1
|
Bai S, Wan S, Li M, Wu R, Tang S, Wang F, Chen L, Lv X, Wei X, Feng S, Zhang M. Novel 2-aminothiazole derivatives incorporating 9-alkyl purine moiety: design, synthesis, crystal structure, and bioactivity evaluation. Mol Divers 2025:10.1007/s11030-025-11190-x. [PMID: 40221614 DOI: 10.1007/s11030-025-11190-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 04/04/2025] [Indexed: 04/14/2025]
Abstract
A series of 2-aminothiazole derivatives (3A1-3A30) containing 9-alkyl purine moiety were designed and synthesized to explore novel antibacterial agents with unique structures and potent antibacterial activity. The structures of target compounds were characterized using 1H NMR, 13C NMR, and HRMS techniques. The structure of compound 3A12 was further elucidated through single crystal X-ray diffraction analysis. Results from antibacterial activity tests indicated that compound 3A7 exhibited a significant inhibitory effect on Xanthomonas oryzae pv. oryzicola (Xoc), with an EC50 (half-maximal effective concentration) value of 25.5 μg/mL, which was more than three times higher than that of the control agent thiodiazole copper (EC50 = 78.4 μg/mL). Compound 3A25 has a strong inhibitory effect on Xanthomonas axonopodis pv. citric (Xac), with significantly higher activity than thiodiazole copper in terms of EC50 value (47.3 vs 92.1 µg/mL). Additionally, the EC50 value of compound 3A7 against Pseudomonas syringae pv. actinidiae (Psa) was measured at 57.5 µg/mL, demonstrating superior efficacy relative to the control agents bismerthiazol (EC50 = 92.9 µg/mL) and thiodiazole copper (EC50 = 90.2 µg/mL). The antibacterial mechanism of compound 3A7 was examined through an investigation into the production of exopolysaccharides, alterations in membrane permeability, morphological changes in bacterial cells, and the development of a molecular docking model. Through a 100 ns molecular dynamics (MD) simulation, the stability of the binding between compound 3A7 and the AvrRxo1-ORF1 protein was confirmed. Furthermore, the chemical reactivity of potential bioactive compounds was evaluated using density functional theory (DFT).
Collapse
Affiliation(s)
- Song Bai
- Guizhou Industry Polytechnic College, Guiyang, 550008, People's Republic of China.
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang, 550003, People's Republic of China.
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, People's Republic of China.
| | - Suran Wan
- Guizhou Industry Polytechnic College, Guiyang, 550008, People's Republic of China.
| | - Miao Li
- Guizhou Industry Polytechnic College, Guiyang, 550008, People's Republic of China
| | - Rong Wu
- Guizhou Industry Polytechnic College, Guiyang, 550008, People's Republic of China
| | - Shouying Tang
- Guizhou Industry Polytechnic College, Guiyang, 550008, People's Republic of China
| | - Fang Wang
- Guizhou Industry Polytechnic College, Guiyang, 550008, People's Republic of China
| | - Lijun Chen
- Guizhou Industry Polytechnic College, Guiyang, 550008, People's Republic of China
| | - Xiaokang Lv
- Guizhou Industry Polytechnic College, Guiyang, 550008, People's Republic of China
| | - Xian Wei
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang, 550003, People's Republic of China
| | - Shuang Feng
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang, 550003, People's Republic of China
| | - Miaohe Zhang
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang, 550003, People's Republic of China
| |
Collapse
|
2
|
Bozkurt İ, Sabancilar İ, Kiliç Ö, Bayrakdar A, Paçal N, Aras A. The Effects of Lamium garganicum L. Subsp. lasioclades (Stapf.) R. Mill Plant Against Fibroblast (U2OS Cell), Acetylcholinesterase, Glutathione S-Transferase: An In Vitro, In Silico Biological Activity Screening Study. Chem Biodivers 2025; 22:e202402421. [PMID: 39604787 DOI: 10.1002/cbdv.202402421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/01/2024] [Accepted: 11/25/2024] [Indexed: 11/29/2024]
Abstract
In this study, some biological activities of extracts of Lamium garganicum subsp. lasioclades (Lgl) have been evaluated as well as identified the phenolic composition. Concentration ranges of 31.25, 62.5, 125, 250, and 500 µg/mL were applied to determine the extract's anticancer properties. Significant results were obtained against the osteosarcoma cell line (U2OS cell) compared to normal human umbilical vein endothelial cells (HUVEC). To determine the antioxidant activities, ABTS, DPPH, FRAP, and CUPRAC methods were studied in vitro. Enzyme inhibition effects of methanol extract against the glutathione S-transferase (GST) and acetylcholinesterase (AChE) enzymes were investigated. IC50 values were calculated as 12.96 µL/mL for AChE and 13.02 µg/mL for GST, respectively. The phenolic contents of the plant extract were analyzed by HPLC. The interaction mechanisms of protein-ligand complexes formed by AChE and GST receptors with gallic acid and rutin were investigated by molecular docking studies. The stability of the complexes formed between receptors and ligands was confirmed by root mean square deviation (RMSD), root mean square fluctuation (RMSF), number of average hydrogen bonding interactions (Hb), and radius of gyration (Rg) analyses obtained from 100 ns molecular dynamics simulations.
Collapse
Affiliation(s)
- İlkan Bozkurt
- Department of Biochemistry, Faculty of Science and Arts, Iğdır University, Iğdır, Turkey
| | - İlhan Sabancilar
- Department of Medical Services and Techniques, Bitlis Eren University Vocational School of Health Services, Bitlis, Turkey
| | - Ömer Kiliç
- Department of Pharmaceutical Sciences, Pharmacy Faculty, Adıyaman University, Adıyaman, Turkey
| | - Alpaslan Bayrakdar
- Department of Medical Services and Techniques, Vocational School of Health Services, Igdır University, Iğdır, Turkey
| | - Nurettin Paçal
- Research Laboratory Application and Research Center, Iğdır University, Iğdır, Turkey
| | - Abdülmelik Aras
- Department of Biochemistry, Faculty of Science and Arts, Iğdır University, Iğdır, Turkey
- Research Laboratory Application and Research Center, Iğdır University, Iğdır, Turkey
| |
Collapse
|
3
|
Puranik N, Song M. Therapeutic Role of Heterocyclic Compounds in Neurodegenerative Diseases: Insights from Alzheimer's and Parkinson's Diseases. Neurol Int 2025; 17:26. [PMID: 39997657 PMCID: PMC11858632 DOI: 10.3390/neurolint17020026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 02/26/2025] Open
Abstract
Alzheimer's and Parkinson's are the most common neurodegenerative diseases (NDDs). The development of aberrant protein aggregates and the progressive and permanent loss of neurons are the major characteristic features of these disorders. Although the precise mechanisms causing Alzheimer's disease (AD) and Parkinson's disease (PD) are still unknown, there is a wealth of evidence suggesting that misfolded proteins, accumulation of misfolded proteins, dysfunction of neuroreceptors and mitochondria, dysregulation of enzymes, and the release of neurotransmitters significantly influence the pathophysiology of these diseases. There is no effective protective medicine or therapy available even with the availability of numerous medications. There is an urgent need to create new and powerful bioactive compounds since the number of people with NDDs is rising globally. Heterocyclic compounds have consistently played a pivotal role in drug discovery due to their exceptional pharmaceutical properties. Many clinically approved drugs, such as galantamine hydrobromide, donepezil hydrochloride, memantine hydrochloride, and opicapone, feature heterocyclic cores. As these heterocyclic compounds have exceptional therapeutic potential, heterocycles are an intriguing research topic for the development of new effective therapeutic drugs for PD and AD. This review aims to provide current insights into the development and potential use of heterocyclic compounds targeting diverse therapeutic targets to manage and potentially treat patients with AD and PD.
Collapse
Affiliation(s)
- Nidhi Puranik
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Minseok Song
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
4
|
Dhangar M, Ahmad I, Oh JM, Patil BR, Chinnam S, Sriram D, Kumari J, Mathew B, Sayyed RA, Chaudhari SB, Ansari SA, Rai N, Kim H, Patel HM. Optimizing Linezolid: Transforming It into a Selective MAO-B Inhibitor via a Toxicity-to-Activity Optimization Approach. ACS Med Chem Lett 2025; 16:40-50. [PMID: 39811132 PMCID: PMC11726377 DOI: 10.1021/acsmedchemlett.4c00354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/07/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025] Open
Abstract
Linezolid, a widely used oxazolidinone antibiotic, exhibits potent activity against resistant bacterial infections but is associated with serotonergic toxicity, primarily due to its inhibition of monoamine oxidase (MAO). MAOs, consisting of MAO-A and MAO-B isoforms, play crucial roles in neurotransmitter metabolism, with implications for neurodegenerative disorders like Parkinson's and Alzheimer's diseases. This study aims to optimize Linezolid's structure to transform it into a selective MAO-B inhibitor. Utilizing structure-activity and structure-toxicity relationship approaches, novel analogues of Linezolid were synthesized by replacing its oxazolidinone ring with a thiadiazole scaffold. Among the synthesized compounds, 6b emerged as a lead candidate, displaying a remarkable MAO-B inhibitory activity (IC50 = 0.03 μM) and 464-fold selectivity over MAO-A, compared to the standard drugs Pargyline (IC50 = 0.14 μM) and Clorgyline (IC50 = 1.85 μM). Furthermore, docking and molecular dynamics simulations corroborated the high affinity and stability of compound 6b in the MAO-B enzyme's binding pocket. These findings suggest that optimized Linezolid analogues, particularly compound 6b, hold promise as selective MAO-B inhibitors, offering therapeutic potential for treating neurodegenerative diseases while avoiding the risks associated with serotonergic toxicity.
Collapse
Affiliation(s)
- Mayur
S. Dhangar
- Department
of Pharmaceutical Chemistry, R. C. Patel
Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra 425405, India
| | - Iqrar Ahmad
- Department
of Pharmaceutical Chemistry, R. C. Patel
Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra 425405, India
| | - Jong Min Oh
- Department
of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Bhatu R. Patil
- Department
of Pharmaceutical Chemistry, R. C. Patel
Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra 425405, India
| | - Sampath Chinnam
- Department
of Chemistry, M. S. Ramaiah Institute of
Technology (Autonomous Institute, Affiliated to Visvesvaraya Technological
University, Belgaum), Bengaluru, Karnataka 560054, India
| | - Dharmarajan Sriram
- Department
of Pharmacy, Birla Institute of Technology
and Science-Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal, R. R. District, Hyderabad, Telagana 500078, India
| | - Jyothi Kumari
- Department
of Pharmacy, Birla Institute of Technology
and Science-Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal, R. R. District, Hyderabad, Telagana 500078, India
| | - Bijo Mathew
- Department
of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi 690525, India
| | - Rais A. Sayyed
- Department
of Pharmaceutical Chemistry, R. C. Patel
Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra 425405, India
| | - Shubham B. Chaudhari
- Department
of Pharmaceutical Technology and Process Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Mohali, Punjab 160002, India
| | - Siddique Akber Ansari
- Department
of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nishant Rai
- Graphic
Era (Deemed to be University), Clement Town, Dehradun 248002, India
- Graphic
Era Hill University, Clement Town, Dehradun 248002, India
| | - Hoon Kim
- Department
of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Harun M. Patel
- Department
of Pharmaceutical Chemistry, R. C. Patel
Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra 425405, India
| |
Collapse
|
5
|
Papagiouvannis G, Theodosis-Nobelos P, Rekka EA. A Review on Therapeutic Strategies against Parkinson's Disease: Current Trends and Future Perspectives. Mini Rev Med Chem 2025; 25:96-111. [PMID: 38918988 DOI: 10.2174/0113895575303788240606054620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/25/2024] [Accepted: 05/06/2024] [Indexed: 06/27/2024]
Abstract
Parkinson's Disease (PD) is the most common neurodegenerative disorder after Alzheimer's Disease and is clinically expressed by movement disorders, such as tremor, bradykinesia, and rigidity. It occurs mainly in the extrapyramidal system of the brain and is characterized by dopaminergic neuron degeneration. L-DOPA, dopaminergic agonists, anticholinergic drugs, and MAO-B inhibitors are currently used as therapeutic agents against PD, however, they have only symptomatic efficacy, mainly due to the complex pathophysiology of the disease. This review summarizes the main aspects of PD pathology, as well as, discusses the most important biochemical dysfunctions during PD, and presents novel multi-targeting compounds, which have been tested for their activity against various targets related to PD. This review selects various research articles from main databases concerning multi-targeting compounds against PD. Molecules targeting more than one biochemical pathway involved in PD, expected to be more effective than the current treatment options, are discussed. A great number of research groups have designed novel compounds following the multi-targeting drug approach. They include structures combining antioxidant, antiinflammatory, and metal-chelating properties. These compounds could be proven useful for effective multi-targeted PD treatment. Multi-targeting drugs could be a useful tool for the design of effective antiparkinson agents. Their efficacy towards various targets implicated in PD could be the key to the radical treatment of this neurodegenerative disorder.
Collapse
Affiliation(s)
- Georgios Papagiouvannis
- Department of Pharmacy, School of Health Sciences, Frederick University, Nicosia, 1036, Cyprus
| | | | - Eleni A Rekka
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| |
Collapse
|
6
|
Kumar S, Pandey BP, Abdelgawad MA, Ghoneim MM, Bakr RB, Kim H, Mathew B. Inhibition of monoamine oxidases by heterocyclic derived conjugated dienones: synthesis and in vitro and in silico investigations. RSC Med Chem 2024; 16:d4md00608a. [PMID: 39430951 PMCID: PMC11487422 DOI: 10.1039/d4md00608a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/11/2024] [Indexed: 10/22/2024] Open
Abstract
A total of 18 heterocyclic derived conjugated dienones (CD1-CD18) were evaluated for their potential monoamine oxidase (MAO)-A/-B inhibitory activity. Among the analyzed molecules, CD11 and CD14 showed notable inhibitory potentials against MAO-B, with half-maximal inhibitory concentration (IC50) values of 0.063 ± 0.001 μM and 0.036 ± 0.008 μM, respectively. In contrast, CD1, CD2 and CD3 showed comparable inhibitory activities toward MAO-A, with IC50 values of 3.45 ± 0.07, 3.23 ± 0.24, and 3.15 ± 0.10 μM, respectively. Derivatives of thiophene (CD13-CD17) exhibited selectivity indices greater than 250 for MAO-B. Both lead compounds exhibited similar potencies to safinamide and were more potent than pargyline. According to kinetic analysis, CD11 and CD14 exhibited competitive inhibition of MAO-B activity, with K i values of 12.67 ± 3.85 nM and 4.5 ± 0.62 nM, respectively. Furthermore, the reversibility test results indicated that the inhibitions were reversible. Molecular docking and molecular dynamics simulation studies can provide insights into the probable binding interactions of CD11 and CD14 with MAO-B. CD11 demonstrated a bipartite contact with Tyr326 and Phe343, whereas CD14 showed contact with Pro102 and Tyr435 via aromatic hydrogen bonds. These results indicated that both compounds have high-affinity binding interactions ( -10.13 and -9.90 kcal mol-1, respectively) at the active site of MAO-B. Furthermore, we used SwissADME to estimate ADME, and both lead compounds demonstrated blood-brain barrier penetration. The study results indicated that all the compounds evaluated demonstrated potent inhibition of MAO-B activity, which was comparable to the efficacy of reference medications. It is necessary to do further investigations on the lead molecules to see whether they may be used to treat different neurodegenerative illnesses.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham AIMS Health Sciences Campus Kochi 682 041 India
| | - Bishnu Prasad Pandey
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University Suncheon 57922 Republic of Korea
- Department of Chemical Science and Engineering, Kathmandu University PO Box No. 6250 Dhulikhel 45200 Nepal
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University Sakaka 72341 Aljouf Saudi Arabia
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University Ad Diriyah Riyadh 13713 Saudi Arabia
| | - Rania B Bakr
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University Beni-Suef 62514 Egypt
| | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University Suncheon 57922 Republic of Korea
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham AIMS Health Sciences Campus Kochi 682 041 India
| |
Collapse
|
7
|
Mazumder R, Ichudaule, Ghosh A, Deb S, Ghosh R. Significance of Chalcone Scaffolds in Medicinal Chemistry. Top Curr Chem (Cham) 2024; 382:22. [PMID: 38937401 DOI: 10.1007/s41061-024-00468-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/24/2024] [Indexed: 06/29/2024]
Abstract
Chalcone is a simple naturally occurring α,β-unsaturated ketone with biological importance, which can also be easily synthesized in laboratories by reaction between two aromatic scaffolds. In plants, chalcones occur as polyphenolic compounds of different frameworks which are bioactive molecules that have been in traditional medicinal practice for many years. Chalcone-based lead molecules have been developed, possessing varied potentials such as antimicrobial, antiviral, anti-inflammatory, anticancer, anti-oxidant, antidiabetic, antihyperurecemic, and anti-ulcer effects. Chalcones contribute considerable fragments to give important heterocyclic molecules with therapeutic utilities targeting various diseases. These characteristic features have made chalcone a topic of interest among researchers and have attracted investigations into this widely applicable structure. This review highlights the extensive exploration carried out on the synthesis, biotransformations, chemical reactions, hybridization, and pharmacological potentials of chalcones, and aims to provide an extensive, thorough, and critical review of their importance, with emphasis on their properties, chemistry, and biomedical applications to boost future investigations into this potential scaffold in medicinal chemistry.
Collapse
Affiliation(s)
- Rishav Mazumder
- Laboratory of Developing Drug Candidates, Department of Pharmacy, Tripura University (A Central University), Suryamaninagar, Agartala, Tripura, 799022, India
| | - Ichudaule
- Laboratory of Developing Drug Candidates, Department of Pharmacy, Tripura University (A Central University), Suryamaninagar, Agartala, Tripura, 799022, India
| | - Ashmita Ghosh
- Department of Microbiology and Biotechnology, School of Natural Sciences, Techno India University Tripura, Maheshkhola, Anandanagar, Agartala, Tripura, 799004, India
| | - Subrata Deb
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL, 33169, USA.
| | - Rajat Ghosh
- Laboratory of Developing Drug Candidates, Department of Pharmacy, Tripura University (A Central University), Suryamaninagar, Agartala, Tripura, 799022, India.
| |
Collapse
|
8
|
Abdalla Ali A, Mhamad SA, Hasan AH, Ahmad I, Abdullah SA, Jamil S, Patel H, Murugesan S, Jamalis J. Synthesis, biological evaluation and molecular modeling studies of modulated benzyloxychalcones as potential acetylcholinesterase inhibitors. J Biomol Struct Dyn 2024; 42:3604-3615. [PMID: 37293930 DOI: 10.1080/07391102.2023.2220032] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/09/2023] [Indexed: 06/10/2023]
Abstract
Acetylcholinesterase inhibitors (AChEIs) have become a significant target in the search for an efficient treatment of Alzheimer's disease. Chalcone-based compounds display a strong potency to hinder AChE. So, this study focused on the synthesis of a series of new chalcone derivatives with anti-cholinesterase potential and their structures were characterized based on spectroscopic methods including IR, 1H NMR, 13C NMR and HRMS. Chalcone derivatives were screened against AChE. Most of them exhibited potent inhibitory activity against AChE. Compound 11i showed the most potent activity toward acetylcholinesterase compared to the positive compound, Galantamine. Docking studies into the active site of the acetylcholinesterase enzyme ravealed the significant docking score of the synthesized compounds with docking score of -7.959 to -9.277 kcal/mol when compared to the co-crystallized ligand, Donepezil (-10.567 kcal/mol). The interaction's stability was further assessed using a conventional atomistic 100 ns dynamics simulation study, which revealed the conformational stability of representative compound 11i in the cavity of the acetylcholinesterase enzyme.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Arman Abdalla Ali
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
- Tafan Preparatory School, General Directorate of Education of Sulaimani, Sulaimani, Kurdistan, Iraq
| | - Shakhawan Ahmad Mhamad
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
- Department of Chemistry, College of Education, University of Sulaimani, Sulaimani, Kurdistan, Iraq
| | - Aso Hameed Hasan
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
- Department of Chemistry, College of Science, University of Garmian, Kalar, Kurdistan, Iraq
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Gondur, Dhule, Maharashtra, India
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Siti Awanis Abdullah
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
| | - Shajarahtunnur Jamil
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Sankaranarayanan Murugesan
- Medicinal Chemistry Research Laboratory, Birla Institute of Technology & Science Pilani (BITS Pilani), Pilani, Rajasthan, India
| | - Joazaizulfazli Jamalis
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
| |
Collapse
|
9
|
Desai NC, Jadeja DJ, Jethawa AM, Ahmad I, Patel H, Dave BP. Design and synthesis of some novel hybrid molecules based on 4-thiazolidinone bearing pyridine-pyrazole scaffolds: molecular docking and molecular dynamics simulations of its major constituent onto DNA gyrase inhibition. Mol Divers 2024; 28:693-709. [PMID: 36750538 DOI: 10.1007/s11030-023-10612-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/23/2023] [Indexed: 02/09/2023]
Abstract
Due to multidrug resistance, microbial infections have become significant on a global level. As infections caused by several resistant bacteria and fungi severely harm mankind, scientists have developed new antibiotics to combat these infections. In order to develop novel antimicrobial agents, a series of 4-thiazolidinone-based 5-arylidene hybrids (5a-o) have been designed and synthesized to evaluate their antibacterial and antifungal activities. For the determination of the structure of a novel synthesized hybrid, various spectral techniques, e.g., IR, 1H NMR, 13C NMR, and Mass spectroscopy, were used. Two bacterial gram-negative (Escherichia coli and Pseudomonas aeruginosa), two gram-positive strains (Staphylococcus aureus and Streptococcus pyogenes), and one fungal strain (Candida albicans) were used to evaluate antimicrobial activity. Compounds 5c, 5g, and 5i were effective due to their MIC values of 62.5 μg/mL against tested bacterial strains (S. pyogenes (5c), P. aeruginosa (5g), and E. coli (5i), respectively.) and 250 μg/mL against C. albicans fungal strains, respectively. Additionally, molecular docking and 100 ns molecular dynamic simulations were carried out to investigate the stability of molecular contacts and to establish how the newly synthesized inhibitors fit together in the most stable conformations.
Collapse
Affiliation(s)
- Nisheeth C Desai
- Division of Medicinal Chemistry, Department of Chemistry, Maharaja Krishnakumarsinhji Bhavnagar University, Mahatma Gandhi Campus, Bhavnagar, 364 002, India.
| | - Dharmpalsinh J Jadeja
- Division of Medicinal Chemistry, Department of Chemistry, Maharaja Krishnakumarsinhji Bhavnagar University, Mahatma Gandhi Campus, Bhavnagar, 364 002, India
| | - Aratiba M Jethawa
- Division of Medicinal Chemistry, Department of Chemistry, Maharaja Krishnakumarsinhji Bhavnagar University, Mahatma Gandhi Campus, Bhavnagar, 364 002, India
| | - Iqrar Ahmad
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, 425405, India
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, 425405, India
| | - B P Dave
- School of Science, Indrashil University, Rajpur, Kadi, Gujarat, 382740, India
| |
Collapse
|
10
|
Owen AE, Chima CM, Ahmad I, Emori W, Agwamba EC, Cheng CR, Benjamin I, Patel H, Ahuekwe EF, Ojong MA, Ubah CB, Manicum ALE, Louis H. Antibacterial Potential of Trihydroxycyclohexa-2,4-Diene-1-Carboxylic Acid: Insight from DFT, Molecular Docking, and Molecular Dynamic Simulation. Polycycl Aromat Compd 2024; 44:2128-2151. [DOI: 10.1080/10406638.2023.2214280] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 05/07/2023] [Indexed: 09/21/2024]
Affiliation(s)
- Aniekan E. Owen
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
| | - Chioma M. Chima
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar, Nigeria
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, Division of Computer-Aided Drug Design, R. C. Patel Institute of Pharmaceutical Education and Research, Maharashtra, India
| | - Wilfred Emori
- Department of Chemistry, Sichuan University of Science & Engineering, Zigong, Sichuan, P. R. China
| | - Ernest C. Agwamba
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Microbiology, Covenant University, Otta, Nigeria
| | - Chun-Ru Cheng
- Department of Chemistry, Sichuan University of Science & Engineering, Zigong, Sichuan, P. R. China
| | - Innocent Benjamin
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria
| | - Harun Patel
- Department of Pharmaceutical Chemistry, Division of Computer-Aided Drug Design, R. C. Patel Institute of Pharmaceutical Education and Research, Maharashtra, India
| | - Eze F. Ahuekwe
- Department of Microbiology, Covenant University, Otta, Nigeria
| | - Mmefone A. Ojong
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria
| | - Chioma B. Ubah
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria
| | | | - Hitler Louis
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar, Nigeria
| |
Collapse
|
11
|
Kumar S, Bhowmik R, Oh JM, Abdelgawad MA, Ghoneim MM, Al-Serwi RH, Kim H, Mathew B. Machine learning driven web-based app platform for the discovery of monoamine oxidase B inhibitors. Sci Rep 2024; 14:4868. [PMID: 38418571 PMCID: PMC10901862 DOI: 10.1038/s41598-024-55628-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/26/2024] [Indexed: 03/01/2024] Open
Abstract
Monoamine oxidases (MAOs), specifically MAO-A and MAO-B, play important roles in the breakdown of monoamine neurotransmitters. Therefore, MAO inhibitors are crucial for treating various neurodegenerative disorders, including Parkinson's disease (PD), Alzheimer's disease (AD), and amyotrophic lateral sclerosis (ALS). In this study, we developed a novel cheminformatics pipeline by generating three diverse molecular feature-based machine learning-assisted quantitative structural activity relationship (ML-QSAR) models concerning MAO-B inhibition. PubChem fingerprints, substructure fingerprints, and one-dimensional (1D) and two-dimensional (2D) molecular descriptors were implemented to unravel the structural insights responsible for decoding the origin of MAO-B inhibition in 249 non-reductant molecules. Based on a random forest ML algorithm, the final PubChem fingerprint, substructure fingerprint, and 1D and 2D molecular descriptor prediction models demonstrated significant robustness, with correlation coefficients of 0.9863, 0.9796, and 0.9852, respectively. The significant features of each predictive model responsible for MAO-B inhibition were extracted using a comprehensive variance importance plot (VIP) and correlation matrix analysis. The final predictive models were further developed as a web application, MAO-B-pred ( https://mao-b-pred.streamlit.app/ ), to allow users to predict the bioactivity of molecules against MAO-B. Molecular docking and dynamics studies were conducted to gain insight into the atomic-level molecular interactions between the ligand-receptor complexes. These findings were compared with the structural features obtained from the ML-QSAR models, which supported the mechanistic understanding of the binding phenomena. The presented models have the potential to serve as tools for identifying crucial molecular characteristics for the rational design of MAO-B target inhibitors, which may be used to develop effective drugs for neurodegenerative disorders.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Ratul Bhowmik
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Jong Min Oh
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, 72341, Sakaka, Aljouf, Saudi Arabia
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, 13713, Ad Diriyah, Riyadh, Saudi Arabia
| | - Rasha Hamed Al-Serwi
- Department of Basic Dental Sciences, College of Dentistry, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922, Republic of Korea.
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India.
| |
Collapse
|
12
|
Bouali N, Ahmad I, Patel H, Alhejaili EB, Hamadou WS, Badraoui R, Hadj Lajimi R, Alreshidi M, Siddiqui AJ, Adnan M, Abdulhakeem MA, Bazaid AS, Patel M, Saeed M, Snoussi M, Noumi E. GC-MS screening of the phytochemical composition of Ziziphus honey: ADME properties and in vitro/ in silico study of its antimicrobial activity. J Biomol Struct Dyn 2024; 42:1368-1380. [PMID: 37191027 DOI: 10.1080/07391102.2023.2205945] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/30/2023] [Indexed: 05/17/2023]
Abstract
A revival interest has been given to natural products as sources of phytocompounds to be used as alternative treatment against infectious diseases. In this context, we aimed to investigate the antimicrobial potential of Ziziphus honey (ZH) against twelve clinical bacterial strains and several yeasts and molds using in vitro and computational approaches. The well-diffusion assay revealed that ZH was able to induce growth inhibition of most Gram-positive and Gram-negative bacteria. The high mean growth inhibition zone (mGIZ) was recorded in E. coli (Clinical strain, 217), S. aureus followed by E. coli ATCC 10536 (mGIZ values: 41.00 ± 1 mm, 40.67 ± 0.57 mm, and 34.67 ± 0.57 mm, respectively). The minimal bactericidal concentrations (MBCs) and minimal fungicidal concentration values (MFCs) from approximately 266.33 mg/mL to over 532.65 mg/mL. Molecular docking results revealed that the identified compounds maltose, 2-furoic acid, isopropyl ester, 2,4-imidazolidinedione, 5-(2-methylpropyl)-(S)- and 3,4,5-trihydroxytoluene, S-Methyl-L-Cysteine, 2-Furancarboxylic acid, L-Valine-N-ethoxycarbonyl, Hexanoic acid, 3,5,5-trimethyl-, Methyl-beta-D-thiogalactoside, gamma-Sitosterol, d-Mannose, 4-O-Methylmannose, 2,4-Imidazolidinedione, 5-(2-methylpropyl)- (S) were found to have good affinity for targeted receptor, respectively. Through a 100-ns dynamic simulation research, binding interactions and stability between promising phytochemicals and the active residues of the studied enzymes were confirmed. The ADMET profiling of all identified compounds revealed that most of them could be qualified as biologically active with good absorption and permeation. Overall, the results highlighted the efficiency of ZH against the tested clinical pathogenic strains. The antimicrobial potential and the potency displayed by the identified compounds could imply their further pharmacological applications.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nouha Bouali
- Department of Biology, University of Hail, College of Science, Ha'il, Saudi Arabia
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Gondur, Dhule, Maharashtra, India
| | - Harun Patel
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Gondur, Dhule, Maharashtra, India
| | | | - Walid Sabri Hamadou
- Department of Biology, University of Hail, College of Science, Ha'il, Saudi Arabia
- Research Unit: Molecular Biology of Leukemia and Lymphoma, Department of Biochemistry, University of Medecine of Sousse, Sousse, Tunisia
| | - Riadh Badraoui
- Department of Biology, University of Hail, College of Science, Ha'il, Saudi Arabia
- Section of Histology - Cytology, University of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Department of Histo-Embryology and Cytogenetics, Medicine Faculty of Sfax, University of Sfax, Sfax, Tunisia
| | - Ramzi Hadj Lajimi
- Department of Chemistry, College of Science, University of Ha'il, Ha'il, Saudi Arabia
- Laboratory of Water, Membranes and Environmental Biotechnologies, Center of Research and Water Technologies, Soliman, Tunisia
| | - Mousa Alreshidi
- Department of Biology, University of Hail, College of Science, Ha'il, Saudi Arabia
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
| | - Arif Jamal Siddiqui
- Department of Biology, University of Hail, College of Science, Ha'il, Saudi Arabia
| | - Mohd Adnan
- Department of Biology, University of Hail, College of Science, Ha'il, Saudi Arabia
| | | | - Abdulrahman S Bazaid
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
| | - Mitesh Patel
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parul University, Vadodara, India
| | - Mohd Saeed
- Department of Biology, University of Hail, College of Science, Ha'il, Saudi Arabia
| | - Mejdi Snoussi
- Department of Biology, University of Hail, College of Science, Ha'il, Saudi Arabia
- Laboratory of Genetics, Biodiversity and Valorisation of Bioressources, High Institute of Biotechnology University of Monastir, Monastir, Tunisia
| | - Emira Noumi
- Department of Biology, University of Hail, College of Science, Ha'il, Saudi Arabia
- Laboratory of Genetics, Biodiversity and Valorisation of Bioressources, High Institute of Biotechnology University of Monastir, Monastir, Tunisia
| |
Collapse
|
13
|
Mathew B, Ravichandran V, Raghuraman S, Rangarajan TM, Abdelgawad MA, Ahmad I, Patel HM, Kim H. Two dimensional-QSAR and molecular dynamics studies of a selected class of aldoxime- and hydroxy-functionalized chalcones as monoamine oxidase-B inhibitors. J Biomol Struct Dyn 2023; 41:9256-9266. [PMID: 36411738 DOI: 10.1080/07391102.2022.2146198] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/05/2022] [Indexed: 11/23/2022]
Abstract
Candidates generated from unsaturated ketone (chalcone) demonstrated as strong, reversible and specific monoamine oxidase-B (MAO-B) inhibitory activity. For the research on MAO-B inhibition, our team has synthesized and evaluated a panel of aldoxime-chalcone ethers (ACE) and hydroxylchalcones (HC). The MAO-B inhibitory activity of several candidates is in the micro- to nanomolar range in these series. The purpose of this research was to develop predictive QSAR models and look into the relation between MAO-B inhibition by aldoxime and hydroxyl-functionalized chalcones. It was shown that the molecular descriptors ETA Shape P, MDEO-12, ETA dBetaP, SpMax1 Bhi and ETA EtaP B are significant in the inhibitory action of the MAO-B target. Using the current 2D QSAR models, potential chalcone-based MAO-B inhibitors might be created. The lead molecules were further analyzed by the detailed molecular dynamics study to establish the stability of the ligand-enzyme complex.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, India
| | | | - Seenivasan Raghuraman
- Department of Pharmaceutical Chemistry, Unity College of Pharmacy, Bhongir, Telangana, India
| | - T M Rangarajan
- Department of Chemistry, Sri Venkateswara College, University of Delhi, New Delhi, India
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Al Jouf, Saudi Arabia
| | - Iqrar Ahmad
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Harun M Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| |
Collapse
|
14
|
Alminderej F, Ghannay S, Omer Elsamani M, Alhawday F, Albadri AEAE, Elbehairi SEI, Alfaifi MY, Kadri A, Aouadi K. In Vitro and In Silico Evaluation of Antiproliferative Activity of New Isoxazolidine Derivatives Targeting EGFR: Design, Synthesis, Cell Cycle Analysis, and Apoptotic Inducers. Pharmaceuticals (Basel) 2023; 16:1025. [PMID: 37513936 PMCID: PMC10384175 DOI: 10.3390/ph16071025] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/11/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
A series of novel enantiopure isoxazolidine derivatives were synthesized and evaluated for their anticancer activities against three human cancer cell lines such as human breast carcinoma (MCF-7), human lung adenocarcinoma (A-549), and human ovarian carcinoma (SKOV3) by employing MTT assay. The synthesized compounds were characterized by NMR and elemental analysis. Results revealed that all the synthesized compounds displayed significant inhibition towards the tested cell lines. Among them, 2g and 2f, which differ only by the presence of an ester group at the C-3 position and small EDG (methyl) at the C-5 position of the phenyl ring (2g), were the most active derivatives in attenuating the growth of the three cells in a dose-dependent manner. The IC50 for 2g were 17.7 ± 1 µM (MCF-7), 12.1 ± 1.1 µM (A-549), and 13.9 ± 0.7 µM (SKOV3), and for 2f were 9.7 ± 1.3µM (MCF-7), 9.7 ± 0.7µM (A-549), and 6.5 ± 0.9µM (SKOV3), respectively, which were comparable to the standard drug, doxorubicin. The enzymatic inhibition of 2f and 2g against EGFR afforded good inhibitory activity with IC50 of 0.298 ± 0.007 μM and 0.484 ± 0.01 µM, respectively, close to the positive control, Afatinib. Compound 2f arrested the cell cycle in the S phase in MCF-7 and SKOV3 cells, and in the G2/M phase in the A549 cell; however, 2g induced G0/G1 phase cell cycle arrest, and inhibited the progression of the three cancer cells, together with significant apoptotic effects. The docking study of compounds 2f and 2g into EGFR ATP-active site revealed that it fits nicely with good binding affinity. The pharmacokinetic and drug-likeness scores revealed notable lead-like properties. At 100 ns, the dynamic simulation investigation revealed high conformational stability in the EGFR binding cavity.
Collapse
Affiliation(s)
- Fahad Alminderej
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
| | - Siwar Ghannay
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
| | - Mohamed Omer Elsamani
- Department of Chemistry, Faculty of Science and Arts of Baljurashi, Al-Baha University, P.O. Box 1988, Albaha 65527, Saudi Arabia
- Department of Food Science and Technology, Faculty of Sciences, Omdurman Islamic University, Omdurman P.O. Box 382, Sudan
| | - Fahad Alhawday
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
| | - Abuzar E A E Albadri
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
| | - Serag Eldin I Elbehairi
- Department of Biology, Faculty of Science, King Khalid University, Abha 9004, Saudi Arabia
- Cell Culture Laboratory, Egyptian Organization for Biological Products and Vaccines, VACSERA Holding Company, Giza 2311, Egypt
| | - Mohammad Y Alfaifi
- Department of Biology, Faculty of Science, King Khalid University, Abha 9004, Saudi Arabia
| | - Adel Kadri
- Department of Chemistry, Faculty of Science and Arts of Baljurashi, Al-Baha University, P.O. Box 1988, Albaha 65527, Saudi Arabia
- Department of Chemistry, Faculty of Science of Sfax, University of Sfax, B.P. 1171, Sfax 3000, Tunisia
| | - Kaïss Aouadi
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
- Department of Chemistry, Faculty of Science of Sfax, University of Sfax, B.P. 1171, Sfax 3000, Tunisia
- Department of Chemistry, Laboratory of Heterocyclic Chemistry Natural Product and Reactivity/CHPNR, Faculty of Science of Monastir, University of Monastir, Avenue of the Environment, Monastir 5019, Tunisia
| |
Collapse
|
15
|
Thomas Parambi DG, Oh JM, Kumar S, Sudevan ST, Hendawy OM, Abdelgawad MA, Musa A, Al-Sanea MM, Ahmad I, Patel H, Kim H, Mathew B. Halogenated class of oximes as a new class of monoamine oxidase-B inhibitors for the treatment of Parkinson's disease: Synthesis, biochemistry, and molecular dynamics study. Comput Biol Chem 2023; 105:107899. [PMID: 37315342 DOI: 10.1016/j.compbiolchem.2023.107899] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/11/2023] [Accepted: 05/31/2023] [Indexed: 06/16/2023]
Abstract
Oximes are the promising structural scaffold for inhibiting monoamine oxidase (MAO)-B. Eight chalcone-based oxime derivatives were synthesized by microwave-assisted technique, and their ability to inhibit human MAO (hMAO) enzymes were tested. All compounds showed higher inhibitory activity of hMAO-B than hMAO-A. In the CHBO subseries, CHBO4 most potently inhibited hMAO-B with an IC50 value of 0.031 μM, followed by CHBO3 (IC50 = 0.075 μM). In the CHFO subseries, CHFO4 showed the highest inhibition of hMAO-B with an IC50 value of 0.147 μM. Compound CHBO4 had the highest selectivity index (SI) value of 1290.3. However, CHBO3 and CHFO4 showed relatively low SI values of 27.7 and 19.2, respectively. The -Br substituent in the CHBO subseries at the para-position in the B-ring showed higher hMAO-B inhibition than the -F substituent in the CHFO subseries. In both series, hMAO-B inhibition increased with the substituents at para-position in A-ring (-F > -Br > -Cl > -H in order). Compound CHBO4 (-F in A-ring and -Br in B-ring) was 12.6-times potent than the substituents-reversed compound CHFO3 (-Br in A-ring and -F in B-ring; IC50 = 0.391 μM). In the kinetic study, Ki values of CHBO4 and CHFO4 for hMAO-B were 0.010 ± 0.005 and 0.040 ± 0.007 μM, respectively, with competitive inhibitions. Reversibility experiments showed that CHBO4 and CHFO4 were reversible hMAO-B inhibitors. In the cytotoxicity test using the Vero cells by the MTT technique, CHBO4 had low toxicity with an IC50 value of 128.8 µg/mL. In H2O2-induced cells, CHBO4 significantly reduced cell damage by scavenging reactive oxygen species (ROS). Molecular docking and dynamics showed the stable binding mode of the lead molecule CHBO4 on the active site of hMAO-B. These results suggest that CHBO4 is a potent reversible, competitive, and selective hMAO-B inhibitor and can be used as a treatment agent for neurological disorders.
Collapse
Affiliation(s)
- Della Grace Thomas Parambi
- College of Pharmacy, Department of Pharmaceutical Chemistry, Jouf University, Sakaka 72341, Al Jouf, Saudi Arabia.
| | - Jong Min Oh
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Sunil Kumar
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, India
| | - Sachithra Thazhathuveedu Sudevan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, India
| | - Omnia Magdy Hendawy
- College of Pharmacy, Department of Clinical Pharmacology, Jouf University, Sakaka 72341, Al Jouf, Saudi Arabia
| | - Mohamed A Abdelgawad
- College of Pharmacy, Department of Pharmaceutical Chemistry, Jouf University, Sakaka 72341, Al Jouf, Saudi Arabia
| | - Arafa Musa
- College of Pharmacy, Department of Pharmacognosy, Jouf University, Sakaka, 72341, Al Jouf, Saudi Arabia
| | - Mohammad M Al-Sanea
- College of Pharmacy, Department of Pharmaceutical Chemistry, Jouf University, Sakaka 72341, Al Jouf, Saudi Arabia
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Gondur, Dhule 424002, Maharashtra, India
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Maharashtra, India
| | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea.
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, India.
| |
Collapse
|
16
|
Abdullahi M, Uzairu A, Shallangwa GA, Mamza PA, Ibrahim MT, Ahmad I, Patel H. Structure-based drug design, molecular dynamics simulation, ADMET, and quantum chemical studies of some thiazolinones targeting influenza neuraminidase. J Biomol Struct Dyn 2023; 41:13829-13843. [PMID: 37158006 DOI: 10.1080/07391102.2023.2208225] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/11/2023] [Indexed: 05/10/2023]
Abstract
The genetic mutability of the influenza virus leads to the existence of drug-resistant strains which is dangerous, particularly with the lingering coronavirus disease (COVID-19). This necessitated the need for the search and discovery of more potential anti-influenza agents to avert future outbreaks. In furtherance of our previous in-silico studies on 5-benzyl-4-thiazolinones as anti-influenza neuraminidase (NA) inhibitors, molecule 11 was selected as the template scaffold for the structure-based drug design due to its good binding, pharmacokinetic profiling, and better NA inhibitory activity. As such, eighteen (18) new molecules (11a-r) were designed with better MolDock scores as compared with the template scaffold and the zanamivir reference drug. However, the dynamic stability of molecule 11a in the binding cavity of the NA target (3TI5) showed water-mediated hydrogen and hydrophobic bondings with the active residues such as Arg118, Ile149, Arg152, Ile222, Trp403, and Ile427 after the MD simulation for 100 ns. The drug-likeness and ADMET assessment of all designed molecules predicted non-violation of the stipulated thresholds of Lipinski's rule and good pharmacokinetic properties respectively. In addition, the quantum chemical calculations also suggested the significant chemical reactivity of molecules with their smaller band energy gap, high electrophilicity, high softness, and low hardness. The results obtained in this study proposed a reliable in-silico viewpoint for anti-influenza drug discovery and development.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mustapha Abdullahi
- Faculty of Physical Sciences, Department of Chemistry, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
- Faculty of Sciences, Department of Pure and Applied Chemistry, Kaduna State University, Kaduna, Kaduna State, Nigeria
| | - Adamu Uzairu
- Faculty of Physical Sciences, Department of Chemistry, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Gideon Adamu Shallangwa
- Faculty of Physical Sciences, Department of Chemistry, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Paul Andrew Mamza
- Faculty of Physical Sciences, Department of Chemistry, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Muhammad Tukur Ibrahim
- Faculty of Physical Sciences, Department of Chemistry, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Iqrar Ahmad
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| |
Collapse
|
17
|
Jagatap V, Ahmad I, Sriram D, Kumari J, Adu DK, Ike BW, Ghai M, Ansari SA, Ansari IA, Wetchoua PO, Karpoormath R, Patel H. Isoflavonoid and Furanochromone Natural Products as Potential DNA Gyrase Inhibitors: Computational, Spectral, and Antimycobacterial Studies. ACS OMEGA 2023; 8:16228-16240. [PMID: 37179626 PMCID: PMC10173323 DOI: 10.1021/acsomega.3c00684] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023]
Abstract
In pursuit of new antitubercular agents, we here report the antimycobacterial (H37Rv) and DNA gyrase inhibitory potential of daidzein and khellin natural products (NPs). We procured a total of 16 NPs based on their pharmacophoric similarities with known antimycobacterial compounds. The H37Rv strain of M. tuberculosis was found to be susceptible to only two out of the 16 NPs procured; specifically, daidzein and khellin each exhibited an MIC of 25 μg/mL. Moreover, daidzein and khellin inhibited the DNA gyrase enzyme with IC50 values of 0.042 and 0.822 μg/mL, respectively, compared to ciprofloxacin with an IC50 value of 0.018 μg/mL. Daidzein and khellin were found to have lower toxicity toward the vero cell line, with IC50 values of 160.81 and 300.23 μg/mL, respectively. Further, molecular docking study and MD simulation of daidzein indicated that it remained stable inside the cavity of DNA GyrB domain for 100 ns.
Collapse
Affiliation(s)
- Vilas
R. Jagatap
- Division
of Computer-Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education
and Research, Shirpur District, Dhule 425405, Maharashtra, India
| | - Iqrar Ahmad
- Division
of Computer-Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education
and Research, Shirpur District, Dhule 425405, Maharashtra, India
| | - Dharmarajan Sriram
- Department
of Pharmacy, Birla Institute of Technology
and Science-Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal, R. R. District, Hyderabad 500078, India
| | - Jyothi Kumari
- Department
of Pharmacy, Birla Institute of Technology
and Science-Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal, R. R. District, Hyderabad 500078, India
| | - Darko Kwabena Adu
- Department
of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences,
College of Health Sciences, University of
KwaZulu-Natal (Westville), Durban 4000, South Africa
| | - Blessing Wisdom Ike
- Department
of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences,
College of Health Sciences, University of
KwaZulu-Natal (Westville), Durban 4000, South Africa
| | - Meenu Ghai
- Discipline
of Genetics, School of Life Sciences, University
of KwaZulu-Natal, Westville, Durban 4000, South Africa
| | - Siddique Akber Ansari
- Department
of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Irfan Aamer Ansari
- Department
of Drug Science and Technology, University
of Turin, Turin 10124, Italy
| | - Priscille Ornella
Mefotso Wetchoua
- Department
of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences,
College of Health Sciences, University of
KwaZulu-Natal (Westville), Durban 4000, South Africa
| | - Rajshekhar Karpoormath
- Department
of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences,
College of Health Sciences, University of
KwaZulu-Natal (Westville), Durban 4000, South Africa
| | - Harun Patel
- Division
of Computer-Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education
and Research, Shirpur District, Dhule 425405, Maharashtra, India
| |
Collapse
|
18
|
Sayed HM, Ramadan MA, Salem HH, Ahmad I, Patel H, Fayed MAA. Phytochemical Investigation, In Silico/In Vivo Analgesic, and Anti-inflammatory Assessment of the Egyptian Cassia occidentalis L. Steroids 2023; 196:109245. [PMID: 37141980 DOI: 10.1016/j.steroids.2023.109245] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023]
Abstract
Cassia occidentalis L., from Fabaceae family phytochemical screening, revealed several biologically active principles mainly flavonoids and anthraquinones. GLC analysis of the lipoidal matter afforded 12 hydrocarbons: 9-dodecyl-tetradecahydro-anthracene (48.97 %), 9-dodecyl-tetradecahydro-phenanthrene (14.43 %), and 6 sterols/triterpenes: iso-jaspisterol (11.99%) and fatty acids were palmitic acid (50 %), and Linoleic acid (16.06%). Column chromatography led to the isolation of fifteen compounds (1-15), elucidated using spectroscopic evidence. First report of undecanoic acid (4) from the family Fabaceae, while p-dimethyl amino-benzaldehyde (15) was first time isolated from a natural origin. Eight compounds isolated for the first time from C. occidentalis L.; β-amyrin (1), β-sitosterol (2), stigmasterol (3), camphor (5), lupeol (6), chrysin (7), pectolinargenin (8), and 1, 2, 5-trihydroxy anthraquinone (14) besides five known compounds previously isolated; apigenin (9), kaempferol (10), chrysophanol (11), physcion (12), and aloe-emodin (13). In-vivo evaluation of anti-inflammatory and analgesic effects of C. occidentalis L. extracts where the n-butanol and total extracts showed the highest activities. The percentage of the inhibitory effect of the n-butanol extract was 29.7 at a dose of 400 mg/Kg. Furthermore, identified phytoconstituents were docked into the active sites of enzymes nAChRs, COX-1, and COX-2 to evaluate binding affinity. Phyto-compounds Physcion, aloe-emodin, and chrysophanol were found to have a good affinity for targeted receptors compared to co-crystalized inhibitors, validating the analgesic and anti-inflammatory effects of the phytochemicals.
Collapse
Affiliation(s)
- Hanaa M Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Mahmoud A Ramadan
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Heba H Salem
- Department of Pharmacognosy, Faculty of Pharmacy, Northern Border University, Rafha Region, Saudi Arabia
| | - Iqrar Ahmad
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur,425405, Maharashtra, India
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur,425405, Maharashtra, India
| | - Marwa A A Fayed
- Department of Pharmacognosy, Faculty of Pharmacy, University of Sadat City, Sadat City 32897, Egypt.
| |
Collapse
|
19
|
Zala AR, Rajani DP, Ahmad I, Patel H, Kumari P. Synthesis, characterization, molecular dynamic simulation, and biological assessment of cinnamates linked to imidazole/benzimidazole as a CYP51 inhibitor. J Biomol Struct Dyn 2023; 41:11518-11534. [PMID: 36691770 DOI: 10.1080/07391102.2023.2170918] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/26/2022] [Indexed: 01/25/2023]
Abstract
A class of 2-(1H-imidazol-1-yl)-1-phenylethyl cinnamates 6a-6j and 2-(1H-benzo[d]imidazol-1-yl)-1-phenylethyl cinnamates 7a-7j were synthesized, and their synthesis was validated using various spectroscopic techniques like IR, NMR, and Mass spectrometry. In addition, the compounds were assessed for in-vitro antibacterial against gram-positive and gram-negative strains and in-vitro antifungal against six different fungal strains. Compounds 6 g, 7 b, 7f, and 7 g exhibited significant activity against all bacterial strains ranging from MIC = 12.5-50 µg/mL, and compounds 6 g, 7 b, and 7 g exhibited considerable activity against all fungal strains ranging from MFC = 125-200 µg/mL. A molecular docking study indicated that compounds 6 g, 7 b, 7 g, and 7j could be lodged in the active pocket and inhibit C. albicans Sterol 14α-demethylase (CYP51) protein via various interactions, and these studies validate the antifungal results. Different parameters from the 100 ns MD simulation study are investigated to evaluate the dynamic stability of protein-ligand complexes. According to the MD simulation study, the proposed compounds effectively kept their molecular interaction and structural integrity within the C. albicans Sterol 14-demethylase. Compounds 6 g, 7 b, and 7 g are promising lead compounds in searching for novel antifungal drug-like molecules. Furthermore, in silico ADME indicates that these compounds possess drug-like physicochemical properties to be orally bioavailable.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ajayrajsinh R Zala
- Department of Chemistry, S.V. National Institute of Technology, Surat, India
| | | | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Gondur, India
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Premlata Kumari
- Department of Chemistry, S.V. National Institute of Technology, Surat, India
| |
Collapse
|
20
|
Sudevan ST, Oh JM, Abdelgawad MA, Abourehab MAS, Rangarajan TM, Kumar S, Ahmad I, Patel H, Kim H, Mathew B. Introduction of benzyloxy pharmacophore into aryl/heteroaryl chalcone motifs as a new class of monoamine oxidase B inhibitors. Sci Rep 2022; 12:22404. [PMID: 36575270 PMCID: PMC9794710 DOI: 10.1038/s41598-022-26929-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
The inhibitory action of fifteen benzyloxy ortho/para-substituted chalcones (B1-B15) was evaluated against human monoamine oxidases (hMAOs). All the molecules inhibited hMAO-B isoform more potently than hMAO-A. Furthermore, the majority of the molecules showed strong inhibitory actions against hMAO-B at 10 μM level with residual activities of less than 50%. Compound B10 has an IC50 value of 0.067 μM, making it the most potent inhibitor of hMAO-B, trailed by compound B15 (IC50 = 0.12 μM). The thiophene substituent (B10) in the A-ring exhibited the strongest hMAO-B inhibition structurally, however, increased residue synthesis did not result in a rise in hMAO-B inhibition. In contrast, the benzyl group at the para position of the B-ring displayed more hMAO-B inhibition than the other positions. Compounds B10 and B15 had relatively high selectivity index (SI) values for hMAO-B (504.791 and 287.600, respectively). Ki values of B10 and B15 were 0.030 ± 0.001 and 0.033 ± 0.001 μM, respectively. The reversibility study showed that B10 and B15 were reversible inhibitors of hMAO-B. PAMPA assay manifested that the benzyloxy chalcones (B10 and B15) had a significant permeability and CNS bioavailability with Pe value higher than 4.0 × 10-6 cm/s. Both compounds were stabilized in protein-ligand complexes by the π-π stacking, which enabled them to bind to the hMAO-B enzyme's active site incredibly effectively. The hMAO-B was stabilized by B10- and B15-hMAO-B complexes, with binding energies of - 74.57 and - 87.72 kcal/mol, respectively. Using a genetic algorithm and multiple linear regression, the QSAR model was created. Based on the best 2D and 3D descriptor-based QSAR model, the following statistics were displayed: R2 = 0.9125, Q2loo = 0.8347. These findings imply that B10 and B15 are effective, selective, and reversible hMAO-B inhibitors.
Collapse
Affiliation(s)
- Sachithra Thazhathuveedu Sudevan
- grid.411370.00000 0000 9081 2061Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041 India
| | - Jong Min Oh
- grid.412871.90000 0000 8543 5345Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922 Republic of Korea
| | - Mohamed A. Abdelgawad
- grid.440748.b0000 0004 1756 6705Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, 72341 Saudi Arabia ,grid.411662.60000 0004 0412 4932Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514 Egypt
| | - Mohammed A. S. Abourehab
- grid.412832.e0000 0000 9137 6644Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah, 21955 Saudi Arabia
| | - T. M. Rangarajan
- grid.8195.50000 0001 2109 4999Department of Chemistry, Sri Venketeswara College, University of Delhi, New Delhi, 110021 India
| | - Sunil Kumar
- grid.411370.00000 0000 9081 2061Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041 India
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Gondur, Dhule, 424002 Maharashtra India
| | - Harun Patel
- grid.412233.50000 0001 0641 8393Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405 Maharashtra India
| | - Hoon Kim
- grid.412871.90000 0000 8543 5345Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922 Republic of Korea
| | - Bijo Mathew
- grid.411370.00000 0000 9081 2061Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041 India
| |
Collapse
|
21
|
Noumi E, Ahmad I, Bouali N, Patel H, Ghannay S, ALrashidi AA, Abdulhakeem MA, Patel M, Ceylan O, Badraoui R, Mousa Elayyan AE, Adnan M, Kadri A, Snoussi M. Thymus musilii Velen. Methanolic Extract: In Vitro and In Silico Screening of Its Antimicrobial, Antioxidant, Anti-Quorum Sensing, Antibiofilm, and Anticancer Activities. Life (Basel) 2022; 13:62. [PMID: 36676011 PMCID: PMC9862435 DOI: 10.3390/life13010062] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Thymus musilii Velen. is a rare plant species cultivated in the Ha'il region (Saudi Arabia) under greenhouse conditions. In this work, we described, for the first time, the phytochemical composition, antimicrobial, antioxidant, anti-quorum sensing, and anticancer activities of T. musilii methanolic extract using both experimental and computational approaches. The obtained results showed the identification of eight small-like peptides and eighteen phyto-compounds by using high-resolution liquid chromatography-mass spectrometry (HR-LCMS) dominated mainly by compounds belonging to isoprenoid, fatty acyl, flavonoid, and alkaloid classes. The tested extracts exhibited high antifungal and antibacterial activity with the mean diameter of growth inhibition zones ranging from 12.33 ± 0.57 mm (Pseudomonas aeruginosa ATCC 27853) to 29.33 ± 1.15 mm (Candida albicans ATCC 10231). Low minimal inhibitory concentrations were recorded for the tested micro-organisms ranging from 0.781 mg/mL to 12.5 mg/mL. While higher doses were necessary to completely kill all tested bacterial and fungal strains. Thyme extract was able to scavenge DPPH•, ABTS•+, β-carotene, and FRAP free radicals, and the IC50 values were 0.077 ± 0.0015 mg/mL, 0.040 ± 0.011 mg/mL, 0.287 ± 0.012 mg/mL, and 0.106 ± 0.007 mg/mL, respectively. The highest percentage of swarming and swimming inhibition was recorded at 100 µg/mL with 39.73 ± 1.5% and 25.18 ± 1%, respectively. The highest percentage of biofilm inhibition was recorded at 10 mg/mL for S. typhimurium ATCC 14028 (53.96 ± 4.21%) and L. monocytogenes ATCC 7644 (49.54 ± 4.5 mg/mL). The in silico docking study revealed that the observed antimicrobial, antioxidant, and anticancer activities of the constituent compounds of T. musilii are thermodynamically feasible, notably, such as those of the tripeptides (Asn-Met-His, His-Cys-Asn, and Phe-His-Gln), isoprenoids (10-Hydroxyloganin), and diterpene glycosides (4-Ketoretinoic acid glucuronide).
Collapse
Affiliation(s)
- Emira Noumi
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Hail 81451, Saudi Arabia
- Laboratory of Genetics, Biodiversity and Valorization of Bio-Resources (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue Tahar Haddad, BP74, Monastir 5000, Tunisia
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Gondur, Dhule 424002, India
| | - Nouha Bouali
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Hail 81451, Saudi Arabia
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, India
| | - Siwar Ghannay
- Department of Chemistry, College of Science, Qassim University, P.O. Box 6688, Buraidah 51452, Saudi Arabia
| | - Ayshah Aysh ALrashidi
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Hail 81451, Saudi Arabia
| | - Mohammad A Abdulhakeem
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Hail 81451, Saudi Arabia
| | - Mitesh Patel
- Centre of Research for Development, Department of Biotechnology, Parul Institute of Applied Sciences, Parul University, Vadodara 391760, India
| | - Ozgur Ceylan
- Ula Ali Kocman Vocational School, Mugla Sitki Kocman University, Mugla 48147, Turkey
| | - Riadh Badraoui
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Hail 81451, Saudi Arabia
- Department of Histo Embryology and Cytogenetics, Medicine Faculty of Sfax, University of Sfax, Road of Majida Boulia, Sfax 3029, Tunisia
| | - Afnan Elayyan Mousa Elayyan
- Department of Clinical Laboratory Science, College of Applied Sciences-Qurayyat, Jouf University, P.O. Box 2014, Sakaka 72388, Saudi Arabia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Hail 81451, Saudi Arabia
| | - Adel Kadri
- Faculty of Science and Arts in Baljurashi, Albaha University, P.O. Box 1988, Albaha 65527, Saudi Arabia
- Department of Chemistry, Faculty of Science of Sfax, University of Sfax, B.P. 1171, Sfax 3000, Tunisia
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Hail 81451, Saudi Arabia
- Laboratory of Genetics, Biodiversity and Valorization of Bio-Resources (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue Tahar Haddad, BP74, Monastir 5000, Tunisia
| |
Collapse
|
22
|
Synthesis, docking, and biological investigations of new coumarin-piperazine hybrids as potential antibacterial and anticancer agents. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Multifunctional Derivatives of Spiropyrrolidine Tethered Indeno-Quinoxaline Heterocyclic Hybrids as Potent Antimicrobial, Antioxidant and Antidiabetic Agents: Design, Synthesis, In Vitro and In Silico Approaches. Molecules 2022; 27:molecules27217248. [PMID: 36364077 PMCID: PMC9653804 DOI: 10.3390/molecules27217248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 12/04/2022] Open
Abstract
To combat emerging antimicrobial-resistant microbes, there is an urgent need to develop new antimicrobials with better therapeutic profiles. For this, a series of 13 new spiropyrrolidine derivatives were designed, synthesized, characterized and evaluated for their in vitro antimicrobial, antioxidant and antidiabetic potential. Antimicrobial results revealed that the designed compounds displayed good activity against clinical isolated strains, with 5d being the most potent (MIC 3.95 mM against Staphylococcus aureus ATCC 25923) compared to tetracycline (MIC 576.01 mM). The antioxidant activity was assessed by trapping DPPH, ABTS and FRAP assays. The results suggest remarkable antioxidant potential of all synthesized compounds, particularly 5c, exhibiting the strongest activity with IC50 of 3.26 ± 0.32 mM (DPPH), 7.03 ± 0.07 mM (ABTS) and 3.69 ± 0.72 mM (FRAP). Tested for their α-amylase inhibitory effect, the examined analogues display a variable degree of α-amylase activity with IC50 ranging between 0.55 ± 0.38 mM and 2.19 ± 0.23 mM compared to acarbose (IC50 1.19 ± 0.02 mM), with the most active compounds being 5d, followed by 5c and 5j, affording IC50 of 0.55 ± 0.38 mM, 0.92 ± 0.10 mM, and 0.95 ± 0.14 mM, respectively. Preliminary structure–activity relationships revealed the importance of such substituents in enhancing the activity. Furthermore, the ADME screening test was applied to optimize the physicochemical properties and determine their drug-like characteristics. Binding interactions and stability between ligands and active residues of the investigated enzymes were confirmed through molecular docking and dynamic simulation study. These findings provided guidance for further developing leading new spiropyrrolidine scaffolds with improved dual antimicrobial and antidiabetic activities.
Collapse
|
24
|
Development of Halogenated-Chalcones Bearing with Dimethoxy Phenyl Head as Monoamine Oxidase-B Inhibitors. Pharmaceuticals (Basel) 2022; 15:ph15091152. [PMID: 36145373 PMCID: PMC9503132 DOI: 10.3390/ph15091152] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Two series of dimethoxy-halogenated chalcones (DM1−DM20) were synthesized and tested for their ability to inhibit monoamine oxidase (MAOs). Compound DM2 exhibited the most significant inhibition against MAO-B with an IC50 value of 0.067 µM, followed by compound DM18 (IC50 = 0.118 µM), with selectivity index (SI) values of 93.88 and >338.98, respectively. However, none of the substances successfully inhibited MAO-A. The MAO-B inhibitors DM2 and DM18 were competitive and reversible, with Ki values of 0.032 ± 0.004 and 0.045 ± 0.001 µM, respectively. DM2 was non-toxic below 100 µg/mL in the cytotoxic test using the Vero epithelial cell line by the MTT method. According to molecular docking studies, DM2 and DM18 formed very similar conformations within the MAO-B binding pocket, with the ortho-chlorine and ortho-fluorine aromatic rings sandwiched between F168 and Y326. These conformations were predicted to show better interactions with the targeted MAO-B than MAO-A. In particular, the induced-fit docking of the dimethoxy phenyl ring of DM2 facing the hydrophobic pocket made up of FAD, Y398, and Y435 had an impact on F168 in the docking pocket. Taken together, DM2 and DM18 may be suitable candidates for treating neurodegenerative conditions such as Parkinson’s disease.
Collapse
|