1
|
Mobed A, Alivirdiloo V, Gholami S, Moshari A, Mousavizade A, Naderian R, Ghazi F. Nano-Medicine for Treatment of Tuberculosis, Promising Approaches Against Antimicrobial Resistance. Curr Microbiol 2024; 81:326. [PMID: 39182006 DOI: 10.1007/s00284-024-03853-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
Even though the number of effective anti-tuberculosis or anti-mycobacterial agents is increasing, a large number of patients experience severe side effects as a result of these drugs. This hurts the patients' well-being and quality of life. Tumor cells that survive treatment modalities can become chemotherapy resistant at the molecular level. Furthermore, negative effects on normal cells occur concurrently. Strategies that minimize the negative effects on normal cells while efficiently targeting infected cells are required. Nanotherapies, according to recent research, may be one option in this direction. The present study differs from previously published review studies as it concentrates on examining the most recently developed nanoparticles for anti-mycobacterial purposes. Such novel approaches have the potential to reduce harmful side effects and improve patients' health prognoses. Current paper provides a comprehensive analysis of recent advances in nanotherapy systems for the pulmonary delivery of anti-tuberculous drugs. In addition, to low-priced and convenient alternatives for pulmonary delivery, different types of NPs for oral and topical application were also deliberated and summarized in this review.
Collapse
Affiliation(s)
- Ahmad Mobed
- Department of Community Medicine, Faculty of Medicine, Social Determinants of Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Vahid Alivirdiloo
- Medical Doctor Ramsar Campus, Mazandaran University of Medical Sciences, Ramsar, Iran
| | - Sarah Gholami
- Young Researchers and Ellie Club, Babol Branch. Islamic Azad University, Babol, Iran
| | | | | | - Ramtin Naderian
- Student Committee of Medical Education Development, Education Development Center, Semnan University of Medical Science, Semnan, Iran
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Farhood Ghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Canales CSC, Pavan AR, Dos Santos JL, Pavan FR. In silico drug design strategies for discovering novel tuberculosis therapeutics. Expert Opin Drug Discov 2024; 19:471-491. [PMID: 38374606 DOI: 10.1080/17460441.2024.2319042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/12/2024] [Indexed: 02/21/2024]
Abstract
INTRODUCTION Tuberculosis remains a significant concern in global public health due to its intricate biology and propensity for developing antibiotic resistance. Discovering new drugs is a protracted and expensive endeavor, often spanning over a decade and incurring costs in the billions. However, computer-aided drug design (CADD) has surfaced as a nimbler and more cost-effective alternative. CADD tools enable us to decipher the interactions between therapeutic targets and novel drugs, making them invaluable in the quest for new tuberculosis treatments. AREAS COVERED In this review, the authors explore recent advancements in tuberculosis drug discovery enabled by in silico tools. The main objectives of this review article are to highlight emerging drug candidates identified through in silico methods and to provide an update on the therapeutic targets associated with Mycobacterium tuberculosis. EXPERT OPINION These in silico methods have not only streamlined the drug discovery process but also opened up new horizons for finding novel drug candidates and repositioning existing ones. The continued advancements in these fields hold great promise for more efficient, ethical, and successful drug development in the future.
Collapse
Affiliation(s)
- Christian S Carnero Canales
- School of Pharmaceutical Science, São Paulo State University (UNESP), Araraquara, Brazil
- School of Pharmacy, biochemistry and biotechnology, Santa Maria Catholic University, Arequipa, Perú
| | - Aline Renata Pavan
- School of Pharmaceutical Science, São Paulo State University (UNESP), Araraquara, Brazil
| | | | - Fernando Rogério Pavan
- School of Pharmaceutical Science, São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
3
|
Abd El-Lateef HM, Khalaf MM, Amer AA, Kandeel M, Abdelhamid AA, Abdou A. Synthesis, Characterization, Antimicrobial, Density Functional Theory, and Molecular Docking Studies of Novel Mn(II), Fe(III), and Cr(III) Complexes Incorporating 4-(2-Hydroxyphenyl azo)-1-naphthol (Az). ACS OMEGA 2023; 8:25877-25891. [PMID: 37521661 PMCID: PMC10373178 DOI: 10.1021/acsomega.3c01413] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023]
Abstract
This work synthesized three new CrAz2, MnAz2, and FeAz2 complexes and investigated them using IR, mass, UV spectroscopy, elemental analysis, conductivity and magnetic tests, and thermogravimetric analysis. The azo-ligand, 4-(2-hydroxyphenylAzo)-1-naphthol (Az), couples with metal ions via its nitrogen (in -N=N- bonds) and oxygen (in hydroxyl group) atoms, according to the IR spectra of these complexes. Through thermal examination (TG/TGA), the number and location of water in the complexes were also determined. Density functional theory (DFT) theory is applied to ameliorate the structures of the ligand (Az) and metal complexes and analyze the quantum chemical characteristics of these complexes. The antifungal and antibacterial activity of the ligand and its complexes opposed to several hazardous bacteria and fungi was investigated in vitro. Metal complexes were discovered to have a higher inhibitory impact on some organisms than the free ligand. The MnAz2 complex exhibited the best activity among the studied materials, whereas the CrAz2 complex had the lowest. The compounds' binding affinity to the E. coli (PDB ID: 1hnj) structure was predicted using molecular docking. Binding energies were calculated by analyzing protein-substrate interactions. These encouraging findings imply that these chemicals may have physiological effects and may be valuable for a variety of medical uses in the future.
Collapse
Affiliation(s)
- Hany M. Abd El-Lateef
- Department
of Chemistry, College of Science, King Faisal
University, Al-Ahsa 31982, Saudi Arabia
- Chemistry
Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Mai M. Khalaf
- Department
of Chemistry, College of Science, King Faisal
University, Al-Ahsa 31982, Saudi Arabia
- Chemistry
Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Amer A. Amer
- Chemistry
Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Mahmoud Kandeel
- Department
of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, 31982 Al-Ahsa, Saudi Arabia
- Department
of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt
| | - Antar A. Abdelhamid
- Chemistry
Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
- Chemistry
Department, Faculty of Science, Albaha University, Albaha 1988, Saudi Arabia
| | - Aly Abdou
- Chemistry
Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
| |
Collapse
|
4
|
Reddy DS, Sinha A, Kurjogi MM, Shanavaz H, Kumar A. Design, synthesis, molecular docking, and biological evaluation of coumarin-thymidine analogs as potent anti-TB agents. Arch Pharm (Weinheim) 2023; 356:e2200633. [PMID: 36634969 DOI: 10.1002/ardp.202200633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 01/14/2023]
Abstract
With the intent to discover new antituberculosis (TB) compounds, coumarin-thymidine analogs were synthesized using second-order nucleophilic substitution reactions of bromomethyl coumarin with thymidine. The newly synthesized coumarin-thymidine conjugates (1a-l) were characterized using IR, NMR, GC-MS, and CHN elemental analysis. The novel conjugates were found to exhibit potent anti-TB activity against the Mycobacterium tuberculosis H37 Rv strain, with minimum inhibitory concentrations (MIC) of the active compounds ranging between 0.012 and 0.482 µM. Compound 1k was established as the most active candidate with a MIC of 0.012 µM. The toxicity study on HEK cells confirmed the nontoxic nature of compounds 1e, 1h, 1i, 1j, and 1k. Also, the most active compounds (1k, 1j, and 1e) were stable in the pH range from 2.5 to 10, indicating compatibility with the biophysical environment. Based on the pKa studies, compounds 1k, 1j, and 1e are capable of crossing lipid-membrane barriers and acting on target cells. Molecular docking studies on the M. tuberculosis β-oxidation trifunctional enzyme (PDB ID: 7O4V) were conducted to investigate the mechanisms of anti-TB activity. All compounds showed excellent hydrogen binding interactions and exceptional docking scores against M. tuberculosis, which was in accordance with the results. Compounds 1a-l possessed excellent affinity to proteins, with binding energies ranging from -7.4 to -8.7 kcal/mol.
Collapse
Affiliation(s)
- Dinesh S Reddy
- Centre for Nano and Material Sciences, Jain (Deemed-to-be-University), Bangalore, Karnataka, India
| | - Anamika Sinha
- Centre for Nano and Material Sciences, Jain (Deemed-to-be-University), Bangalore, Karnataka, India
| | - Mahantesh M Kurjogi
- Multi-Disciplinary Research Unit, Karnataka Institute of Medical Sciences, Hubli, Karnataka, India
| | - H Shanavaz
- Department of Chemistry, Faculty of Engineering and Technology, Jain University, Bangalore, Karnataka, India
| | - Amit Kumar
- Centre for Nano and Material Sciences, Jain (Deemed-to-be-University), Bangalore, Karnataka, India
| |
Collapse
|
5
|
Akki M, Reddy DS, Katagi KS, Kumar A, Devarajegowda HC, Kumari M S, Babagond V, Joshi SD. Coumarin Hydrazone Oxime Scaffolds as Potent Anti‐tubercular Agents: Synthesis, X‐ray crystal and Molecular Docking Studies. ChemistrySelect 2022. [DOI: 10.1002/slct.202203260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Mahesh Akki
- Research Centre Department of Chemistry Karnatak University's Karnatak Science College Dharwad 580001 Karnataka India
| | - Dinesh S. Reddy
- Centre for Nano and Material Sciences Jain University Jain Global Campus, Jakkasandra Post Bangalore 562112 Karnataka India
| | - Kariyappa S. Katagi
- Research Centre Department of Chemistry Karnatak University's Karnatak Science College Dharwad 580001 Karnataka India
| | - Amit Kumar
- Centre for Nano and Material Sciences Jain University Jain Global Campus, Jakkasandra Post Bangalore 562112 Karnataka India
| | | | - Sunitha Kumari M
- Department of Physics Yuvaraja's College University of Mysore Mysuru 570005 Karnataka India
| | - Vardhaman Babagond
- Research Centre Department of Chemistry Karnatak University's Karnatak Science College Dharwad 580001 Karnataka India
| | - Shrinivas D. Joshi
- Novel Drug Design and Discovery Laboratory Department of Pharmaceutical Chemistry S.E.T's College of Pharmacy Sangolli Rayanna Nagar Dharwad 580 002 Karnataka India
| |
Collapse
|
6
|
González-Montiel S, Velázquez-Jiménez R, Segovia-Pérez R, Fragoso-Soto W, Martínez-Otero D, Andrade-López N, Salazar-Pereda V, Cruz-Borbolla J. η3-allyl-Pd(II) complexes of 2-, 3- and 4-pyridylmethyl-coumarin esters. TRANSIT METAL CHEM 2022. [DOI: 10.1007/s11243-022-00518-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
7
|
Ayari C, Alotaibi AA, Baashen MA, Perveen F, Almarri AH, Alotaibi KM, Abdelbaky MSM, Garcia-Granda S, Othmani A, Nasr CB, Mrad MH. A New Zn(II) Metal Hybrid Material of 5-Nitrobenzimidazolium Organic Cation (C 7H 6N 3O 2) 2[ZnCl 4]: Elaboration, Structure, Hirshfeld Surface, Spectroscopic, Molecular Docking Analysis, Electric and Dielectric Properties. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7973. [PMID: 36431459 PMCID: PMC9697581 DOI: 10.3390/ma15227973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
The slow solvent evaporation approach was used to create a single crystal of (C7H6N3O2)2[ZnCl4] at room temperature. Our compound has been investigated by single-crystal XRD which declares that the complex crystallizes in the monoclinic crystallographic system with the P21/c as a space group. The molecular arrangement of the compound can be described by slightly distorted tetrahedral ZnCl42- anionic entities and 5-nitrobenzimidazolium as cations, linked together by different non-covalent interaction types (H-bonds, Cl…Cl, π…π and C-H…π). Hirshfeld's surface study allows us to identify that the dominant contacts in the crystal building are H…Cl/Cl…H contacts (37.3%). FT-IR method was used to identify the different groups in (C7H6N3O2)2[ZnCl4]. Furthermore, impedance spectroscopy analysis in 393 ≤ T ≤ 438 K shows that the temperature dependence of DC conductivity follows Arrhenius' law. The frequency-temperature dependence of AC conductivity for the studied sample shows one region (Ea = 2.75 eV). In order to determine modes of interactions of compound with double stranded DNA, molecular docking simulations were performed at molecular level.
Collapse
Affiliation(s)
- Chaima Ayari
- Materials Chemistry Laboratory, Faculty of Sciences of Bizerte, University of Carthage, Zarzouna, Bizerte 7021, Tunisia
| | - Abdullah A. Alotaibi
- Department of Chemistry, College of Sciences and Humanities, Shaqra University, Ad-Dawadmi 11911, Saudi Arabia
| | - Mohammed A. Baashen
- Department of Chemistry, College of Sciences and Humanities, Shaqra University, Ad-Dawadmi 11911, Saudi Arabia
| | - Fouzia Perveen
- School of Interdisciplinary Engineering and Sciences (SINES), NUST, H-12, Islamabad 44000, Pakistan
| | - Abdulhadi H. Almarri
- Department of Chemistry, University College of Al-Wajah, University of Tabuk, Tabuk 71421, Saudi Arabia
| | - Khalid M. Alotaibi
- Department of Chemistry, College of Science, King Saud University, Riyadh 12271, Saudi Arabia
| | | | - Santiago Garcia-Granda
- Department of Physical and Analytical Chemistry, University of Oviedo-CINN, 33006 Oviedo, Spain
| | - Abdelhak Othmani
- Laboratory of Material Physics: Structures and Properties, LR01 ES15, Faculty of Sciences, University of Carthage, Zarzouna, Bizerte 7021, Tunisia
| | - Cherif Ben Nasr
- Materials Chemistry Laboratory, Faculty of Sciences of Bizerte, University of Carthage, Zarzouna, Bizerte 7021, Tunisia
| | - Mohamed Habib Mrad
- Materials Chemistry Laboratory, Faculty of Sciences of Bizerte, University of Carthage, Zarzouna, Bizerte 7021, Tunisia
- Department of Chemistry, College of Sciences and Humanities, Shaqra University, Ad-Dawadmi 11911, Saudi Arabia
| |
Collapse
|
8
|
Akki M, Reddy DS, Katagi KS, Kumar A, Babagond V, Munnolli RS, Joshi SD. Coumarin-Pyrazole Linked Carbodithioates as Potential Anti-Сancer Agents: Design, Synthesis, Biological, and Molecular Docking Investigation. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222100231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Sinha A, Chaudhary R, Reddy DS, Kongot M, Kurjogi MM, Kumar A. ON donor tethered copper (II) and vanadium (V) complexes as efficacious anti-TB and anti-fungal agents with spectroscopic approached HSA interactions. Heliyon 2022; 8:e10125. [PMID: 36033266 PMCID: PMC9403362 DOI: 10.1016/j.heliyon.2022.e10125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/12/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Antimicrobial drug resistance poses a significant threat worldwide, hence triggering an urgent situation for developing feasible drugs. 3D-transition metal coordination complexes being multifaceted, offer tremendous potency as drug candidates. However, there are fewer reports on non-toxic and safe transition metal complexes; therefore, we hereby attempted to develop novel copper and vanadium-based therapeutic agents. We have synthesised six metal complexes viz., [VVO2(Quibal-INH)] (1), [CuII(Quibal-INH)2] (2), [VVO(Quibal-INH) (cat)] (3), [CuII(Quibal-INH) (cat)] (4), [VVO(Quibal-INH) (bha)] (5) and [CuII(Quibal-INH) (bha)] (6). Quibal-INH (L) is an ON bidentate donor ligand synthesized from Schiff base reaction between 4-(2-(7-chloroquinolin-3-yl)vinyl)benzaldehyde (Quibal) and Isoniazid (INH). The synthesized compounds were characterized using analytical techniques involving ATR-IR, UV-Vis, EPR, 1H NMR, 13C NMR, and 51V NMR. Ligand (L) and compound 3 exhibited moderate growth inhibitory activity towards Candida albicans and Cryptococcus neoformans fungal species. Compound 6 has been identified as active against the above fungal species with no toxicity and hemolysis activity on the healthy cells. Compound 5 exhibited significant activity against the Mycobacterium tuberculosis H 37 R v strain. Further, compounds 4, 5 and 6 exhibited excellent free radical scavenging activity. All the developed compounds were found to exhibit stability over a wide range of pH conditions. The complexes were additionally studied for their interaction with human serum albumin (HSA) with the UV-vis spectroscopic technique.
Collapse
Affiliation(s)
- Anamika Sinha
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bengaluru, 562112, Karnataka, India
| | - Riya Chaudhary
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bengaluru, 562112, Karnataka, India
| | - Dinesh S Reddy
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bengaluru, 562112, Karnataka, India
| | - Manasa Kongot
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bengaluru, 562112, Karnataka, India
| | - Mahantesh M Kurjogi
- Multi-Disciplinary Research Unit, Karnataka Institute of Medical Sciences, Hubli, India
| | - Amit Kumar
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bengaluru, 562112, Karnataka, India
| |
Collapse
|
10
|
Reddy DS, Sinha A, Kumar A, Saini VK. Drug re-engineering and repurposing: A significant and rapid approach to tuberculosis drug discovery. Arch Pharm (Weinheim) 2022; 355:e2200214. [PMID: 35841594 DOI: 10.1002/ardp.202200214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 01/11/2023]
Abstract
The prevalence of tuberculosis (TB) remains the leading cause of death from a single infectious agent, ranking it above all other contagious diseases. The problem to tackle this disease seems to become even worse due to the outbreak of SARS-CoV-2. Further, the complications related to drug-resistant TB, prolonged treatment regimens, and synergy between TB and HIV are significant drawbacks. There are several drugs to treat TB, but there is still no rapid and accurate treatment available. Intensive research is, therefore, necessary to discover newer molecular analogs that can probably eliminate this disease within a short span. An increase in efficacy can be achieved through re-engineering old TB-drug families and repurposing known drugs. These two approaches have led to the production of newer classes of compounds with novel mechanisms to treat multidrug-resistant strains. With respect to this context, we discuss structural aspects of developing new anti-TB drugs as well as examine advances in TB drug discovery. It was found that the fluoroquinolone, oxazolidinone, and nitroimidazole classes of compounds have greater potential to be further explored for TB drug development. Most of the TB drug candidates in the clinical phase are modified versions of these classes of compounds. Therefore, here we anticipate that modification or repurposing of these classes of compounds has a higher probability to reach the clinical phase of drug development. The information provided will pave the way for researchers to design and identify newer molecular analogs for TB drug development and also broaden the scope of exploring future-generation potent, yet safer anti-TB drugs.
Collapse
Affiliation(s)
- Dinesh S Reddy
- Centre for Nano and Material Sciences, Jain University, Bangalore, India
| | - Anamika Sinha
- Centre for Nano and Material Sciences, Jain University, Bangalore, India
| | - Amit Kumar
- Centre for Nano and Material Sciences, Jain University, Bangalore, India
| | - Vipin K Saini
- Materials and Environmental Chemistry Research Laboratory, School of Environment & Natural Resources, Doon University, Dehradun, India
| |
Collapse
|