1
|
Jia C, Chai R, Zhang M, Guo X, Zhou X, Ding N, Lei C, Dong Z, Zhao J, Ren H, Lu D. Improvement of Saccharomyces cerevisiae strain tolerance to vanillin through heavy ion radiation combined with adaptive laboratory evolution. J Biotechnol 2024; 394:112-124. [PMID: 39197754 DOI: 10.1016/j.jbiotec.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/12/2024] [Accepted: 08/23/2024] [Indexed: 09/01/2024]
Abstract
Vanillin is an inhibitor of lignocellulose hydrolysate, which can reduce the ability of Saccharomyces cerevisiae to utilize lignocellulose, which is an important factor limiting the development of the ethanol fermentation industry. In this study, mutants of vanillin-tolerant yeast named H6, H7, X3, and X8 were bred by heavy ion irradiation (HIR) combined with adaptive laboratory evolution (ALE). Phenotypic tests revealed that the mutants outperformed the original strain WT in tolerance, growth rate, genetic stability and fermentation ability. At 1.6 g/L vanillin concentration, the average OD600 value obtained for mutant strains was 0.95 and thus about 3.4-fold higher than for the wild-type. When the concentration of vanillin was 2.0 g/L, the glucose utilization rate of the mutant was 86.3 % within 96 h, while that of the original strain was only 70.0 %. At this concentration of vanillin, the mitochondrial membrane potential of the mutant strain recovered faster than that of the original strain, and the ROS scavenging ability was stronger. We analyzed the whole transcriptome sequencing map and the whole genome resequencing of the mutant, and found that DEGs such as FLO9, GRC3, PSP2 and SWF1, which have large differential expression multiples and obvious mutation characteristics, play an important role in cell flocculation, rDNA transcription, inhibition of DNA polymerase mutation and protein palmitoylation. These functions can help cells resist vanillin stress. The results show that combining HIR with ALE is an effective mutagenesis strategy. This approach can efficiently obtain Saccharomyces cerevisiae mutants with improved vanillin tolerance, and provide reference for obtaining robust yeast strains with lignocellulose inhibitor tolerance.
Collapse
Affiliation(s)
- Chenglin Jia
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ran Chai
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Miaomiao Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaopeng Guo
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
| | - Xiang Zhou
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nan Ding
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cairong Lei
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziyi Dong
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingru Zhao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haiwei Ren
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Dong Lu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Guo X, Ren J, Zhou X, Zhang M, Lei C, Chai R, Zhang L, Lu D. Strategies to improve the efficiency and quality of mutant breeding using heavy-ion beam irradiation. Crit Rev Biotechnol 2024; 44:735-752. [PMID: 37455421 DOI: 10.1080/07388551.2023.2226339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 04/15/2023] [Indexed: 07/18/2023]
Abstract
Heavy-ion beam irradiation (HIBI) is useful for generating new germplasm in plants and microorganisms due to its ability to induce high mutagenesis rate, broad mutagenesis spectrum, and excellent stability of mutants. However, due to the random mutagenesis and associated mutant breeding modalities, it is imperative to improve HIBI-based mutant breeding efficiency and quality. This review discusses and summarizes the findings of existing theoretical and technical studies and presents a set of tandem strategies to enable efficient and high-quality HIBI-based mutant breeding practices. These strategies: adjust the mutation-inducing techniques, regulate cellular response states, formulate high-throughput screening schemes, and apply the generated superior genetic elements to genetic engineering approaches, thereby, improving the implications and expanding the scope of HIBI-based mutant breeding. These strategies aim to improve the mutagenesis rate, screening efficiency, and utilization of positive mutations. Here, we propose a model based on the integration of these strategies that would leverage the advantages of HIBI while compensating for its present shortcomings. Owing to the unique advantages of HIBI in creating high-quality genetic resources, we believe this review will contribute toward improving HIBI-based breeding.
Collapse
Affiliation(s)
- Xiaopeng Guo
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Junle Ren
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiang Zhou
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Miaomiao Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cairong Lei
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ran Chai
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Lingxi Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Dong Lu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Satoh K, Hoshino W, Hase Y, Kitamura S, Hayashi H, Furuta M, Oono Y. Lethal and mutagenic effects of different LET radiations on Bacillus subtilis spores. Mutat Res 2023; 827:111835. [PMID: 37562181 DOI: 10.1016/j.mrfmmm.2023.111835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/23/2023] [Accepted: 07/27/2023] [Indexed: 08/12/2023]
Abstract
New, useful microorganism resources have been generated by ionizing radiation breeding technology. However, the mutagenic effects of ionizing radiation on microorganisms have not been systematically clarified. For a deeper understanding and characterization of ionizing radiation-induced mutations in microorganisms, we investigated the lethal effects of seven different linear energy transfer (LET) radiations based on the survival fraction (SF) and whole-genome sequencing analysis of the mutagenic effects of a dose resulting in an SF of around 1% in Bacillus subtilis spores. Consequently, the lower LET radiations (gamma [surface LET: 0.2 keV/µm] and 4He2+ [24 keV/µm]) showed low lethality and high mutation frequency (MF), resulting in the major induction of single-base substitutions. Whereas higher LET radiations (12C5+ [156 keV/µm] and 12C6+ [179 keV/µm]) showed high lethality and low MF, resulting in the preferential induction of deletion mutations. In addition, 12C6+ (111) ion beams likely possess characteristics of both low- and high-LET radiations simultaneously. A decrease in the relative biological effectiveness and an evaluation of the inactivation cross section indicated that 20Ne8+ (468 keV/µm) and 40Ar13+ (2214 keV/µm) ion beams had overkill effects. In conclusion, in the mutation breeding of microorganisms, it should be possible to regulate the proportions, types, and frequencies of induced mutations by selecting an ionizing radiation of an appropriate LET in accordance with the intended purpose.
Collapse
Affiliation(s)
- Katsuya Satoh
- Department of Quantum-Applied Biosciences, Takasaki Institute for Advanced Quantum Science, Foundational Quantum Technology Research Directorate, National Institutes for Quantum Science and Technology (QST), 1233 Watanuki, Takasaki, Gunma 370-1292, Japan.
| | - Wataru Hoshino
- Department of Quantum-Applied Biosciences, Takasaki Institute for Advanced Quantum Science, Foundational Quantum Technology Research Directorate, National Institutes for Quantum Science and Technology (QST), 1233 Watanuki, Takasaki, Gunma 370-1292, Japan; Faculty of Engineering, Maebashi Institute of Technology, 460-1 Kamisadori, Maebashi, Gunma 371-0816, Japan
| | - Yoshihiro Hase
- Department of Quantum-Applied Biosciences, Takasaki Institute for Advanced Quantum Science, Foundational Quantum Technology Research Directorate, National Institutes for Quantum Science and Technology (QST), 1233 Watanuki, Takasaki, Gunma 370-1292, Japan
| | - Satoshi Kitamura
- Department of Quantum-Applied Biosciences, Takasaki Institute for Advanced Quantum Science, Foundational Quantum Technology Research Directorate, National Institutes for Quantum Science and Technology (QST), 1233 Watanuki, Takasaki, Gunma 370-1292, Japan
| | - Hidenori Hayashi
- Faculty of Engineering, Maebashi Institute of Technology, 460-1 Kamisadori, Maebashi, Gunma 371-0816, Japan
| | - Masakazu Furuta
- Department of Quantum and Radiation Engineering, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Yutaka Oono
- Department of Quantum-Applied Biosciences, Takasaki Institute for Advanced Quantum Science, Foundational Quantum Technology Research Directorate, National Institutes for Quantum Science and Technology (QST), 1233 Watanuki, Takasaki, Gunma 370-1292, Japan
| |
Collapse
|
4
|
Yanagisawa M, Asamizu S, Satoh K, Oono Y, Onaka H. Effects of carbon ion beam-induced mutagenesis for the screening of RED production-deficient mutants of Streptomyces coelicolor JCM4020. PLoS One 2022; 17:e0270379. [PMID: 35834474 PMCID: PMC9282665 DOI: 10.1371/journal.pone.0270379] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/08/2022] [Indexed: 12/22/2022] Open
Abstract
Streptomyces lividans TK23 interacts with mycolic acid-containing bacteria (MACB), such as Tsukamurella pulmonis TP-B0596, and this direct cell contact activates its secondary metabolism (e.g., the production of undecylprodigiosin: RED). Here, we employed carbon (12C5+) ion beam-induced mutagenesis to investigate the signature of induced point mutations and further identify the gene(s) responsible for the production of secondary metabolites induced by T. pulmonis. We irradiated spores of the Streptomyces coelicolor strain JCM4020 with carbon ions to generate a mutant library. We screened the RED production-deficient mutants of S. coelicolor by mixing them with T. pulmonis TP-B0596 on agar plates, identifying the red/white phenotype of the growing colonies. Through this process, we selected 59 RED-deficient mutants from around 152,000 tested spores. We resequenced the genomes of 16 mutants and identified 44 point mutations, which revealed the signatures induced by 12C5+-irradiation. Via gene complementation experiments, we also revealed that two genes-glutamate synthase (gltB) and elongation factor G (fusA)-are responsible for the reduced production of RED.
Collapse
Affiliation(s)
- Masaomi Yanagisawa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Shumpei Asamizu
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology (CRIIM), The University of Tokyo, Bunkyo, Tokyo, Japan
- * E-mail: (SA); (HO)
| | - Katsuya Satoh
- Department of Radiation-Applied Biology Research, Takasaki Advanced Radiation Research Institute, Quantum Beam Science Research Directorate, National Institutes for Quantum Science and Technology, Takasaki, Gunma, Japan
| | - Yutaka Oono
- Department of Radiation-Applied Biology Research, Takasaki Advanced Radiation Research Institute, Quantum Beam Science Research Directorate, National Institutes for Quantum Science and Technology, Takasaki, Gunma, Japan
| | - Hiroyasu Onaka
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology (CRIIM), The University of Tokyo, Bunkyo, Tokyo, Japan
- * E-mail: (SA); (HO)
| |
Collapse
|
5
|
Li X, Chen L, Zhou H, Gu S, Wu Y, Wang B, Zhang M, Ding N, Sun J, Pang X, Lu D. LsrB, the hub of ABC transporters involved in the membrane damage mechanisms of heavy ion irradiation in Escherichia coli. Int J Radiat Biol 2021; 97:1731-1740. [PMID: 34597255 DOI: 10.1080/09553002.2021.1987565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Ionizing radiation, especially heavy ion (HI) beams, has been widely used in biology and medicine. However, the mechanism of membrane damage by such radiation remains primarily uncharacterized. PURPOSE Transcriptomic profiles of Escherichia coli (E. coli) treated with HI illustrated the response mechanisms of the membrane, mainly ABC transporters, related genes regulated by antibiotics treatment through enrichment analyses of GO and KEGG. The networks of protein-protein interactions indicated that LsrB was the crucial one among the ABC transporters specially regulated by HI through the calculation of plugins MCODE and cytoHubba of Cytoscape. Finally, the expression pattern, GO/KEGG enrichment terms, and the interaction between nine LuxS/AI-2 quorum sensing system members were investigated. CONCLUSIONS Above all, results suggested that HI might perform membrane damage through regulated material transport, inhibited LuxS/AI-2 system, finally impeded biofilm formation. This work provides further evidence for the role of ABC transporters, especially LsrB, in membrane damage of E. coli to HI. It will provide new strategies for improving the precise application of HI.
Collapse
Affiliation(s)
- Xin Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China.,Key Laboratory of Microbial Resources Exploitation and Utilization, Luoyang, China.,National Demonstration Center for Experimental Food Processing and Safety Education, Luoyang, China
| | - Lei Chen
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Haitao Zhou
- Neurology Department, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Shaobin Gu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Ying Wu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Bing Wang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Miaomiao Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Nan Ding
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Jiaju Sun
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Xinyue Pang
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Dong Lu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Stainforth R, Schuemann J, McNamara AL, Wilkins RC, Chauhan V. Challenges in the quantification approach to a radiation relevant adverse outcome pathway for lung cancer. Int J Radiat Biol 2020; 97:85-101. [PMID: 32909875 DOI: 10.1080/09553002.2020.1820096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE Adverse outcome pathways (AOPs) provide a modular framework for describing sequences of biological key events (KEs) and key event relationships (KERs) across levels of biological organization. Empirical evidence across KERs can support construction of quantified AOPs (qAOPs). Using an example AOP of energy deposition from ionizing radiation onto DNA leading to lung cancer incidence, we investigate the feasibility of quantifying data from KERs supported by all types of stressors. The merits and challenges of this process in the context of AOP construction are discussed. MATERIALS AND METHODS Empirical evidence across studies of dose-response from four KERs of the AOP were compiled independently for quantification. Three upstream KERs comprised of evidence from various radiation types in line with AOP guidelines. For these three KERs, a focused analysis of data from alpha-particle studies was undertaken to better characterize the process to the adverse outcome (AO) for a radon gas stressor. Numerical information was extracted from tables and graphs to plot and tabulate the response of KEs. To complement areas of the AOP quantification process, Monte Carlo (MC) simulations in TOPAS-nBio were performed to model exposure conditions relevant to the AO for an example bronchial compartment of the lung with secretory cell nuclei targets. RESULTS Quantification of AOP KERs highlighted the relevance of radiation types under the stressor-agnostic intent of AOP design, motivating a focus on specific types. For a given type, significant differences of KE response indicate meaningful data to derive linkages from the MIE to the AO is lacking and that better response-response focused studies are required. The MC study estimates the linear energy transfer (LET) of alpha-particles emitted by radon-222 and its progeny in the secretory cell nuclei of the example lung compartment to range from 94 - 5 + 5 to 192 - 18 + 15 keV/µm. CONCLUSION Quantifying AOP components provides a means to assemble empirical evidence across different studies. This highlights challenges in the context of studies examining similar endpoints using different radiation types. Data linking KERs to a MIE of 'deposition of energy' is shown to be non-compatible with the stressor-agnostic principles of AOP design. Limiting data to that describing response-response relationships between adjacent KERs may better delineate studies relevant to the damage that drives a pathway to the next KE and still support an 'all hazards' approach. Such data remains limited and future investigations in the radiation field may consider this approach when designing experiments and reporting their results and outcomes.
Collapse
Affiliation(s)
| | - Jan Schuemann
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Aimee L McNamara
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Ruth C Wilkins
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Canada
| | - Vinita Chauhan
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Canada
| |
Collapse
|
7
|
Repair characteristics and time-dependent effects in response to heavy-ion beam irradiation in Saccharomyces cerevisiae: a comparison with X-ray irradiation. Appl Microbiol Biotechnol 2020; 104:4043-4057. [PMID: 32144474 DOI: 10.1007/s00253-020-10464-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/07/2020] [Accepted: 02/12/2020] [Indexed: 12/14/2022]
Abstract
Heavy-ion beam (HIB) irradiation has been widely used in microbial mutation breeding. However, a global cellular response to such radiation remains mostly uncharacterised. In this study, we used transcriptomics to analyse the damage repair response in Saccharomyces cerevisiae following a semi-lethal HIB irradiation (80 Gy), which induced a significant number of DNA double-strand breaks. Our analysis of differentially expressed genes (DEGs) from 50 to 150 min post-irradiation revealed that upregulated genes were significantly enriched for gene ontology and Kyoto encyclopaedia of genes and genomes terms related to damage repair response. Based on the number of DEGs, their annotation, and their relative expression, we established that the peak of the damage repair response occurred 75 min post-irradiation. Moreover, we exploited the data from our recent study on X-ray irradiation-induced repair to compare the transcriptional patterns induced by semi-lethal HIB and X-ray irradiations. Although these two radiations have different properties, we found a significant overlap (> 50%) for the DEGs associated with five typical DNA repair pathways and, in both cases, identified homologous recombination repair (HRR) as the predominant repair pathway. Nevertheless, when we compared the relative enrichment of the five DNA repair pathways at the key time point of the repair process, we found that the relative enrichment of HRR was higher after HIB irradiation than after X-ray irradiation. Additionally, the peak stage of HRR following HIB irradiation was ahead of that following X-ray irradiation. Since mutations occur during the DNA repair process, uncovering detailed repair characteristics should further the understanding of the associated mutagenesis features.
Collapse
|
8
|
Molecular Analysis of Carbon Ion-Induced Mutations in DNA Repair-Deficient Strains of Saccharomyces cerevisiae. QUANTUM BEAM SCIENCE 2019. [DOI: 10.3390/qubs3030014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mutations caused by ion beams have been well-studied in plants, including ornamental flowers, rice, and algae. It has been shown that ion beams have several significantly interesting features, such as a high biological effect and unique mutation spectrum, which is in contrast to low linear energy transfer (LET) radiation such as gamma rays. In this study, the effects of double strand breaks and 8-oxo-2′-deoxyguanosine (8-oxodG) caused by ion-beam irradiation were examined. We irradiated repair-gene-inactive strains rad52, ogg1, and msh2 using carbon ion beams, analyzed the lethality and mutagenicity, and characterized the mutations. High-LET carbon ion-beam radiation was found to cause oxidative base damage, such as 8-oxodG, which can lead to mutations. The present observations suggested that nucleotide incorporation of oxidative damage gave only a limited effect on cell viability and genome fidelity. The ion-beam mutations occurred predominantly in 5′-ACA-3′ sequences, and we detected a hotspot at around +79 to +98 in URA3 in wild-type and mutant lines, suggesting the presence of a mutation-susceptible region.
Collapse
|
9
|
Liu L, Hu W, Li WJ, Wang SY, Lu D, Tian XJ, Mao YQ, Liu J, Chen JH. Heavy-ion mutagenesis significantly enhances enduracidin production by Streptomyces fungicidicus. Eng Life Sci 2018; 19:112-120. [PMID: 32624993 DOI: 10.1002/elsc.201800109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/09/2018] [Accepted: 11/16/2018] [Indexed: 11/11/2022] Open
Abstract
To improve fermentative production of enduracidin, heavy-ion beams generated by the Heavy Ion Research Facility in Lanzhou (HIRFL), China, were employed for the first time to generate mutations in Streptomyces fungicidicus. Initial screening detected 44 positive mutants with larger inhibition zone, which were subsequently tested based on flask fermentation. Finally, 20 mutants showed 20% increase in enduracidin production, when compared with the original strain. Among them, enduracidin production by the three mutants (M13, M30, and M34) was significantly higher than that by the original strain. In particular, mutant M30 exhibited highest enduracidin production, which was 114% higher than that obtained with the original strain. Following culture optimization, the maximal enduracidin yield obtained by M30 reached 918.5 mg/L in 10 days, which was 34% higher than that noted in the control.
Collapse
Affiliation(s)
- Lu Liu
- Institute of Modern Physics Chinese Academy of Sciences Lanzhou P. R. China.,University of Chinese Academy of Sciences Beijing P. R. China
| | - Wei Hu
- Institute of Modern Physics Chinese Academy of Sciences Lanzhou P. R. China
| | - Wen-Jian Li
- Institute of Modern Physics Chinese Academy of Sciences Lanzhou P. R. China
| | - Shu-Yang Wang
- Institute of Modern Physics Chinese Academy of Sciences Lanzhou P. R. China
| | - Dong Lu
- Institute of Modern Physics Chinese Academy of Sciences Lanzhou P. R. China
| | - Xue-Jiao Tian
- Institute of Modern Physics Chinese Academy of Sciences Lanzhou P. R. China.,University of Chinese Academy of Sciences Beijing P. R. China
| | - Yan-Qin Mao
- Institute of Modern Physics Chinese Academy of Sciences Lanzhou P. R. China.,University of Chinese Academy of Sciences Beijing P. R. China
| | - Jing Liu
- Institute of Modern Physics Chinese Academy of Sciences Lanzhou P. R. China
| | - Ji-Hong Chen
- Institute of Modern Physics Chinese Academy of Sciences Lanzhou P. R. China
| |
Collapse
|
10
|
Ma L, Kazama Y, Hirano T, Morita R, Tanaka S, Abe T, Hatakeyama S. LET dependence on killing effect and mutagenicity in the model filamentous fungus Neurospora crassa. Int J Radiat Biol 2018; 94:1125-1133. [PMID: 30307372 DOI: 10.1080/09553002.2019.1524940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
PURPOSE To assess the unique biological effects of different forms of ionizing radiation causing DNA double-strand breaks (DSBs), we compared the killing effect, mutagenesis frequency, and mutation type spectrum using the model filamentous fungus Neurospora. MATERIALS AND METHODS Asexual spores of wild-type Neurospora and two DSB repair-deficient strains [one homologous recombination- and the other non-homologous end-joining (NHEJ) pathway-deficient] were irradiated with argon (Ar)-ion beams, ferrous (Fe)-ion beams, or X-rays. Relative biological effectiveness (RBE), forward mutation frequencies at the ad-3 loci, and mutation spectra at the ad-3B gene were determined. RESULTS The canonical NHEJ (cNHEJ)-deficient strain showed resistance to higher X-ray doses, while other strains showed dose-dependent sensitivity. In contrast, the killing effects of Ar-ion and Fe-ion beam irradiation were dose-dependent in all strains tested. The rank order of RBE was Ar-ion > Fe-ion > C-ion. Deletion mutations were the most common, but deletion size incremented with the increasing value of linear energy transfer (LET). CONCLUSIONS We found marked differences in killing effect of a cNHEJ-deficient mutant between X-ray and high-LET ion beam irradiations (Ar and Fe). The mutation spectra also differed between irradiation types. These differences may be due to the physical properties of each radiation and the repair mechanism of induced damage in Neurospora crassa. These results may guide the choice of irradiation beam to kill or mutagenize fungi for agricultural applications or further research.
Collapse
Affiliation(s)
- Liqiu Ma
- a Laboratory of Genetics, Department of Regulatory Biology, Faculty of Science , Saitama University , Saitama , Japan.,b RIKEN Nishina Center , Saitama , Japan.,c Gunma University Heavy Ion Medical Center , Maebashi , Japan
| | | | - Tomonari Hirano
- b RIKEN Nishina Center , Saitama , Japan.,d Faculty of Agriculture , University of Miyazaki , Miyazaki , Japan
| | | | - Shuuitsu Tanaka
- a Laboratory of Genetics, Department of Regulatory Biology, Faculty of Science , Saitama University , Saitama , Japan
| | - Tomoko Abe
- b RIKEN Nishina Center , Saitama , Japan
| | - Shin Hatakeyama
- a Laboratory of Genetics, Department of Regulatory Biology, Faculty of Science , Saitama University , Saitama , Japan
| |
Collapse
|