1
|
Bendi A, Devi P, Sharma H, Yadav G, Raghav N, Pundeer R, Afshari M. Innovative Pyrazole Hybrids: A New Era in Drug Discovery and Synthesis. Chem Biodivers 2025; 22:e202402370. [PMID: 39613478 DOI: 10.1002/cbdv.202402370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/20/2024] [Accepted: 11/28/2024] [Indexed: 12/01/2024]
Abstract
Heterocyclic compounds that include nitrogen and their derivatives have long been regarded as excellent sources of medicinal substances. Pyrazole is a compound with two nitrogen atoms and an aromatic structure. It has several uses and intricate stereochemistry arranged in a five-membered ring. The knowledge of different pyrazole derivatives and their range of physiological and pharmacological actions has grown significantly in recent years. The scientific community has recently increasingly focused on exploring the chemistry of various pyrazole hybrids due to their enhanced biological activities. This review investigates the chemistry of these diverse pyrazole hybrids, emphasizing their synthesis and their antidiabetic, antibacterial, anticancer, antimicrobial, antioxidant, and anti-inflammatory activities. Articles published from 2014 onward with an emphasis on the last 5 years are included in this review. This review is anticipated to be useful for future investigations and innovative concepts in the pursuit of designs for creating more promising hybrids of pyrazoles.
Collapse
Affiliation(s)
- Anjaneyulu Bendi
- Innovation and Translational Research Hub (iTRH) & Department of Chemistry, Presidency University, Bangalore, Karnataka, India
| | - Poonam Devi
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| | - Harsh Sharma
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| | - Geetanjali Yadav
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| | - Neera Raghav
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| | - Rashmi Pundeer
- Department of Chemistry, Indira Gandhi University, Meerpur, Rewari, Haryana, India
| | - Mozhgan Afshari
- Department of Chemistry, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran
| |
Collapse
|
2
|
Dube ZF, Soremekun OS, Ntombela T, Alahmdi MI, Abo-Dya NE, Sidhom PA, Shawky AM, Shibl MF, Ibrahim MA, Soliman ME. Inherent efficacies of pyrazole-based derivatives for cancer therapy: the interface between experiment and in silico. Future Med Chem 2023; 15:1719-1738. [PMID: 37772542 DOI: 10.4155/fmc-2023-0142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023] Open
Abstract
There has been an increasing trend in the design of novel pyrazole derivatives for desired biological applications. For a cost-effective strategy, scientists have implemented various computational drug design tools to go hand in hand with experiments for the design and discovery of potentially effective pyrazole-based therapeutics. This review highlights the milestones of pyrazole-containing inhibitors and the use of molecular modeling techniques in conjunction with experimental studies to provide a view of the binding mechanism of these compounds. The review focuses on the established targets that play a key role in cancer therapy, including proteins involved in tubulin polymerization, carbonic anhydrase and tyrosine kinase. Overall, using both experimental and computational methods in drug design represents a promising approach to cancer therapy.
Collapse
Affiliation(s)
- Zanele F Dube
- Molecular Bio-Computational & Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Opeyemi S Soremekun
- Molecular Bio-Computational & Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
- Department of Epidemiology & Biostatistics, School of Public Health, Imperial College London, South Kensington, London, SW7 2BX, UK
| | - Thandokuhle Ntombela
- Catalysis & Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Mohammed Issa Alahmdi
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Nader E Abo-Dya
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Peter A Sidhom
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Ahmed M Shawky
- Science & Technology Unit, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Mohamed F Shibl
- Renewable Energy Program, Center for Sustainable Development, College of Arts & Sciences, Qatar University, Doha, 2713, Qatar
| | - Mahmoud Aa Ibrahim
- Molecular Bio-Computational & Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, 61519, Egypt
| | - Mahmoud Es Soliman
- Molecular Bio-Computational & Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| |
Collapse
|
3
|
Acar Çevik U, Celik I, Paşayeva L, Fatullayev H, Bostancı HE, Özkay Y, Kaplancıklı ZA. New benzimidazole-oxadiazole derivatives: Synthesis, α-glucosidase, α-amylase activity, and molecular modeling studies as potential antidiabetic agents. Arch Pharm (Weinheim) 2023; 356:e2200663. [PMID: 36760015 DOI: 10.1002/ardp.202200663] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 02/11/2023]
Abstract
Benzimidazole-1,3,4-oxadiazole derivatives (5a-z) were synthesized and characterized with different spectroscopic techniques such as 1 H NMR, 13 C NMR, and HRMS. The synthesized analogs were examined against α-glucosidase and α-amylase enzymes to determine their antidiabetic potential. Compounds 5g and 5q showed the most activity with 35.04 ± 1.28 and 47.60 ± 2.16 µg/mL when compared with the reference drug acarbose (IC50 = 54.63 ± 1.95 µg/mL). Compounds 5g, 5o, 5s, and 5x were screened against the α-amylase enzyme and were found to show excellent potential, with IC50 values ranging from 22.39 ± 1.40 to 32.07 ± 1.55 µg/mL, when compared with the standard acarbose (IC50 = 46.21 ± 1.49 µg/mL). The antioxidant activities of the effective compounds (5o, 5g, 5s, 5x, and 5q) were evaluated by TAS methods. A molecular docking research study was conducted to identify the active site and explain the functions of the active chemicals. To investigate the most likely binding mode of the substances 5g, 5o, 5q, 5s, and 5x, a molecular dynamics simulation was also carried out.
Collapse
Affiliation(s)
- Ulviye Acar Çevik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Leyla Paşayeva
- Department of Pharmacognosy, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Hanifa Fatullayev
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Hayrani E Bostancı
- Department of Biochemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Yusuf Özkay
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Zafer A Kaplancıklı
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
4
|
Sajjan VP, Anigol LB, Gurubasavaraj PM, Patil D, Patil PS, Gummagol NB, Quah CK, Wong QA, Celik I. New2-((2-(2,4-dinitrophenyl)hydrazineeylidene) derivatives: design, synthesis, in silico, and in vitro anticancer studies. J Biomol Struct Dyn 2023; 41:11681-11699. [PMID: 36602778 DOI: 10.1080/07391102.2022.2163424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/22/2022] [Indexed: 01/06/2023]
Abstract
A series of novel hydrazone compounds have been synthesized by the condensation of hydrazines and different substituted salicylaldehydes at a molar ratio of 1:1 in one step reaction and characterized by FT-IR, ESI-MS, 1H NMR, and single crystal x-ray diffraction. The crystal structure of the compound shows a trans configuration around the C = N bond and triclinic system with P -1/-p 1. Synthesized compounds were screened for cytotoxicity activities against A375 (melanoma), HT-29 (Colon), and A549 (lung) cancer cell lines. Among them, compound 2 exhibited the highest cytotoxic effect against the A375 cell line (IC50 = 0.30 µM) and HT-29 cell line (1.68 µM), compared to those of apatinib as a reference standard drug (0.28, 1.49 µM, respectively). The cytocompatibility assay on the L929 normal cell line and the hemolysis assay on human RBC were used to validate the non-toxic action. From DFT calculation, the various parameters such as HOMO-LUMO energies, Hirshfeld, and MEP have been studied. Furthermore, in silico molecular docking with three receptors was studied. Among four compounds, compound 2 has the lowest binding energy against cyclin dependent kinase (ΔGb = -9.3 kcal/mol). In addition to this, molecular dynamics (MD) simulation was also performed. Based on this study, these novel hydrazones can be considered a promising anticancer agent due to their potent cytotoxicity activities and computational analysis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Vinodkumar P Sajjan
- Department of Chemistry, Rani Channamma University, Belagavi, Karnataka, India
| | - Lakkappa B Anigol
- Department of Chemistry, Rani Channamma University, Belagavi, Karnataka, India
| | | | - Dhanashree Patil
- Dr. Prabhakar Kore Basic Science Research Center, KLE Academy of Higher Education and Research, Belagavi, Karnataka, India
| | | | - Neelamma B Gummagol
- Department of Physics, Rani Channamma University, Belagavi, Karnataka, India
| | - Ching Kheng Quah
- X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, George Town, Penang, Malaysia
| | - Qin Ai Wong
- X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, George Town, Penang, Malaysia
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| |
Collapse
|
5
|
Hasanzadeh Esfahani M, Ghasemi L, Behzad M, Skorepova E, Dusek M. Design, Spectroscopic, and Crystal Structural Characterization of New Pyrazolone-Based Schiff Bases: Molecular Docking Investigations against SARS-Covid-19 Main Proteases (PDB Ids: 6LU7 and 7TLL). Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2157026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Liana Ghasemi
- Faculty of Chemistry, Semnan University, Semnan, Iran
| | - Mahdi Behzad
- Faculty of Chemistry, Semnan University, Semnan, Iran
| | - Eliska Skorepova
- Department of Structure Analysis, Institute of Physics ASCR, Prague, Czech Republic
| | - Michal Dusek
- Department of Structure Analysis, Institute of Physics ASCR, Prague, Czech Republic
| |
Collapse
|
6
|
Paşayeva L, Fatullayev H, Celik I, Unal G, Bozkurt NM, Tugay O, Abdellattif MH. Evaluation of the Chemical Composition, Antioxidant and Antidiabetic Activity of Rhaponticoides iconiensis Flowers: Effects on Key Enzymes Linked to Type 2 Diabetes In Vitro, In Silico and on Alloxan-Induced Diabetic Rats In Vivo. Antioxidants (Basel) 2022; 11:2284. [PMID: 36421470 PMCID: PMC9686926 DOI: 10.3390/antiox11112284] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 09/10/2023] Open
Abstract
Diabetes mellitus (DM) is one of the globally worst killer diseases. In this study, the in vitro and in vivo antidiabetic activity and antioxidant capacity were determined and the phytochemical analyses were carried out on flower extract and sub-extracts of Rhaponticoides iconiensis. The in vitro antidiabetic activity was tested with α-amylase and α-glucosidase enzyme inhibition methods and an in vivo OGTT test in healthy and alloxan-induced rats. Although, the antioxidant activity was investigated with DPPH●, ABTS●+ and FRAP tests, the phytochemical composition analysis was carried out by LC-MS/MS. The highest α-glucosidase and α-amylase activity even from positive control acarbose were found in the ethyl acetate sub-extract of R. iconiensis (IC50 = 11.737 ± 0.823 µg/mL and 84.247 ± 0.721 µg/mL, respectively). This sub-extract also was active according to the results of in vivo tests. Moreover, the highest antioxidant activity on DPPH● (IC50 = 0.126 ± 0.002 mg/mL), FRAP (at a concentration of 1 mg/mL equivalent to 3112.052 ± 2.023 mmol Fe2+) and ABTS+● (at a concentration of 0.5 mg/mL equivalent to 0.608 ± 0.005 µM Trolox) tests. In addition, LC-MS/MS analyses of the active sub-extract revealed mainly the presence of patuletin, patuletin 3,7-diglucoside, naringin and 3,4-dicaffeoylquinic acid detected in the active sub-extract. In silico molecular docking and dynamics simulations studies were performed on these compounds with α-amylase and α-glucosidase enzymes for protein-ligand interactions and stability.
Collapse
Affiliation(s)
- Leyla Paşayeva
- Department of Pharmacognosy, Faculty of Pharmacy, Erciyes University, Kayseri 38280, Turkey
| | - Hanifa Fatullayev
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38280, Turkey
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38280, Turkey
| | - Gokhan Unal
- Department of Pharmacology, Faculty of Pharmacy, Erciyes University, Kayseri 38280, Turkey
| | - Nuh Mehmet Bozkurt
- Department of Pharmacology, Faculty of Pharmacy, Erciyes University, Kayseri 38280, Turkey
| | - Osman Tugay
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Selçuk University, Konya 42130, Turkey
| | - Magda H. Abdellattif
- Department of Chemistry, College of Science, Taif University, Taif 21944, Saudi Arabia
| |
Collapse
|
7
|
West AK, Kaylor LJ, Subir M, Rayat S. Synthesis, photophysical and nonlinear optical properties of push-pull tetrazoles. RSC Adv 2022; 12:22331-22341. [PMID: 36043072 PMCID: PMC9364896 DOI: 10.1039/d2ra04307f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 07/27/2022] [Indexed: 11/25/2022] Open
Abstract
A 2,5-disubstituted tetrazole with p-nitrophenyl and 3-pyridyl units as acceptors (1a), and three push–pull tetrazoles with p-nitrophenyl as an acceptor and phenyl (1b), 2-(dibenzo[b,d]furan-4-yl) (1c), and 4-(N,N-diphenylamino)phenyl (1d) as donor groups, were synthesized by copper-catalyzed aerobic C–N coupling of p-nitrophenyl tetrazole with appropriately substituted aryl boronic acids. The absorption and emission spectra of 1a–c showed minimal dependence on the polarity of the solvent; however, in the case of 1d a blue shift was noted in the longest absorption band (λ1) as the polarity increased. The fluorescence intensity of the title compounds was found to be solvent-dependent; however, no apparent correlation to solvent polarity could be established. The absorption and emission characteristics of 1a–d were also influenced by the nature of the substituent as 1d, bearing a strong electron donating 4-(N,N-diphenylamino)phenyl group, displayed a significant red shifted absorption (λ1) as well as emission (λem) bands compared to other compounds. Time dependent density functional calculations (CAM-B3LYP/6-311++G**) revealed that the longest wavelength band (λ1) is associated with an intramolecular charge transfer (ICT) from HOMO/HOMO-1/HOMO-2 → LUMO/LUMO+1 in these molecules. The first hyperpolarizability values, βHRS, of 1a–d were measured using the solution-based hyper-Rayleigh scattering technique using a femtosecond Ti:Sapphire laser and the highest NLO activity was measured for 1d with the greatest push–pull characteristics. A strong correlation was observed between the calculated hyperpolarizability (βtot) and experimentally measured values (βHRS). A 2,5-disubstituted tetrazole with a p-nitrophenyl unit as an acceptor and a 4-(N,N-diphenylamino) phenyl group as a donor exhibits strong push–pull characteristics and displays high NLO activity.![]()
Collapse
Affiliation(s)
- Anna-Kay West
- Department of Chemistry, Ball State University, Foundational Sciences Building Muncie IN 47306 USA
| | - Lukas J Kaylor
- Department of Chemistry, Ball State University, Foundational Sciences Building Muncie IN 47306 USA
| | - Mahamud Subir
- Department of Chemistry, Ball State University, Foundational Sciences Building Muncie IN 47306 USA
| | - Sundeep Rayat
- Department of Chemistry, Ball State University, Foundational Sciences Building Muncie IN 47306 USA
| |
Collapse
|
8
|
Karrouchi K, Sert Y, Ansar M, Radi S, El Bali B, Imad R, Alam A, Irshad R, Wajid S, Altaf M. Synthesis, α-Glucosidase Inhibition, Anticancer, DFT and Molecular Docking Investigations of Pyrazole Hydrazone Derivatives. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2097275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Khalid Karrouchi
- Faculty of Medicine and Pharmacy, Laboratory of Analytical Chemistry and Bromatology, Mohammed V University in Rabat, Rabat, Morocco
| | - Yusuf Sert
- Science and Art Faculty, Department of Physics, Sorgun Vocational School, Yozgat Bozok University, Yozgat, Turkey
| | - M’hammed Ansar
- Laboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, University Mohammed V in Rabat, Morocco
| | - Smaail Radi
- Laboratory of Applied Chemistry and Environment (LCAE), Faculty of Sciences, Department of Chemistry, University Mohammed Premier, Oujda, Morocco
| | - Brahim El Bali
- Laboratory of Organic, Macromolecular Chemistry and Natural Products, Faculty of Sciences, Mohammed I University, Oujda, Morocco
| | - Rehan Imad
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Anum Alam
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Rimsha Irshad
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Sheeba Wajid
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biology Science, University of Karachi, Karachi, Pakistan
| | - Muhammad Altaf
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biology Science, University of Karachi, Karachi, Pakistan
| |
Collapse
|