1
|
Harris KL, Walia V, Gong B, McKim KL, Myers MB, Xu J, Parsons BL. Quantification of cancer driver mutations in human breast and lung DNA using targeted, error-corrected CarcSeq. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:872-889. [PMID: 32940377 PMCID: PMC7756507 DOI: 10.1002/em.22409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/04/2020] [Accepted: 09/12/2020] [Indexed: 05/14/2023]
Abstract
There is a need for scientifically-sound, practical approaches to improve carcinogenicity testing. Advances in DNA sequencing technology and knowledge of events underlying cancer development have created an opportunity for progress in this area. The long-term goal of this work is to develop variation in cancer driver mutation (CDM) levels as a metric of clonal expansion of cells carrying CDMs because these important early events could inform carcinogenicity testing. The first step toward this goal was to develop and validate an error-corrected next-generation sequencing method to analyze panels of hotspot cancer driver mutations (hCDMs). The "CarcSeq" method that was developed uses unique molecular identifier sequences to construct single-strand consensus sequences for error correction. CarcSeq was used for mutational analysis of 13 amplicons encompassing >20 hotspot CDMs in normal breast, normal lung, ductal carcinomas, and lung adenocarcinomas. The approach was validated by detecting expected differences related to tissue type (normal vs. tumor and breast vs. lung) and mutation spectra. CarcSeq mutant fractions (MFs) correlated strongly with previously obtained ACB-PCR mutant fraction (MF) measurements from the same samples. A reconstruction experiment, in conjunction with other analyses, showed CarcSeq accurately quantifies MFs ≥10-4 . CarcSeq MF measurements were correlated with tissue donor age and breast cancer risk. CarcSeq MF measurements were correlated with deviation from median MFs analyzed to assess clonal expansion. Thus, CarcSeq is a promising approach to advance cancer risk assessment and carcinogenicity testing practices. Paradigms that should be investigated to advance this strategy for carcinogenicity testing are proposed.
Collapse
Affiliation(s)
- Kelly L. Harris
- US Food and Drug Administration, National Center for Toxicological ResearchDivision of Genetic and Molecular ToxicologyJeffersonArkansasUSA
| | - Vijay Walia
- US Food and Drug Administration, National Center for Toxicological ResearchDivision of Genetic and Molecular ToxicologyJeffersonArkansasUSA
- Present address:
USA
| | - Binsheng Gong
- US Food and Drug AdministrationNational Center for Toxicological Research, Division of Bioinformatics and BiostatisticsJeffersonArkansasUSA
| | - Karen L. McKim
- US Food and Drug Administration, National Center for Toxicological ResearchDivision of Genetic and Molecular ToxicologyJeffersonArkansasUSA
| | - Meagan B. Myers
- US Food and Drug Administration, National Center for Toxicological ResearchDivision of Genetic and Molecular ToxicologyJeffersonArkansasUSA
| | - Joshua Xu
- US Food and Drug AdministrationNational Center for Toxicological Research, Division of Bioinformatics and BiostatisticsJeffersonArkansasUSA
| | - Barbara L. Parsons
- US Food and Drug Administration, National Center for Toxicological ResearchDivision of Genetic and Molecular ToxicologyJeffersonArkansasUSA
| |
Collapse
|
2
|
Harris KL, Myers MB, McKim KL, Elespuru RK, Parsons BL. Rationale and Roadmap for Developing Panels of Hotspot Cancer Driver Gene Mutations as Biomarkers of Cancer Risk. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:152-175. [PMID: 31469467 PMCID: PMC6973253 DOI: 10.1002/em.22326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 05/24/2023]
Abstract
Cancer driver mutations (CDMs) are necessary and causal for carcinogenesis and have advantages as reporters of carcinogenic risk. However, little progress has been made toward developing measurements of CDMs as biomarkers for use in cancer risk assessment. Impediments for using a CDM-based metric to inform cancer risk include the complexity and stochastic nature of carcinogenesis, technical difficulty in quantifying low-frequency CDMs, and lack of established relationships between cancer driver mutant fractions and tumor incidence. Through literature review and database analyses, this review identifies the most promising targets to investigate as biomarkers of cancer risk. Mutational hotspots were discerned within the 20 most mutated genes across the 10 deadliest cancers. Forty genes were identified that encompass 108 mutational hotspot codons overrepresented in the COSMIC database; 424 different mutations within these hotspot codons account for approximately 63,000 tumors and their prevalence across tumor types is described. The review summarizes literature on the prevalence of CDMs in normal tissues and suggests such mutations are direct and indirect substrates for chemical carcinogenesis, which occurs in a spatially stochastic manner. Evidence that hotspot CDMs (hCDMs) frequently occur as tumor subpopulations is presented, indicating COSMIC data may underestimate mutation prevalence. Analyses of online databases show that genes containing hCDMs are enriched in functions related to intercellular communication. In its totality, the review provides a roadmap for the development of tissue-specific, CDM-based biomarkers of carcinogenic potential, comprised of batteries of hCDMs and can be measured by error-correct next-generation sequencing. Environ. Mol. Mutagen. 61:152-175, 2020. Published 2019. This article is a U.S. Government work and is in the public domain in the USA. Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.
Collapse
Affiliation(s)
- Kelly L. Harris
- Division of Genetic and Molecular ToxicologyNational Center for Toxicological Research, US Food and Drug AdministrationJeffersonArkansas
| | - Meagan B. Myers
- Division of Genetic and Molecular ToxicologyNational Center for Toxicological Research, US Food and Drug AdministrationJeffersonArkansas
| | - Karen L. McKim
- Division of Genetic and Molecular ToxicologyNational Center for Toxicological Research, US Food and Drug AdministrationJeffersonArkansas
| | - Rosalie K. Elespuru
- Division of Biology, Chemistry and Materials ScienceCDRH/OSEL, US Food and Drug AdministrationSilver SpringMaryland
| | - Barbara L. Parsons
- Division of Genetic and Molecular ToxicologyNational Center for Toxicological Research, US Food and Drug AdministrationJeffersonArkansas
| |
Collapse
|
3
|
Craig DJ, Morrison T, Khuder SA, Crawford EL, Wu L, Xu J, Blomquist TM, Willey JC. Technical advance in targeted NGS analysis enables identification of lung cancer risk-associated low frequency TP53, PIK3CA, and BRAF mutations in airway epithelial cells. BMC Cancer 2019; 19:1081. [PMID: 31711466 PMCID: PMC6844032 DOI: 10.1186/s12885-019-6313-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 10/30/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Standardized Nucleic Acid Quantification for SEQuencing (SNAQ-SEQ) is a novel method that utilizes synthetic DNA internal standards spiked into each sample prior to next generation sequencing (NGS) library preparation. This method was applied to analysis of normal appearing airway epithelial cells (AEC) obtained by bronchoscopy in an effort to define a somatic mutation field effect associated with lung cancer risk. There is a need for biomarkers that reliably detect those at highest lung cancer risk, thereby enabling more effective screening by annual low dose CT. The purpose of this study was to test the hypothesis that lung cancer risk is characterized by increased prevalence of low variant allele frequency (VAF) somatic mutations in lung cancer driver genes in AEC. METHODS Synthetic DNA internal standards (IS) were prepared for 11 lung cancer driver genes and mixed with each AEC genomic (g) DNA specimen prior to competitive multiplex PCR amplicon NGS library preparation. A custom Perl script was developed to separate IS reads and respective specimen gDNA reads from each target into separate files for parallel variant frequency analysis. This approach identified nucleotide-specific sequencing error and enabled reliable detection of specimen mutations with VAF as low as 5 × 10- 4 (0.05%). This method was applied in a retrospective case-control study of AEC specimens collected by bronchoscopic brush biopsy from the normal airways of 19 subjects, including eleven lung cancer cases and eight non-cancer controls, and the association of lung cancer risk with AEC driver gene mutations was tested. RESULTS TP53 mutations with 0.05-1.0% VAF were more prevalent (p < 0.05) and also enriched for tobacco smoke and age-associated mutation signatures in normal AEC from lung cancer cases compared to non-cancer controls matched for smoking and age. Further, PIK3CA and BRAF mutations in this VAF range were identified in AEC from cases but not controls. CONCLUSIONS Application of SNAQ-SEQ to measure mutations in the 0.05-1.0% VAF range enabled identification of an AEC somatic mutation field of injury associated with lung cancer risk. A biomarker comprising TP53, PIK3CA, and BRAF somatic mutations may better stratify individuals for optimal lung cancer screening and prevention outcomes.
Collapse
Affiliation(s)
- Daniel J. Craig
- Department of Medicine, The University of Toledo College of Medicine, 3000 Arlington Avenue, Toledo, OH 43614 USA
| | - Thomas Morrison
- Accugenomics, Inc, 1410 Commonwealth Dr #105, Wilmington, NC 28403 USA
| | - Sadik A. Khuder
- Department of Medicine, The University of Toledo College of Medicine, 3000 Arlington Avenue, Toledo, OH 43614 USA
| | - Erin L. Crawford
- Department of Medicine, The University of Toledo College of Medicine, 3000 Arlington Avenue, Toledo, OH 43614 USA
| | - Leihong Wu
- National Center for Toxicological Research, U.S. Food & Drug Administration, Jefferson, AR USA
| | - Joshua Xu
- National Center for Toxicological Research, U.S. Food & Drug Administration, Jefferson, AR USA
| | - Thomas M. Blomquist
- Department of Pathology, The University of Toledo College of Medicine, 3000 Arlington Avenue, Toledo, OH 43614 USA
| | - James C. Willey
- Department of Medicine, The University of Toledo College of Medicine, 3000 Arlington Avenue, Toledo, OH 43614 USA
| |
Collapse
|
4
|
Parsons BL, McKim KL, Myers MB. Variation in organ-specific PIK3CA and KRAS mutant levels in normal human tissues correlates with mutation prevalence in corresponding carcinomas. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2017; 58:466-476. [PMID: 28755461 PMCID: PMC5601221 DOI: 10.1002/em.22110] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/10/2017] [Accepted: 05/10/2017] [Indexed: 05/27/2023]
Abstract
Large-scale sequencing efforts have described the mutational complexity of individual cancers and identified mutations prevalent in different cancers. As a complementary approach, allele-specific competitive blocker PCR (ACB-PCR) is being used to quantify levels of hotspot cancer driver mutations (CDMs) with high sensitivity, to elucidate the tissue-specific properties of CDMs, their occurrence as tumor cell subpopulations, and their occurrence in normal tissues. Here we report measurements of PIK3CA H1047R mutant fraction (MF) in normal colonic mucosa, normal lung, colonic adenomas, colonic adenocarcinomas, and lung adenocarcinomas. We report PIK3CA E545K MF measurements in those tissues, as well as in normal breast, normal thyroid, mammary ductal carcinomas, and papillary thyroid carcinomas. We report KRAS G12D and G12V MF measurements in normal colon. These MF measurements were integrated with previously published ACB-PCR data on KRAS G12D, KRAS G12V, and PIK3CA H1047R. Analysis of these data revealed a correlation between the degree of interindividual variability in these mutations (as log10 MF standard deviation) in normal tissues and the frequencies with which the mutations are detected in carcinomas of the corresponding organs in the COSMIC database. This novel observation has important implications. It suggests that interindividual variability in mutation levels of normal tissues may be used as a metric to identify mutations with critical early roles in tissue-specific carcinogenesis. Additionally, it raises the possibility that personalized cancer therapeutics, developed to target specifically activated oncogenic products, might be repurposed as prophylactic therapies to reduce the accumulation of cells carrying CDMs and, thereby, reduce future cancer risk. Environ. Mol. Mutagen. 58:466-476, 2017. © 2017 This article is a U.S. Government work and is in the public domain in the USA. Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.
Collapse
Affiliation(s)
- Barbara L. Parsons
- Division of Genetic and Molecular ToxicologyU.S. Food and Drug Administration, National Center for Toxicological ResearchJeffersonArkansas
| | - Karen L. McKim
- Division of Genetic and Molecular ToxicologyU.S. Food and Drug Administration, National Center for Toxicological ResearchJeffersonArkansas
| | - Meagan B. Myers
- Division of Genetic and Molecular ToxicologyU.S. Food and Drug Administration, National Center for Toxicological ResearchJeffersonArkansas
| |
Collapse
|
5
|
Kini LG, Herrero-Jimenez P, Kamath T, Sanghvi J, Gutierrez E, Hensle D, Kogel J, Kusko R, Rexer K, Kurzweil R, Refinetti P, Morgenthaler S, Koledova VV, Gostjeva EV, Thilly WG. Mutator/Hypermutable fetal/juvenile metakaryotic stem cells and human colorectal carcinogenesis. Front Oncol 2013; 3:267. [PMID: 24195059 PMCID: PMC3811064 DOI: 10.3389/fonc.2013.00267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 10/07/2013] [Indexed: 12/11/2022] Open
Abstract
Adult age-specific colorectal cancer incidence rates increase exponentially from maturity, reach a maximum, then decline in extreme old age. Armitage and Doll (1) postulated that the exponential increase resulted from "n" mutations occurring throughout adult life in normal "cells at risk" that initiated the growth of a preneoplastic colony in which subsequent "m" mutations promoted one of the preneoplastic "cells at risk" to form a lethal neoplasia. We have reported cytologic evidence that these "cells at risk" are fetal/juvenile organogenic, then preneoplastic metakaryotic stem cells. Metakaryotic cells display stem-like behaviors of both symmetric and asymmetric nuclear divisions and peculiarities such as bell shaped nuclei and amitotic nuclear fission that distinguish them from embryonic, eukaryotic stem cells. Analyses of mutant colony sizes and numbers in adult lung epithelia supported the inferences that the metakaryotic organogenic stem cells are constitutively mutator/hypermutable and that their contributions to cancer initiation are limited to the fetal/juvenile period. We have amended the two-stage model of Armitage and Doll and incorporated these several inferences in a computer program CancerFit v.5.0. We compared the expectations of the amended model to adult (15-104 years) age-specific colon cancer rates for European-American males born 1890-99 and observed remarkable concordance. When estimates of normal colonic fetal/juvenile APC and OAT gene mutation rates (∼2-5 × 10(-5) per stem cell doubling) and preneoplastic colonic gene loss rates (∼8 × 10(-3)) were applied, the model was in accordance only for the values of n = 2 and m = 4 or 5.
Collapse
Affiliation(s)
- Lohith G Kini
- Laboratory for Metakaryotic Biology, Department of Biological Engineering, Massachusetts Institute of Technology , Cambridge, MA , USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Gostjeva EV, Koledova V, Tomita-Mitchell A, Mitchell M, Goetsch MA, Varmuza S, Fomina JN, Darroudi F, Thilly WG. Metakaryotic stem cell lineages in organogenesis of humans and other metazoans. Organogenesis 2012; 5:191-200. [PMID: 20539738 DOI: 10.4161/org.5.4.9632] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 07/04/2009] [Accepted: 07/27/2009] [Indexed: 02/06/2023] Open
Abstract
A non-eukaryotic, metakaryotic cell with large, open mouthed, bell shaped nuclei represents an important stem cell lineage in fetal/juvenile organogenesis in humans and rodents. each human bell shaped nucleus contains the diploid human DNA genome as tested by quantitative Feulgen DNA cytometry and fluorescent in situ hybridization with human pan-telomeric, pan-centromeric and chromosome specific probes. From weeks approximately 5-12 of human gestation the bell shaped nuclei are found in organ anlagen enclosed in sarcomeric tubular syncytia. Within syncytia bell shaped nuclear number increases binomially up to 16 or 32 nuclei; clusters of syncytia are regularly dispersed in organ anlagen. Syncytial bell shaped nuclei demonstrate two forms of symmetrical amitoses, facing or "kissing" bells and "stacking" bells resembling separation of two paper cups. Remarkably, DNA increase and nuclear fission occur coordinately. Importantly, syncytial bell shaped nuclei undergo asymmetrical amitoses creating organ specific ensembles of up to eight distinct closed nuclear forms, a characteristic required of a stem cell lineage. Closed nuclei emerging from bell shaped nuclei are eukaryotic as demonstrated by their subsequent increases by extra-syncytial mitoses populating the parenchyma of growing anlagen. From 9-14 weeks syncytia fragment forming single cells with bell shaped nuclei that continue to display both symmetrical and asymmetrical amitoses. These forms persist in the juvenile period and are specifically observed in bases of colonic crypts. Metakaryotic forms are found in organogenesis of humans, rats, mice and the plant Arabidopsis indicating an evolutionary origin prior to the divergence of plants and animals.
Collapse
Affiliation(s)
- Elena V Gostjeva
- Department of Biological Engineering; Massachusetts Institute of Technology; Cambridge, MA USA
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Parsons BL, Myers MB, Meng F, Wang Y, McKinzie PB. Oncomutations as biomarkers of cancer risk. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:836-850. [PMID: 20740637 DOI: 10.1002/em.20600] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Cancer risk assessment impacts a range of societal needs, from the regulation of chemicals to achieving the best possible human health outcomes. Because oncogene and tumor suppressor gene mutations are necessary for the development of cancer, such mutations are ideal biomarkers to use in cancer risk assessment. Consequently, DNA-based methods to quantify particular tumor-associated hotspot point mutations (i.e., oncomutations) have been developed, including allele-specific competitive blocker-PCR (ACB-PCR). Several studies using ACB-PCR and model mutagens have demonstrated that significant induction of tumor-associated oncomutations are measureable at earlier time points than are used to score tumors in a bioassay. In the particular case of benzo[a]pyrene induction of K-Ras codon 12 TGT mutation in the A/J mouse lung, measurement of tumor-associated oncomutation was shown to be an earlier and more sensitive endpoint than tumor response. The measurement of oncomutation by ACB-PCR led to two unexpected findings. First, oncomutations are present in various tissues of control rodents and "normal" human colonic mucosa samples at relatively high frequencies. Approximately 60% of such samples (88/146) have mutant fractions (MFs) >10(-5), and some have MFs as high as 10(-3) or 10(-4). Second, preliminary data indicate that oncomutations are present frequently as subpopulations in tumors. These findings are integrated into a hypothesis that the predominant preexisting mutations in particular tissues may be useful as generic reporters of carcinogenesis. Future research opportunities using oncomutation as an endpoint are described, including rodent to human extrapolation, dose-response assessment, and personalized medicine.
Collapse
Affiliation(s)
- Barbara L Parsons
- Division of Genetic and Reproductive Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079, USA.
| | | | | | | | | |
Collapse
|
8
|
Sudo H, Li-Sucholeiki XC, Marcelino LA, Gruhl AN, Herrero-Jimenez P, Zarbl H, Willey JC, Furth EE, Morgenthaler S, Coller HA, Ekstrom PO, Kurzweil R, Gostjeva EV, Thilly WG. Fetal-juvenile origins of point mutations in the adult human tracheal-bronchial epithelium: absence of detectable effects of age, gender or smoking status. Mutat Res 2008; 646:25-40. [PMID: 18824180 DOI: 10.1016/j.mrfmmm.2008.08.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Revised: 08/21/2008] [Accepted: 08/29/2008] [Indexed: 11/19/2022]
Abstract
Allele-specific mismatch amplification mutation assays (MAMA) of anatomically distinct sectors of the upper bronchial tracts of nine nonsmokers revealed many numerically dispersed clusters of the point mutations C742T, G746T, G747T of the TP53 gene, G35T of the KRAS gene and G508A of the HPRT1 gene. Assays of these five mutations in six smokers have yielded quantitatively similar results. One hundred and eighty four micro-anatomical sectors of 0.5-6x10(6) tracheal-bronchial epithelial cells represented en toto the equivalent of approximately 1.7 human smokers' bronchial trees to the fifth bifurcation. Statistically significant mutant copy numbers above the 95% upper confidence limits of historical background controls were found in 198 of 425 sector assays. No significant differences (P=0.1) for negative sector fractions, mutant fractions, distributions of mutant cluster size or anatomical positions were observed for smoking status, gender or age (38-76 year). Based on the modal cluster size of mitochondrial point mutants, the size of the adult bronchial epithelial maintenance turnover unit was estimated to be about 32 cells. When data from all 15 lungs were combined the log2 of nuclear mutant cluster size plotted against log2 of the number of clusters of a given cluster size displayed a slope of approximately 1.1 over a range of cluster sizes from approximately 2(6) to 2(15) mutant copies. A parsimonious interpretation of these nuclear and previously reported data for lung epithelial mitochondrial point mutant clusters is that they arose from mutations in stem cells at a high but constant rate per stem cell doubling during at least ten stem cell doublings of the later fetal-juvenile period. The upper and lower decile range of summed point mutant fractions among lungs was about 7.5-fold, suggesting an important source of stratification in the population with regard to risk of tumor initiation.
Collapse
Affiliation(s)
- Hiroko Sudo
- Massachusetts Institute of Technology, Department of Biological Engineering, 21 Ames St., 16-743 Cambridge, MA 02139, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Ekstrøm PO, Khrapko K, Li-Sucholeiki XC, Hunter IW, Thilly WG. Analysis of mutational spectra by denaturing capillary electrophoresis. Nat Protoc 2008; 3:1153-66. [PMID: 18600220 PMCID: PMC2742298 DOI: 10.1038/nprot.2008.79] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The point mutational spectrum over nearly any 75- to 250-bp DNA sequence isolated from cells, tissues or large populations may be discovered using denaturing capillary electrophoresis (DCE). A modification of the standard DCE method that uses cycling temperature (e.g., +/-5 degrees C), CyDCE, permits optimal resolution of mutant sequences using computer-defined target sequences without preliminary optimization experiments. The protocol consists of three steps: computer design of target sequence including polymerase chain reaction (PCR) primers, high-fidelity DNA amplification by PCR and mutant sequence separation by CyDCE and takes about 6 h. DCE and CyDCE have been used to define quantitative point mutational spectra relating to errors of DNA polymerases, human cells in development and carcinogenesis, common gene-disease associations and microbial populations. Detection limits are about 5 x 10(-3) (mutants copies/total copies) but can be as low as 10(-6) (mutants copies/total copies) when DCE is used in combination with fraction collection for mutant enrichment. No other technological approach for unknown mutant detection and enumeration offers the sensitivity, generality and efficiency of the approach described herein.
Collapse
Affiliation(s)
- Per O Ekstrøm
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, USA. or
| | | | | | | | | |
Collapse
|
10
|
Tapp RA, Feng J, Jones JW, Carlson JA, Wilson VL. Single base instability is promoted in vulvar lichen sclerosus. J Invest Dermatol 2007; 127:2563-76. [PMID: 17554370 DOI: 10.1038/sj.jid.5700889] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Single base substitution mutations in codons 248 and 273 of TP53 and codon 12 Kirsten-ras (KRAS) are commonly found in human carcinomas. To determine whether these mutations also occur in normal and inflamed tissues from which carcinomas arise, we utilized the ultra-sensitive polymerase chain reaction/restriction endonuclease/ligase chain reaction mutation assay. Ninety samples of genital skin, including lichen sclerosus (LS) affected skin, adjacent normal and non-adjacent normal, were assayed. Mutations were detected in 103 of 349 assays and consisted of KRAS G34A, G34T, G35A, and TP53 C742T, G818C, C817T, and G818A mutations. Mutant prevalence varied from 1 to 20 per 10(6) wild-type cells. Mutations occurred significantly more frequently in LS (78/224 (35%)) than adjacent normal (20/88 (23%)) and non-adjacent normal genital skin (5/38 (13%)). KRAS G34A mutation was relatively common to all classes of specimen, whereas TP53 gene C742T and G818C mutations were significantly more frequent in LS than normal genital skin. In matched samples, immunohistochemistry evaluation of p53 protein expression revealed the presence of epidermal p53 clones in LS whose presence and number significantly correlated with the presence of TP53 C742T and G818C mutations. Based on these results, it appears oncogenic point mutations occur in normal genital skin, and are selected for in LS.
Collapse
Affiliation(s)
- Ronald A Tapp
- Department of Veterinary Comparative Biomedical Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | | | | | | | | |
Collapse
|