1
|
Saeedian Moghadam E, Bonyasi F, Bayati B, Sadeghi Moghadam M, Amini M. Recent Advances in Design and Development of Diazole and Diazine Based Fungicides (2014-2023). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15427-15448. [PMID: 38967261 DOI: 10.1021/acs.jafc.4c02187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
With fungal diseases posing a major threat to agricultural production, the application of fungicides to control related diseases is often considered necessary to ensure the world's food supply. The search for new bioactive agents has long been a priority in crop protection due to the continuous development of resistance against currently used types of active compounds. Heterocyclic compounds are an inseparable part of the core structures of numerous lead compounds, these rings constitute pharmacophores of a significant number of fungicides developed over the past decade by agrochemists. Among heterocycles, nitrogen-based compounds play an essential role. To date, diazole (imidazole and pyrazole) and diazine (pyrimidine, pyridazine, and pyrazine) derivatives make up an important series of synthetic fungicides. In recent years, many reports have been published on the design, synthesis, and study of the fungicidal activity of these scaffolds, but there was a lack of a comprehensive classified review on nitrogen-containing scaffolds. Regarding this issue, here we have reviewed the published articles on the fungicidal activity of the diazole and diazine families. In current review, we have classified the molecules synthesized so far based on the size of the ring.
Collapse
Affiliation(s)
- Ebrahim Saeedian Moghadam
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Fahimeh Bonyasi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Bahareh Bayati
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Mahdis Sadeghi Moghadam
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Mohsen Amini
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| |
Collapse
|
2
|
Li H, Liu Z, Dong Y, Wang YX, Zhu XL. Design, Synthesis, and Fungicidal Evaluation of Novel N-Methoxy Pyrazole-4-Carboxamides as Potent Succinate Dehydrogenase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2610-2615. [PMID: 36696251 DOI: 10.1021/acs.jafc.2c07031] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Succinate dehydrogenase (SDH, EC 1.3.5.1, also known as complex II) has been recognized as one of the most promising targets of fungicides. Here, based on the binding mode of pydiflumetofen with SDH, the carbon-carbon double bond was introduced into the chemical of pydiflumetofen and then produced the target compounds 6a-6o. The enzymatic inhibitory activity and structure-activity relationship (SAR) study showed that the 2-position and 4-position in terminal benzene were positive to increasing activity. Furthermore, fungicidal activity results in greenhouses indicated that compound 6o showed good control effects against wheat powdery mildew (WPM), cucumber powdery mildew (CPM), and southern corn rust (SCR), showing its broad-spectrum property. Especially, compound 6o exhibited 95 and 75% control effects against CPM and SCR at 6.25 mg/L, respectively, which are better than pydiflumetofen (80% control effects against CPM and 15% against SCR), indicating its potency that is worthy of further development.
Collapse
Affiliation(s)
- Hua Li
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, Henan 455000, P.R. China
- Key Laboratory of Pesticide and Chemical Biology of the Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Chemical Biology Center, Central China Normal University, Wuhan, Hubei 430079, P.R. China
| | - Zheng Liu
- Key Laboratory of Pesticide and Chemical Biology of the Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Chemical Biology Center, Central China Normal University, Wuhan, Hubei 430079, P.R. China
| | - Ying Dong
- Key Laboratory of Pesticide and Chemical Biology of the Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Chemical Biology Center, Central China Normal University, Wuhan, Hubei 430079, P.R. China
| | - Yu-Xia Wang
- Key Laboratory of Pesticide and Chemical Biology of the Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Chemical Biology Center, Central China Normal University, Wuhan, Hubei 430079, P.R. China
| | - Xiao-Lei Zhu
- Key Laboratory of Pesticide and Chemical Biology of the Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Chemical Biology Center, Central China Normal University, Wuhan, Hubei 430079, P.R. China
| |
Collapse
|
3
|
Sun XP, Yu W, Min LJ, Han L, Sun NB, Liu XH. Synthesis, Crystal Structure and Antifungal Activities of New Quinoline Derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
4
|
Shi HB, Zhai ZW, Min LJ, Han L, Sun NB, Cantrell CL, Bajsa-Hirschel J, Duke SO, Liu XH. Synthesis and pesticidal activity of new 1,3,4-oxadiazole thioether compounds containing a trifluoromethylpyrazoyl moiety. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [PMCID: PMC9486790 DOI: 10.1007/s11164-022-04839-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In order to find new lead compounds with high pesticidal activity, a series of 1,3,4-oxadiazole thioether compounds (5 series) were designed by using penthiopyrad as a synthon. They were synthesized easily via five steps by using ethyl 4,4,4-trifluoro-3-oxobutanoate and triethyl orthoformate as starting materials. The synthesized compounds were characterized by 1H NMR, 13C NMR and HRMS. The compound 2-(benzylthio)-5-(1-methyl-3-(trifluoromethyl)-1H-pyrazol-4-yl)-1,3,4-oxadiazole (5a) was further determined by X-ray single-crystal diffraction. It crystallized in the monoclinic system, space group P21/c, Z = 4. All the 1,3,4-oxadiazole thioether derivatives were screened for fungicidal activity against ten fungi and herbicidal activity against two weeds. The bioassay results indicated that some of the synthesized 1,3,4-oxadiazole compounds exhibited good fungicidal activity (> 50% inhibition) against the plant pathogens Sclerotinia sclerotiorum and Rhizoctonia solani at 50 μg/mL. Some of them exhibited certain herbicidal activity, and compounds 2-((3-chlorobenzyl)thio)-5-(1-methyl-3-(trifluoromethyl)-1H-pyrazol-4-yl)-1,3,4-oxadiazole (5e) and 2-((4-bromobenzyl)thio)-5-(1-methyl-3-(trifluoromethyl)-1H-pyrazol-4-yl)-1,3,4-oxadiazole (5 g) had bleach effect. Molecular docking is to find the best fit orientation of the 2-((4-bromobenzyl)thio)-5-(1-methyl-3-(trifluoromethyl)-1H-pyrazol-4-yl)-1,3,4-oxadiazole (5 g) molecule with the SDH protein (PDB: 2FBW). The docking results indicate that the compound 5 g and the lead compound penthiopyrad have similar binding interactions with SDH and carbonyl is a key group for these compounds.
Collapse
Affiliation(s)
- Hai-Bo Shi
- Chemical Engineering College, Ningbo Polytechnic, Ningbo, 315800 China
| | - Zhi-Wen Zhai
- College of Life Science, Huzhou University, Huzhou, 313000 China
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014 China
| | - Li-Jing Min
- College of Life Science, Huzhou University, Huzhou, 313000 China
| | - Liang Han
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014 China
| | - Na-Bo Sun
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015 Zhejiang China
| | - Charles L. Cantrell
- Natural Products Utilization Research Unit, USDA ARS, University, MS 38677 USA
| | | | - Stephen O. Duke
- National Center for Natural Product Research, School of Pharmacy, University of Mississippi, P.O. Box 1848, University, MS 38677 USA
| | - Xing-Hai Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014 China
| |
Collapse
|