1
|
Yousef TA, Al-Janabi AS. Spectroscopic, anti-cancer, anti-bacterial and theoretical studies of new bivalent Schiff base complexes derived from 4-bromo-2,6-dichloroaniline. Heliyon 2024; 10:e37310. [PMID: 39319164 PMCID: PMC11419873 DOI: 10.1016/j.heliyon.2024.e37310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/10/2024] [Accepted: 08/30/2024] [Indexed: 09/26/2024] Open
Abstract
In this paper, four new mono-nuclear Ni(II), Pd(II), Pt(II) and Zn(II) complexes were prepared by using a bi-dentate Schiff base ligand, (E)-2-(((4-bromo-2,6-dichlorophenyl)imino)methyl)-5-chlorophenol (BrcOH), with bivalent ions in a methanol and distil water mixture as solvent in presence of NaOH as base. The structures of the prepared compounds were characterized by spectroscopic techniques (IR and 1H NMR), CHN analysis, and molar conductivity. The M(II) (Ni, Pd and Pt) ions are four-coordinated by a bi-dentate N2O2 donor ligand, forming square planar geometry, whereas the Zn(II) is coordinated as a tetrahedral geometry. The newly synthesized compounds, which include the Schiff base ligand and its complexes, underwent antibacterial screening against E. coli and S. aureus. The results demonstrated a remarkable and noteworthy biological activity of these compounds against these pathogenic bacterial strains. Different binding energies showed good correlation, with Pd showing the strongest binding. Small energy differences indicated high reactivity, with Ni and Pd complexes being the most reactive. Electrophilicity index exhibited electron-accepting properties, with Zn showing the highest reactivity. The dipole moments showed polarity and charge separation, with Pt having the highest polarity. We evaluated the pharmacokinetic properties (ADME) of a ligand and its metal complexes using the Swiss ADME website. The results of the in-silico prediction of physicochemical properties revealed that ten compounds in total adhered to Lipinski's rule.
Collapse
Affiliation(s)
- Tarek A Yousef
- College of Science, Chemistry Department, Imam Mohammad Ibn Saud Islamic University, Riyadh, 11623, Saudi Arabia
- Department of Toxic and Narcotic Drug, Forensic Medicine, Mansoura Laboratory, Medicolegal Organization, Ministry of Justice, Cairo, 11435, Egypt
| | - Ahmed S Al-Janabi
- Department of Chemistry, College of Science, Tikrit University, Tikrit, Iraq
| |
Collapse
|
2
|
Petkova ZS, Rusew RI, Shivachev BL, Kurteva VB. Functionalization of 2-Mercapto-5-methyl-1,3,4-thiadiazole: 2-(ω-Haloalkylthio) Thiadiazoles vs. Symmetrical Bis-Thiadiazoles. Molecules 2024; 29:1938. [PMID: 38731428 PMCID: PMC11085375 DOI: 10.3390/molecules29091938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
A study on the functionalisation of 2-mercapto-5-methyl-1,3,4-thiadiazole has been conducted, yielding two series of products: 2-(ω-haloalkylthio)thiadiazoles and symmetrical bis-thiadiazoles, with variable chain lengths. The experimental conditions were optimised for each class of compounds by altering the base used and the reagents' proportions, leading to the development of separate protocols tailored to their specific reactivity and purification needs. The target halogenide reagents and bis-thiadiazole ligands were obtained either as single products or as mixtures easily separable by chromatography. Characterisation of the products was performed using 1D and 2D NMR spectra in solution, complemented by single crystal X-ray diffraction (XRD) for selected samples, to elucidate their structural properties.
Collapse
Affiliation(s)
- Zhanina S. Petkova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 9, 1113 Sofia, Bulgaria;
| | - Rusi I. Rusew
- Institute of Mineralogy and Crystallography “Acad. Ivan Kostov”, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 107, 1113 Sofia, Bulgaria;
| | - Boris L. Shivachev
- Institute of Mineralogy and Crystallography “Acad. Ivan Kostov”, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 107, 1113 Sofia, Bulgaria;
| | - Vanya B. Kurteva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 9, 1113 Sofia, Bulgaria;
| |
Collapse
|
3
|
Spectroscopic, Anti-Cancer Activity, and DFT Computational Studies of Pt(II) Complexes with 1-Benzyl-3-phenylthiourea and Phosphine/Diamine Ligands. INORGANICS 2023. [DOI: 10.3390/inorganics11030125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
The reaction between [PtCl2(L-L)] (L-L = dppe, dppp, dppb, dppf, Phen and Bipy) or [PtCl2(PPh3)2] with 1-benzyl-3-phenylthiourea (H2BPT) in a basic medium (CHCl3/EtOH) created new coordinated square planner Pt(II) complexes with [Pt(BPT)(L-L)] (1–4,6,7) and [Pt(BPT)(PPh3)2] (5) types. These complexes were fully characterized by analytical and spectroscopic techniques (i.e., IR, UV. Vis., 1H, and 31P NMR). The results indicated that the thiourea derivative ligand act as a dianion ligand bonded through both S and N atoms in a chelating mode or as a mono-anion ligand coordinated through a sulfur atom with Pt(II) ion. Cytotoxicity activity was performed by the MTT assay to determine anti-cancer activities against MCF-7 breast cancer cells. The study indicated that IC50 values for MCF-7 cells were 10.96–78.90 µM. Additionally, the complexes [Pt(BPT)(dppe)] (1), [Pt(BPT)(PPh3)2] (5), and [Pt(BPT)2(Bipy)] (7) were investigated theoretically, where their quantum parameters were evaluated using the Gaussian 09 program using the theory of B3LYP/Def2TZVP//B3LYP/Lanl2dz. The calculation results confirmed the optimized structures of the complexes square planar geometry. However, the calculated bond lengths and angles showed a slightly distorted square planar geometry due to the trans influence of the sulfur atom. Additionally, complexes of [Pt(BPT)(dppe)] (1) and [Pt(BPT)(PPh3)2] (5) showed higher stability compared to [Pt(BPT)2(Bipy)] (7), which can be attributed to the higher back-donation of (1) and (5) complexes. Furthermore, among the three complexes, the [Pt(BPT)2(Bipy)] (7) complex possessed the lowest HOMO–LUMO gap, which may be a good candidate as the photo-catalyst material.
Collapse
|
4
|
Abdullah TB, Behjatmanesh-Ardakani R, Faihan AS, Jirjes HM, Abou-Krisha MM, Yousef TA, Kenawy SH, Al-Janabi ASM. Cd(II) and Pd(II) Mixed Ligand Complexes of Dithiocarbamate and Tertiary Phosphine Ligands-Spectroscopic, Anti-Microbial, and Computational Studies. Molecules 2023; 28:2305. [PMID: 36903550 PMCID: PMC10005262 DOI: 10.3390/molecules28052305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
Mixed ligand complexes of Pd(II) and Cd(II) with N-picolyl-amine dithiocarbamate (PAC-dtc) as primary ligand and tertiary phosphine ligand as secondary ligands have been synthesized and characterized via elemental analysis, molar conductance, NMR (1H and 31P), and IR techniques. The PAC-dtc ligand displayed in a monodentate fashion via sulfur atom whereas diphosphine ligands coordinated as a bidentate mode to afford a square planner around the Pd(II) ion or tetrahedral around the Cd(II) ion. Except for complexes [Cd(PAC-dtc)2(dppe)] and [Cd(PAC-dtc)2(PPh3)2], the prepared complexes showed significant antimicrobial activity when evaluated against Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans and Aspergillus niger. Moreover, DFT calculations were performed to investigate three complexes {[Pd(PAC-dtc)2(dppe)](1), [Cd(PAC-dtc)2(dppe)](2), [Cd(PAC-dtc)2(PPh3)2](7)}, and their quantum parameters were evaluated using the Gaussian 09 program at the B3LYP/Lanl2dz theoretical level. The optimized structures of the three complexes were square planar and tetrahedral geometry. The calculated bond lengths and bond angles showed a slightly distorted tetrahedral geometry for [Cd(PAC-dtc)2(dppe)](2) compared to [Cd(PAC-dtc)2(PPh3)2](7) due to the ring constrain in the dppe ligand. Moreover, the [Pd(PAC-dtc)2(dppe)](1) complex showed higher stability compared to Cd(2) and Cd(7) complexes which can be attributed to the higher back-donation of Pd(1) complex.
Collapse
Affiliation(s)
- Tohama B. Abdullah
- Department of Chemistry, College of Science, University of Tikrit, Tikrit 34001, Iraq
| | | | - Ahmed S. Faihan
- Department of Chemistry, College of Science, University of Tikrit, Tikrit 34001, Iraq
| | - Hayfa M. Jirjes
- Department of Chemistry, College of Science, University of Tikrit, Tikrit 34001, Iraq
| | - Mortaga M. Abou-Krisha
- Chemistry Department, Science College, Imam Mohammad Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia
- Department of Chemistry, South Valley University, Qena 83523, Egypt
| | - Tarek A. Yousef
- Chemistry Department, Science College, Imam Mohammad Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia
- Mansoura Laboratory, Toxic and Narcotic Drug, Forensic Medicine Department, Medicolegal Organization, Ministry of Justice, Cairo 11435, Egypt
| | - Sayed H. Kenawy
- Chemistry Department, Science College, Imam Mohammad Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia
- Ceramics and Building Materials Department, National Research Centre, Refractories, El-Buhouth St., Dokki, Giza 12622, Egypt
| | - Ahmed S. M. Al-Janabi
- Department of Chemistry, College of Science, University of Tikrit, Tikrit 34001, Iraq
| |
Collapse
|
5
|
Synthesis, characterization, and x-ray crystallography of unexpected chloro-substitution on 1-(4-chlorophenyl)-3-phenylthiourea platinum(II) complex with tertiary phosphine ligand. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Abdullah TB, Jirjes HM, Faihan AS, Al-Janabi AS. Spectroscopic, computational, anti-bacterial studies of bivalent metal complexes of N-picolyl-amine dithiocarbamate. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|