1
|
Seo JE, Le Y, Revollo J, Miranda-Colon J, Xu H, McKinzie P, Mei N, Chen T, Heflich RH, Zhou T, Robison T, Bonzo JA, Guo X. Evaluating the mutagenicity of N-nitrosodimethylamine in 2D and 3D HepaRG cell cultures using error-corrected next generation sequencing. Arch Toxicol 2024; 98:1919-1935. [PMID: 38584193 PMCID: PMC11106104 DOI: 10.1007/s00204-024-03731-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 03/07/2024] [Indexed: 04/09/2024]
Abstract
Human liver-derived metabolically competent HepaRG cells have been successfully employed in both two-dimensional (2D) and 3D spheroid formats for performing the comet assay and micronucleus (MN) assay. In the present study, we have investigated expanding the genotoxicity endpoints evaluated in HepaRG cells by detecting mutagenesis using two error-corrected next generation sequencing (ecNGS) technologies, Duplex Sequencing (DS) and High-Fidelity (HiFi) Sequencing. Both HepaRG 2D cells and 3D spheroids were exposed for 72 h to N-nitrosodimethylamine (NDMA), followed by an additional incubation for the fixation of induced mutations. NDMA-induced DNA damage, chromosomal damage, and mutagenesis were determined using the comet assay, MN assay, and ecNGS, respectively. The 72-h treatment with NDMA resulted in concentration-dependent increases in cytotoxicity, DNA damage, MN formation, and mutation frequency in both 2D and 3D cultures, with greater responses observed in the 3D spheroids compared to 2D cells. The mutational spectrum analysis showed that NDMA induced predominantly A:T → G:C transitions, along with a lower frequency of G:C → A:T transitions, and exhibited a different trinucleotide signature relative to the negative control. These results demonstrate that the HepaRG 2D cells and 3D spheroid models can be used for mutagenesis assessment using both DS and HiFi Sequencing, with the caveat that severe cytotoxic concentrations should be avoided when conducting DS. With further validation, the HepaRG 2D/3D system may become a powerful human-based metabolically competent platform for genotoxicity testing.
Collapse
Affiliation(s)
- Ji-Eun Seo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Yuan Le
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Javier Revollo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Jaime Miranda-Colon
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Hannah Xu
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Page McKinzie
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Nan Mei
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Tao Chen
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Robert H Heflich
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Tong Zhou
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Rockville, MD, 20855, USA
| | - Timothy Robison
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Jessica A Bonzo
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Xiaoqing Guo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA.
| |
Collapse
|
2
|
Zhang C, Zhao Y, Cui M, Cui X, Zhang C, Meng Q. Simulation for fluorescence detection of O4-methylthymidine with definite photophysical characteristics. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 296:122691. [PMID: 37023654 DOI: 10.1016/j.saa.2023.122691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/12/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
DNA alkylation is caused by long-term exposure of cells to the environmental and endogenous alkylating agents, which can also lead to DNA mutations and therefore trigger some cancers. Since O4-methylthymidine (O4-meT), mismatched with guanine (G), is the most common but not easily repaired alkylated nucleoside, monitoring O4-meT can help to effectively reduce the occurrence of carcinogenesis. In this work, the modified G-analogues are selected as the fluorescence probe to monitor the existence of O4-meT according to its pairing characteristics. The photo-physical properties of considered G-analogues formed by ring expansion or addition of fluorophores were studied in detail. It is found that, compared with natural G, the absorption peaks of these fluorescence analogues are red-shifted (>55 nm) and the luminescence is enhanced by π-conjugation. Especially, the xG has a large Stokes shift (65 nm) with fluorescence insensitive to natural cytosine (C) and retains efficient emission after pairing, while it is sensitive to O4-meT and the quenching phenomenon occurs due to the excited state intermolecular charge transfer. Accordingly, the xG can be used as a fluorescent probe to identify the O4-meT in solution. In addition, the direct use of deoxyguanine fluorescent analogue for monitoring O4-meT was evaluated by the effects of ligating deoxyribose on absorption and fluorescence emission.
Collapse
Affiliation(s)
- Chenyang Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
| | - Yu Zhao
- School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
| | - Menglu Cui
- School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
| | - Xixi Cui
- School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
| | - Changzhe Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan 250358, China.
| | - Qingtian Meng
- School of Physics and Electronics, Shandong Normal University, Jinan 250358, China.
| |
Collapse
|
3
|
Salam T, Lyngdoh RHD. Clues to the non-carcinogenicity of certain N-Nitroso compounds: Role of alkylated DNA bases. Biophys Chem 2020; 271:106539. [PMID: 33508580 DOI: 10.1016/j.bpc.2020.106539] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/16/2020] [Accepted: 12/25/2020] [Indexed: 10/22/2022]
Abstract
N-Nitroso compounds (NOC) are known for the carcinogenicity of most members. However, 13% of 332 NOC reviewed in 1984 were found to be non-carcinogenic. The non-carcinogenicity of all N-nitrosamines with even one tertiary alkyl group is notable. Clues to the lack of carcinogenicity include (a) inability to generate the reactive ultimate carcinogen which alkylates DNA bases, and (b) inability of the alkylated DNA base to mispair during DNA replication. This DFT study probes a three-stage process for the induction of mutations, including (a) N-deprotonation of O-alkylated DNA bases formed by attack of the carcinogen, (b) adoption of a conformer by the O-alkylated base conducive to mutagenic base mispairing, and (c) creation of the base mismatch involving the O-alkylated base. These three criteria are applied to the products of methylation, ethylation, isopropylation and tert-butylation at the N7-G, O6-G and O4-T sites. The N-deprotonation criterion differentiates the non-mutagenic N7-alkylguanines from the promutagenic O6-alkylguanines and O4-alkylthymines. All the O-alkylated bases except O4-tert-butylthymine are predicted as capable of adopting a conformer conducive to successful mispairing. O4-tert-butylthymine is predicted as incapable of creating a base mismatch by H-bonding with guanine, pointing to the non-mutagenic effects of tert-butylation of the O4-T site. By extrapolating to all tertiary alkyl groups, this explains why tert-alkylating N-nitrosamines are carcinogenically inactive. These results also highlight the carcinogenic role of alkylation at the O4-T site rather than at the O6-G site.
Collapse
Affiliation(s)
- Tejeshwori Salam
- Department of Chemistry, North-Eastern Hill University, Shillong 793022, India
| | - R H Duncan Lyngdoh
- Department of Chemistry, North-Eastern Hill University, Shillong 793022, India.
| |
Collapse
|
4
|
Nidoieva ZM, Peterson AA, Ruban TP, Dzuba GV, Kuchuk MV, Lukash LL. The Influence of Recombinant Interferon α2b Synthesized in Plants on the Reparative Enzyme MGMT Expression in Human Somatic Cells in vitro. CYTOL GENET+ 2020. [DOI: 10.3103/s0095452719060070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Brovarets’ OO, Tsiupa KS, Hovorun DM. Novel pathway for mutagenic tautomerization of classical А∙Т DNA base pairs via sequential proton transfer through quasi-orthogonal transition states: A QM/QTAIM investigation. PLoS One 2018; 13:e0199044. [PMID: 29949602 PMCID: PMC6021055 DOI: 10.1371/journal.pone.0199044] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 05/30/2018] [Indexed: 12/13/2022] Open
Abstract
In this paper we have theoretically predicted a novel pathway for the mutagenic tautomerization of the classical A∙T DNA base pairs in the free state, the Watson-Crick A·Т(WC), reverse Watson-Crick A·Т(rWC), Hoogsteen A·Т(H) and reverse Hoogsteen A·Т(rH) pairs, via sequential proton transfer accompanied by a significant change in the mutual orientation of the bases. Quantum-mechanical (QM) calculations were performed at the MP2/aug-cc-pVDZ//B3LYP/6-311++G(d,p) level in vacuum phase, along with Bader's quantum theory of Atoms in Molecules (QTAIM). These processes involve transition states (TSs) with quasi-orthogonal structures (symmetry C1), which are highly polar, tight ion pairs (A-, N6H2-deprotonated)∙(T+, O4/O2-protonated). Gibbs free energies of activation for the A∙T(WC) / A∙T(rWC) ↔ A*∙Т(rwWC) / A*∙Т(wWC) tautomeric transitions (~43.5 kcal∙mol-1) are lower than for the A∙T(H) / A∙T(rH) ↔ A*N7∙Т(rwH) / A*N7∙Т(wH) tautomerisations (~53.0 kcal∙mol-1) (rare tautomers are marked by an asterisk; w-wobble configured tautomerisation products). The (T)N3+H⋯N1-(A), (T)O4+H⋯N1-(A) / (T)N3+H⋯N1-(A) and (T)O2+H⋯N1-(A) H-bonds are found in the transition states TSA-·T+A·T(WC)↔A*·T(rwWC) / TSA-·T+A·T(rWC)↔A*·T(wWC). However, in the transition state TSA-·T+A·Т(H)↔A*N7·T(rwH) / TSA-·T+A·Т(rH)↔A*N7·T(wH), the (T)N3+H⋯N7-(A), (T)O4+H⋯N7-(A) / (T)N3+H⋯N7-(A) and (T)O2+H⋯N7-(A) H-bonds are supplemented by the attractive (T)O4+/O2+⋯N6-(A) van der Waals contacts. It was demonstrated that the products of the tautomerization of the classical A∙T DNA base pairs-A*∙Т(rwWC), A*N7∙Т(rwH) and A*N7∙Т(wH) (symmetry Cs)-further transform via double proton transfer into the energetically favorable wobble A∙T*(rwWC), A∙T*(rwH) and A∙T*O2(wH) base mispairs (symmetry Cs).
Collapse
Affiliation(s)
- Ol’ha O. Brovarets’
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Department of Molecular Biotechnology and Bioinformatics, Institute of High Technologies, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Kostiantyn S. Tsiupa
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Dmytro M. Hovorun
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Department of Molecular Biotechnology and Bioinformatics, Institute of High Technologies, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| |
Collapse
|