1
|
Choi W, Cha S, Kim K. Navigating the CRISPR/Cas Landscape for Enhanced Diagnosis and Treatment of Wilson's Disease. Cells 2024; 13:1214. [PMID: 39056796 PMCID: PMC11274827 DOI: 10.3390/cells13141214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) system continues to evolve, thereby enabling more precise detection and repair of mutagenesis. The development of CRISPR/Cas-based diagnosis holds promise for high-throughput, cost-effective, and portable nucleic acid screening and genetic disease diagnosis. In addition, advancements in transportation strategies such as adeno-associated virus (AAV), lentiviral vectors, nanoparticles, and virus-like vectors (VLPs) offer synergistic insights for gene therapeutics in vivo. Wilson's disease (WD), a copper metabolism disorder, is primarily caused by mutations in the ATPase copper transporting beta (ATP7B) gene. The condition is associated with the accumulation of copper in the body, leading to irreversible damage to various organs, including the liver, nervous system, kidneys, and eyes. However, the heterogeneous nature and individualized presentation of physical and neurological symptoms in WD patients pose significant challenges to accurate diagnosis. Furthermore, patients must consume copper-chelating medication throughout their lifetime. Herein, we provide a detailed description of WD and review the application of novel CRISPR-based strategies for its diagnosis and treatment, along with the challenges that need to be overcome.
Collapse
Affiliation(s)
- Woong Choi
- Department of Physiology, Korea University College of Medicine, Seoul 02841, Republic of Korea;
| | - Seongkwang Cha
- Department of Physiology, Korea University College of Medicine, Seoul 02841, Republic of Korea;
- Neuroscience Research Institute, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Kyoungmi Kim
- Department of Physiology, Korea University College of Medicine, Seoul 02841, Republic of Korea;
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| |
Collapse
|
2
|
Hunt JMT, Samson CA, Rand AD, Sheppard HM. Unintended CRISPR-Cas9 editing outcomes: a review of the detection and prevalence of structural variants generated by gene-editing in human cells. Hum Genet 2023; 142:705-720. [PMID: 37093294 PMCID: PMC10182114 DOI: 10.1007/s00439-023-02561-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/13/2023] [Indexed: 04/25/2023]
Abstract
Genome editing using the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein (Cas) gene-editing system (CRISPR-Cas) is a valuable tool for fundamental and applied research applications. Significant improvements in editing efficacy have advanced genome editing strategies into phase 3 human clinical trials. However, recent studies suggest that our understanding of editing outcomes has lagged behind the developments made in generating the edits themselves. While many researchers have analyzed on- and off-target events through the lens of small insertions or deletions at predicted sites, screens for larger structural variants (SVs) and chromosomal abnormalities are not routinely performed. Full and comprehensive validation of on- and off-target effects is required to ensure reproducibility and to accurately assess the safety of future editing applications. Here we review SVs associated with CRISPR-editing in cells of human origin and highlight the methods used to detect and avoid them.
Collapse
Affiliation(s)
| | | | - Alex du Rand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Hilary M Sheppard
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
3
|
Balla B, Tripon F, Banescu C. From Descriptive to Functional Genomics of Leukemias Focusing on Genome Engineering Techniques. Int J Mol Sci 2021; 22:10065. [PMID: 34576226 PMCID: PMC8470190 DOI: 10.3390/ijms221810065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 12/17/2022] Open
Abstract
Genome engineering makes the precise manipulation of DNA sequences possible in a cell. Therefore, it is essential for understanding gene function. Meganucleases were the start of genome engineering, and it continued with the discovery of Zinc finger nucleases (ZFNs), followed by Transcription activator-like effector nucleases (TALENs). They can generate double-strand breaks at a desired target site in the genome, and therefore can be used to knock in mutations or knock out genes in the same way. Years later, genome engineering was transformed by the discovery of clustered regularly interspaced short palindromic repeats (CRISPR). Implementation of CRISPR systems involves recognition guided by RNA and the precise cleaving of DNA molecules. This property proves its utility in epigenetics and genome engineering. CRISPR has been and is being continuously successfully used to model mutations in leukemic cell lines and control gene expression. Furthermore, it is used to identify targets and discover drugs for immune therapies. The descriptive and functional genomics of leukemias is discussed in this study, with an emphasis on genome engineering methods. The CRISPR/Cas9 system's challenges, viewpoints, limits, and solutions are also explored.
Collapse
Affiliation(s)
- Beata Balla
- Genetics Department, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Strada Gheorghe Marinescu 38, 540139 Târgu Mureș, Romania; (B.B.); (C.B.)
- Center for Advanced Medical and Pharmaceutical Research, Genetics Laboratory, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Strada Gheorghe Marinescu 38, 540139 Târgu Mureș, Romania
| | - Florin Tripon
- Genetics Department, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Strada Gheorghe Marinescu 38, 540139 Târgu Mureș, Romania; (B.B.); (C.B.)
- Center for Advanced Medical and Pharmaceutical Research, Genetics Laboratory, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Strada Gheorghe Marinescu 38, 540139 Târgu Mureș, Romania
| | - Claudia Banescu
- Genetics Department, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Strada Gheorghe Marinescu 38, 540139 Târgu Mureș, Romania; (B.B.); (C.B.)
- Center for Advanced Medical and Pharmaceutical Research, Genetics Laboratory, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Strada Gheorghe Marinescu 38, 540139 Târgu Mureș, Romania
- Clinical and Emergency County Hospital of Târgu Mureș, Strada Gheorghe Marinescu 50, 540136 Târgu Mureș, Romania
| |
Collapse
|
4
|
Li H, Yang Y, Hong W, Huang M, Wu M, Zhao X. Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Signal Transduct Target Ther 2020; 5:1. [PMID: 32296011 PMCID: PMC6946647 DOI: 10.1038/s41392-019-0089-y] [Citation(s) in RCA: 1062] [Impact Index Per Article: 212.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 09/21/2019] [Accepted: 09/21/2019] [Indexed: 02/06/2023] Open
Abstract
Based on engineered or bacterial nucleases, the development of genome editing technologies has opened up the possibility of directly targeting and modifying genomic sequences in almost all eukaryotic cells. Genome editing has extended our ability to elucidate the contribution of genetics to disease by promoting the creation of more accurate cellular and animal models of pathological processes and has begun to show extraordinary potential in a variety of fields, ranging from basic research to applied biotechnology and biomedical research. Recent progress in developing programmable nucleases, such as zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeat (CRISPR)-Cas-associated nucleases, has greatly expedited the progress of gene editing from concept to clinical practice. Here, we review recent advances of the three major genome editing technologies (ZFNs, TALENs, and CRISPR/Cas9) and discuss the applications of their derivative reagents as gene editing tools in various human diseases and potential future therapies, focusing on eukaryotic cells and animal models. Finally, we provide an overview of the clinical trials applying genome editing platforms for disease treatment and some of the challenges in the implementation of this technology.
Collapse
Affiliation(s)
- Hongyi Li
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Yang Yang
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Weiqi Hong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P. R. China
| | - Mengyuan Huang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P. R. China
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA.
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, 610041, P. R. China.
| |
Collapse
|
5
|
Cullot G, Boutin J, Toutain J, Prat F, Pennamen P, Rooryck C, Teichmann M, Rousseau E, Lamrissi-Garcia I, Guyonnet-Duperat V, Bibeyran A, Lalanne M, Prouzet-Mauléon V, Turcq B, Ged C, Blouin JM, Richard E, Dabernat S, Moreau-Gaudry F, Bedel A. CRISPR-Cas9 genome editing induces megabase-scale chromosomal truncations. Nat Commun 2019; 10:1136. [PMID: 30850590 PMCID: PMC6408493 DOI: 10.1038/s41467-019-09006-2] [Citation(s) in RCA: 302] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 02/06/2019] [Indexed: 12/19/2022] Open
Abstract
CRISPR-Cas9 is a promising technology for genome editing. Here we use Cas9 nuclease-induced double-strand break DNA (DSB) at the UROS locus to model and correct congenital erythropoietic porphyria. We demonstrate that homology-directed repair is rare compared with NHEJ pathway leading to on-target indels and causing unwanted dysfunctional protein. Moreover, we describe unexpected chromosomal truncations resulting from only one Cas9 nuclease-induced DSB in cell lines and primary cells by a p53-dependent mechanism. Altogether, these side effects may limit the promising perspectives of the CRISPR-Cas9 nuclease system for disease modeling and gene therapy. We show that the single nickase approach could be safer since it prevents on- and off-target indels and chromosomal truncations. These results demonstrate that the single nickase and not the nuclease approach is preferable, not only for modeling disease but also and more importantly for the safe management of future CRISPR-Cas9-mediated gene therapies.
Collapse
MESH Headings
- CRISPR-Associated Protein 9/genetics
- CRISPR-Associated Protein 9/metabolism
- CRISPR-Cas Systems
- Chromosome Deletion
- Chromosomes, Human, Pair 10
- Clustered Regularly Interspaced Short Palindromic Repeats
- DNA/genetics
- DNA/metabolism
- DNA Breaks, Double-Stranded
- Deoxyribonuclease I/genetics
- Deoxyribonuclease I/metabolism
- Fibroblasts/cytology
- Fibroblasts/metabolism
- Gene Editing/methods
- Genetic Therapy/methods
- Genome, Human
- HEK293 Cells
- High-Throughput Nucleotide Sequencing
- Humans
- K562 Cells
- Models, Biological
- Porphyria, Erythropoietic/genetics
- Porphyria, Erythropoietic/metabolism
- Porphyria, Erythropoietic/pathology
- Porphyria, Erythropoietic/therapy
- Primary Cell Culture
- RNA, Guide, CRISPR-Cas Systems/genetics
- RNA, Guide, CRISPR-Cas Systems/metabolism
- Recombinational DNA Repair
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
- Uroporphyrinogen III Synthetase/genetics
- Uroporphyrinogen III Synthetase/metabolism
Collapse
Affiliation(s)
- Grégoire Cullot
- Univ. Bordeaux, 33000, Bordeaux, France
- INSERM U1035, Biotherapy of genetic diseases, inflammatory disorders and cancers, 33000, Bordeaux, France
| | - Julian Boutin
- Univ. Bordeaux, 33000, Bordeaux, France
- INSERM U1035, Biotherapy of genetic diseases, inflammatory disorders and cancers, 33000, Bordeaux, France
- Biochemistry Laboratory, CHU Bordeaux, 33000, Bordeaux, France
| | - Jérôme Toutain
- Medical genetic laboratory, CHU Bordeaux, 33000, Bordeaux, France
| | - Florence Prat
- Univ. Bordeaux, 33000, Bordeaux, France
- INSERM U1035, Biotherapy of genetic diseases, inflammatory disorders and cancers, 33000, Bordeaux, France
| | - Perrine Pennamen
- Medical genetic laboratory, CHU Bordeaux, 33000, Bordeaux, France
| | - Caroline Rooryck
- Medical genetic laboratory, CHU Bordeaux, 33000, Bordeaux, France
| | - Martin Teichmann
- Univ. Bordeaux, 33000, Bordeaux, France
- UMR 5320, INSERM U1212, ARNA Laboratory, 33000, Bordeaux, France
| | - Emilie Rousseau
- Univ. Bordeaux, 33000, Bordeaux, France
- UMR 5320, INSERM U1212, ARNA Laboratory, 33000, Bordeaux, France
| | - Isabelle Lamrissi-Garcia
- Univ. Bordeaux, 33000, Bordeaux, France
- INSERM U1035, Biotherapy of genetic diseases, inflammatory disorders and cancers, 33000, Bordeaux, France
| | - Véronique Guyonnet-Duperat
- INSERM U1035, Biotherapy of genetic diseases, inflammatory disorders and cancers, 33000, Bordeaux, France
- Vectorology Platform, 33000, Bordeaux, France
| | - Alice Bibeyran
- INSERM U1035, Biotherapy of genetic diseases, inflammatory disorders and cancers, 33000, Bordeaux, France
- Vectorology Platform, 33000, Bordeaux, France
| | - Magalie Lalanne
- Univ. Bordeaux, 33000, Bordeaux, France
- INSERM U1035, Biotherapy of genetic diseases, inflammatory disorders and cancers, 33000, Bordeaux, France
| | | | - Béatrice Turcq
- Univ. Bordeaux, 33000, Bordeaux, France
- INSERM U1218, ACTION, 33000, Bordeaux, France
| | - Cécile Ged
- Univ. Bordeaux, 33000, Bordeaux, France
- INSERM U1035, Biotherapy of genetic diseases, inflammatory disorders and cancers, 33000, Bordeaux, France
- Biochemistry Laboratory, CHU Bordeaux, 33000, Bordeaux, France
- Laboratory of excellence, GR-Ex, Imagine institute, 75015, Paris, France
| | - Jean-Marc Blouin
- Univ. Bordeaux, 33000, Bordeaux, France
- INSERM U1035, Biotherapy of genetic diseases, inflammatory disorders and cancers, 33000, Bordeaux, France
- Biochemistry Laboratory, CHU Bordeaux, 33000, Bordeaux, France
- Laboratory of excellence, GR-Ex, Imagine institute, 75015, Paris, France
| | - Emmanuel Richard
- Univ. Bordeaux, 33000, Bordeaux, France
- INSERM U1035, Biotherapy of genetic diseases, inflammatory disorders and cancers, 33000, Bordeaux, France
- Biochemistry Laboratory, CHU Bordeaux, 33000, Bordeaux, France
- Laboratory of excellence, GR-Ex, Imagine institute, 75015, Paris, France
| | - Sandrine Dabernat
- Univ. Bordeaux, 33000, Bordeaux, France
- INSERM U1035, Biotherapy of genetic diseases, inflammatory disorders and cancers, 33000, Bordeaux, France
- Biochemistry Laboratory, CHU Bordeaux, 33000, Bordeaux, France
| | - François Moreau-Gaudry
- Univ. Bordeaux, 33000, Bordeaux, France.
- INSERM U1035, Biotherapy of genetic diseases, inflammatory disorders and cancers, 33000, Bordeaux, France.
- Biochemistry Laboratory, CHU Bordeaux, 33000, Bordeaux, France.
- Vectorology Platform, 33000, Bordeaux, France.
- Laboratory of excellence, GR-Ex, Imagine institute, 75015, Paris, France.
| | - Aurélie Bedel
- Univ. Bordeaux, 33000, Bordeaux, France
- INSERM U1035, Biotherapy of genetic diseases, inflammatory disorders and cancers, 33000, Bordeaux, France
- Biochemistry Laboratory, CHU Bordeaux, 33000, Bordeaux, France
- Laboratory of excellence, GR-Ex, Imagine institute, 75015, Paris, France
| |
Collapse
|
6
|
Park CY, Sung JJ, Kim DW. Genome Editing of Structural Variations: Modeling and Gene Correction. Trends Biotechnol 2016; 34:548-561. [PMID: 27016031 DOI: 10.1016/j.tibtech.2016.02.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 02/19/2016] [Accepted: 02/22/2016] [Indexed: 12/26/2022]
Abstract
The analysis of chromosomal structural variations (SVs), such as inversions and translocations, was made possible by the completion of the human genome project and the development of genome-wide sequencing technologies. SVs contribute to genetic diversity and evolution, although some SVs can cause diseases such as hemophilia A in humans. Genome engineering technology using programmable nucleases (e.g., ZFNs, TALENs, and CRISPR/Cas9) has been rapidly developed, enabling precise and efficient genome editing for SV research. Here, we review advances in modeling and gene correction of SVs, focusing on inversion, translocation, and nucleotide repeat expansion.
Collapse
Affiliation(s)
- Chul-Yong Park
- Department of Physiology and Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jin Jea Sung
- Department of Physiology and Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Dong-Wook Kim
- Department of Physiology and Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea.
| |
Collapse
|
7
|
Gole B, Wiesmüller L. Leukemogenic rearrangements at the mixed lineage leukemia gene (MLL)-multiple rather than a single mechanism. Front Cell Dev Biol 2015; 3:41. [PMID: 26161385 PMCID: PMC4479792 DOI: 10.3389/fcell.2015.00041] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 06/12/2015] [Indexed: 12/11/2022] Open
Abstract
Despite manifold efforts to achieve reduced-intensity and -toxicity regimens, secondary leukemia has remained the most severe side effect of chemotherapeutic cancer treatment. Rearrangements involving a short telomeric <1 kb region of the mixed lineage leukemia (MLL) gene are the most frequently observed molecular changes in secondary as well as infant acute leukemia. Due to the mode-of-action of epipodophyllotoxins and anthracyclines, which have widely been used in cancer therapy, and support from in vitro experiments, cleavage of this MLL breakpoint cluster hotspot by poisoned topoisomerase II was proposed to trigger the molecular events leading to malignant transformation. Later on, clinical patient data and cell-based studies addressing a wider spectrum of stimuli identified cellular stress signaling pathways, which create secondary DNA structures, provide chromatin accessibility, and activate nucleases other than topoisomerase II at the MLL. The MLL destabilizing signaling pathways under discussion, namely early apoptotic DNA fragmentation, transcription stalling, and replication stalling, may all act in concert upon infection-, transplantation-, or therapy-induced cell cycle entry of hematopoietic stem and progenitor cells (HSPCs), to permit misguided cleavage and error-prone DNA repair in the cell-of-leukemia-origin.
Collapse
Affiliation(s)
- Boris Gole
- Division of Gynecological Oncology, Department of Obstetrics and Gynecology, Ulm University Ulm, Germany
| | - Lisa Wiesmüller
- Division of Gynecological Oncology, Department of Obstetrics and Gynecology, Ulm University Ulm, Germany
| |
Collapse
|
8
|
Ashour ME, Atteya R, El-Khamisy SF. Topoisomerase-mediated chromosomal break repair: an emerging player in many games. Nat Rev Cancer 2015; 15:137-51. [PMID: 25693836 DOI: 10.1038/nrc3892] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The mammalian genome is constantly challenged by exogenous and endogenous threats. Although much is known about the mechanisms that maintain DNA and RNA integrity, we know surprisingly little about the mechanisms that underpin the pathology and tissue specificity of many disorders caused by defective responses to DNA or RNA damage. Of the different types of endogenous damage, protein-linked DNA breaks (PDBs) are emerging as an important player in cancer development and therapy. PDBs can arise during the abortive activity of DNA topoisomerases, a class of enzymes that modulate DNA topology during several chromosomal transactions, such as gene transcription and DNA replication, recombination and repair. In this Review, we discuss the mechanisms underpinning topoisomerase-induced PDB formation and repair with a focus on their role during gene transcription and the development of tissue-specific cancers.
Collapse
Affiliation(s)
- Mohamed E Ashour
- 1] Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK. [2] Center for Genomics, Helmy Institute, Zewail City of Science and Technology, Giza 12588, Egypt
| | - Reham Atteya
- Center for Genomics, Helmy Institute, Zewail City of Science and Technology, Giza 12588, Egypt
| | - Sherif F El-Khamisy
- 1] Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK. [2] Center for Genomics, Helmy Institute, Zewail City of Science and Technology, Giza 12588, Egypt
| |
Collapse
|
9
|
Iarovaia OV, Rubtsov M, Ioudinkova E, Tsfasman T, Razin SV, Vassetzky YS. Dynamics of double strand breaks and chromosomal translocations. Mol Cancer 2014; 13:249. [PMID: 25404525 PMCID: PMC4289179 DOI: 10.1186/1476-4598-13-249] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 10/30/2014] [Indexed: 12/27/2022] Open
Abstract
Chromosomal translocations are a major cause of cancer. At the same time, the mechanisms that lead to specific chromosomal translocations that associate different gene regions remain largely unknown. Translocations are induced by double strand breaks (DSBs) in DNA. Here we review recent data on the mechanisms of generation, mobility and repair of DSBs and stress the importance of the nuclear organization in this process.
Collapse
Affiliation(s)
| | | | | | | | | | - Yegor S Vassetzky
- UMR8126, Université Paris-Sud, CNRS, Institut de cancérologie Gustave Roussy, Villejuif 94805, France.
| |
Collapse
|