikrishna
- Cell and Neurobiology Laboratory, Department of Biochemistry, Institute of Science, BHU, Varanasi, 221005, India
| | - Saroj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India; Department of Health, Education and Technology, Lulea University of Technology, Lulea, Sweden
| | - Gyan Modi
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, U.P, 221005, India.
| |
Collapse
|
2
|
Azmy EM, Nassar IF, Hagras M, Fawzy IM, Hegazy M, Mokhtar MM, Yehia AM, Ismail NS, Lashin WH. New indole derivatives as multitarget anti-Alzheimer's agents: synthesis, biological evaluation and molecular dynamics. Future Med Chem 2023; 15:473-495. [PMID: 37125532 DOI: 10.4155/fmc-2022-0228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Background: Alzheimer's disease is a neurological disorder that causes brain cells to shrink and die. Aim: Thirteen novel 'oxathiolanyl', 'pyrazolyl' and 'pyrimidinyl' indole derivatives were designed and synthesized as anti-Alzheimer's disease treatment. Method: In vitro enzyme assay was performed against both AChE and BChE enzymes. In addition, antioxidant assay and cytotoxicity on a normal cell line were determined. Molecular docking and dynamic simulations were conducted to confirm the binding mode in both esterases' active sites. In silico absorption, distribution, metabolism, excretion and toxicity studies were also carried out. Results & conclusion: Compounds 5, 7 and 11 exhibited superior inhibitory activity against acetylcholinesterase and butyrylcholinesterase, with IC50 values of 0.042 and 3.003 μM, 2.54 and 0.207 μM and 0.052 and 2.529 μM, respectively, compared with donepezil.
Collapse
Affiliation(s)
- Eman M Azmy
- Department of Chemistry, Faculty of Women, Ain Shams University, Heliopolis, Cairo, 11457, Egypt
| | - Ibrahim F Nassar
- Faculty of Specific Education, Ain Shams University, 365 Ramsis Street, Abassia, Cairo, Egypt
| | - Mohamed Hagras
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Iten M Fawzy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Future University in Egypt, Cairo, 11835, Egypt
| | - Maghawry Hegazy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Mahmoud Mohamed Mokhtar
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Amr Mohamed Yehia
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Nasser Sm Ismail
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Future University in Egypt, Cairo, 11835, Egypt
| | - Walaa H Lashin
- Department of Chemistry, Faculty of Women, Ain Shams University, Heliopolis, Cairo, 11457, Egypt
| |
Collapse
|
3
|
Wang J, Zhou H, Li Y, Mu Y, Li J, Hong C, Luo W. Design, synthesis and evaluation of benzo[cd]indol-2(1H)-one-donepezil hybrids as cholinesterase inhibitors and living cell imaging agents. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
4
|
Elmusa M, Elmusa S, Mert S, Kasımoğulları R, Türkan F, Atalar MN, Bursal E. One-pot three-component synthesis of novel pyrazolo-acridine derivatives and assessment of their acetylcholinesterase inhibitory properties: An in vitro and in silico study. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|