1
|
Li J, Qiu C, Wei Y, Yuan W, Liu J, Cui W, Zhou J, Qiu C, Guo L, Huang L, Ge Z, Yu L. Human Amniotic Epithelial Stem Cell-Derived Retinal Pigment Epithelium Cells Repair Retinal Degeneration. Front Cell Dev Biol 2021; 9:737242. [PMID: 34650985 PMCID: PMC8505778 DOI: 10.3389/fcell.2021.737242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/06/2021] [Indexed: 01/05/2023] Open
Abstract
Age-related macular degeneration (AMD), featured with dysfunction and loss of retinal pigment epithelium (RPE), is lacking efficient therapeutic approaches. According to our previous studies, human amniotic epithelial stem cells (hAESCs) may serve as a potential seed cell source of RPE cells for therapy because they have no ethical concerns, no tumorigenicity, and little immunogenicity. Herein, trichostatin A and nicotinamide can direct hAESCs differentiation into RPE like cells. The differentiated cells display the morphology, marker expression and cellular function of the native RPE cells, and noticeably express little MHC class II antigens and high level of HLA-G. Moreover, visual function and retinal structure of Royal College of Surgeon (RCS) rats, a classical animal model of retinal degeneration, were rescued after subretinal transplantation with the hAESCs-derived RPE like cells. Our study possibly makes some contribution to the resource of functional RPE cells for cell therapy. Subretinal transplantation of hAESCs-RPE could be an optional therapeutic strategy for retinal degeneration diseases.
Collapse
Affiliation(s)
- Jinying Li
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Zhejiang University, Hangzhou, China
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, China
| | - Chen Qiu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Zhejiang University, Hangzhou, China
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, China
| | - Yang Wei
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, China
| | - Weixin Yuan
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jia Liu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Zhejiang University, Hangzhou, China
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, China
| | - Wenyu Cui
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Zhejiang University, Hangzhou, China
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, China
| | - Jiayi Zhou
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Zhejiang University, Hangzhou, China
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, China
| | - Cong Qiu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Zhejiang University, Hangzhou, China
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, China
| | - Lihe Guo
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Liquan Huang
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, China
| | - Zhen Ge
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, China
| | - Luyang Yu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital, MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Zhejiang University, Hangzhou, China
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, China
| |
Collapse
|
2
|
Rim MA, Choi JH, Park A, Youn J, Lee S, Kim NE, Song JE, Khang G. Characterization of Gelatin/Gellan Gum/Glycol Chitosan Ternary Hydrogel for Retinal Pigment Epithelial Tissue Reconstruction Materials. ACS APPLIED BIO MATERIALS 2020; 3:6079-6087. [PMID: 35021836 DOI: 10.1021/acsabm.0c00672] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The cellular transplantation approach to treat damaged or diseased retina is limited because of poor survival, distribution, and integration of cells after implantation to the sub-retinal space. To overcome this, it is important to develop a cell delivery system. In this study, a ternary hydrogel of gelatin (Ge)/gellan gum (GG)/glycol chitosan (CS) is suggested as a cell carrier for retinal tissue engineering (TE). Physicochemical properties such as porosity, swelling, sol fraction, and weight loss were measured. The mechanical study was performed with compressive strength and viscosity to confirm applicability in retinal TE. An in vitro experiment was carried out by encapsulating ARPE-19 in the designed hydrogel to measure viability and expression of retinal pigment epithelium-specific proteins and genes. The results showed that the ternary hydrogel system improves the mechanical properties and stability of the composite. Cell growth, survival, adhesion, and migration were enhanced as the CS was incorporated into the matrix. In particular, real-time polymerase chain reaction analysis showed a markedly improved specific gene expression rate in the Ge/GG/CS. Therefore, it is expected that the ternary system suggested in this study can be used as a promising material for retinal TE.
Collapse
Affiliation(s)
- Min A Rim
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology and Polymer BIN Research Center, Jeonbuk National University, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Joo Hee Choi
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology and Polymer BIN Research Center, Jeonbuk National University, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Ain Park
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology and Polymer BIN Research Center, Jeonbuk National University, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Jina Youn
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology and Polymer BIN Research Center, Jeonbuk National University, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Sumi Lee
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology and Polymer BIN Research Center, Jeonbuk National University, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Na Eun Kim
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology and Polymer BIN Research Center, Jeonbuk National University, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Jeong Eun Song
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology and Polymer BIN Research Center, Jeonbuk National University, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Gilson Khang
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology and Polymer BIN Research Center, Jeonbuk National University, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| |
Collapse
|
3
|
Kubicka-Trząska A, Karska-Basta I, Żuber-Łaskawiec K. Autophagy: A new insight into pathogenesis and treatment possibilities in age-related macular degeneration. POSTEP HIG MED DOSW 2020. [DOI: 10.5604/01.3001.0014.2495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Age-related macular degeneration (AMD) is a significant problem in healthcare, because it is a leading cause of central vision loss in individuals over 50 years old in well-developed countries. Pathogenesis of AMD is multifactorial and still not completely understood. Proven risk factors include the following: natural senescence of retina, oxidative stress, complement activation, chronic subretinal inflammatory reaction, genetic and environmental factors. Data on links between autophagy and AMD development are being raised. Autophagy is a cellular
process involving the degradation of long-lived proteins and damaged fragments and components
of cells; it is responsible for the maintenance of dynamic intracellular homeostasis
and it enables cell survival under stress conditions. Disturbances of autophagy mechanisms,
i.e. its activation or inhibition, may lead to the development of many various pathologies.
Thus, autophagy plays a dual role, as a mechanism responsible for protecting or killing cells.
The paper describes autophagy mechanisms and their role in the natural process of retinal cells
senescence and presents the autophagy impairment as a crucial cause of AMD development.
We also describe the impact of intravitreal anti-VEGF therapy on retinal autophagy mechanisms
and potential new therapeutic modalities for AMD based on autophagy modulation.
Collapse
Affiliation(s)
- Agnieszka Kubicka-Trząska
- Uniwersytet Jagielloński Collegium Medicum, Wydział Lekarski, Katedra Okulistyki, Klinika Okulistyki i Onkologii Okulistycznej Szpitala Uniwersyteckiego w Krakowie
| | - Izabella Karska-Basta
- Uniwersytet Jagielloński Collegium Medicum, Wydział Lekarski, Katedra Okulistyki, Klinika Okulistyki i Onkologii Okulistycznej Szpitala Uniwersyteckiego w Krakowie
| | - Katarzyna Żuber-Łaskawiec
- Uniwersytet Jagielloński Collegium Medicum, Wydział Lekarski, Katedra Okulistyki, Klinika Okulistyki i Onkologii Okulistycznej Szpitala Uniwersyteckiego w Krakowie
| |
Collapse
|
4
|
Calcagni A, Howells O, Eperjesi F, Bartlett H, Denniston AK, Gibson JM, Hogg CR, Matthews TD. Colour contrast sensitivity in eyes at high risk of neovascular age-related macular degeneration. Eur J Ophthalmol 2019; 30:1487-1494. [PMID: 31411062 PMCID: PMC7745606 DOI: 10.1177/1120672119866386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE To generate the first published reference database of colour contrast sensitivity in eyes at high risk of neovascular age-related macular degeneration and to explore this important feature in quality of vision. BACKGROUND Quality of vision depends on many factors. Changes in chromatic contrast sensitivity remain largely unexplored in eyes at high risk of neovascular age-related macular degeneration; they may however not only be relevant for quality of life but also an early indicator of the onset of the disease, so it is important to have a means to evaluate any variation in colour contrast sensitivity, especially in view of the likely increase in neovascular age-related macular degeneration as the population ages. METHODS This prospective longitudinal study evaluated colour contrast sensitivity along the protan and tritan colour axes in 145 eyes at high risk of neovascular age-related macular degeneration. RESULTS Colour contrast sensitivity showed statistically significant correlations with age and visual acuity, but not gender nor laterality (i.e. whether the right or left eye was being tested). There was significant variability among individuals, especially for the tritan axis, with some subjects well within normal limits for age and others with very poor colour contrast sensitivity. CONCLUSION This study has generated the first published colour contrast sensitivity reference database for eyes at high risk of neovascular age-related macular degeneration. It has also shown a high inter-individual variability of colour contrast sensitivity in eyes at high risk of neovascular age-related macular degeneration, but the significance of this is unclear. Further work is required to establish if eyes with high colour contrast sensitivity thresholds (i.e. poor colour vision) have a higher risk of developing neovascular age-related macular degeneration over time, and this is the subject of ongoing work.
Collapse
Affiliation(s)
- Antonio Calcagni
- The School of Life & Health Sciences, Aston University, Birmingham, UK.,University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.,Moorfields Eye Hospital NHS Foundation Trust, London, UK.,Medical Innovation Development Research Unit (MIDRU), Heart of England NHS Foundation Trust, Birmingham, UK
| | - Olivia Howells
- The School of Life & Health Sciences, Aston University, Birmingham, UK.,University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.,Medical Innovation Development Research Unit (MIDRU), Heart of England NHS Foundation Trust, Birmingham, UK
| | - Frank Eperjesi
- The School of Life & Health Sciences, Aston University, Birmingham, UK
| | - Hannah Bartlett
- The School of Life & Health Sciences, Aston University, Birmingham, UK
| | - Alastair Ko Denniston
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.,Academic Unit of Ophthalmology, University of Birmingham, Birmingham, UK
| | - Jonathan M Gibson
- The School of Life & Health Sciences, Aston University, Birmingham, UK.,Medical Innovation Development Research Unit (MIDRU), Heart of England NHS Foundation Trust, Birmingham, UK
| | | | | |
Collapse
|
5
|
Cundy O, Shah M, Downes SM. Intravitreal aflibercept: its role in treatment of neovascular age-related macular degeneration. EXPERT REVIEW OF OPHTHALMOLOGY 2018. [DOI: 10.1080/17469899.2018.1468250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Olivia Cundy
- London North West University Healthcare Trust, Harrow, UK
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Mital Shah
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Susan M. Downes
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Sarna M, Olchawa M, Zadlo A, Wnuk D, Sarna T. The nanomechanical role of melanin granules in the retinal pigment epithelium. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 13:801-807. [PMID: 27979745 DOI: 10.1016/j.nano.2016.11.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 11/09/2016] [Accepted: 11/29/2016] [Indexed: 11/16/2022]
Abstract
Nanomechanical properties of cells and tissues, in particular their elasticity, play an important role in different physiological and pathological processes. Recently, we have demonstrated that melanin granules dramatically modify nanomechanical properties of melanoma cells making them very stiff and, as a result, less aggressive. Although the mechanical effect of melanin granules was demonstrated in pathological cells, it was never studied in the case of normal cells. In this work, we analyzed the impact of melanin granules on nanomechanical properties of primary retinal pigment epithelium tissue fragments isolated from porcine eyes. The obtained results clearly show that melanin granules are responsible for the exceptional nanomechanical properties of the tissue. Our findings suggest that melanin granules in the retinal pigment epithelium may play an important role in sustaining the stiffness of this single cell layer, which functions as a natural mechanical barrier separating the retina from the choroid.
Collapse
Affiliation(s)
- Michal Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Poland; Laboratory of Imaging and Atomic Force Spectroscopy, Malopolska Centre of Biotechnology, Jagiellonian University, Poland.
| | - Magdalena Olchawa
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Poland
| | - Andrzej Zadlo
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Poland
| | - Dawid Wnuk
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Poland
| | - Tadeusz Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Poland
| |
Collapse
|
7
|
Hashemi S, Faramarzi MA, Ghasemi Falavarjani K, Abdollahi M. Bevacizumab for choroidal neovascularization secondary to age-related macular degeneration and pathological myopia. Expert Opin Biol Ther 2014; 14:1837-48. [DOI: 10.1517/14712598.2014.967210] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|