1
|
Wang J, Tang Y, Zhao X, Ding Z, Ahmat M, Si D, Zhang R, Wei X. Molecular hybridization modification improves the stability and immunomodulatory activity of TP5 peptide. Front Immunol 2024; 15:1472839. [PMID: 39588365 PMCID: PMC11586334 DOI: 10.3389/fimmu.2024.1472839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/28/2024] [Indexed: 11/27/2024] Open
Abstract
Thymopentin (TP5) plays an important role in host immunomodulation, yet its bioavailability is significantly limited by its short half-life. YW12D is a peptide with strong stability but relatively weak immunoactivity. Tuning the physicochemical properties of such molecules may yield synthetic molecules displaying optimal stability, safety and enhanced immunological activity. Here, natural peptides were modified to improve their activity by hybridization strategies. A hybrid peptide YW12D-TP5 (YTP) that combines TP5 and YW12D is designed. The half-life of YTP in plasma is significantly longer than that of YW12D and TP5. YTP also displays an improved ability to protect the host from CTX-induced weight loss and thymus and spleen indices decrease than YW12D and TP5. In addition, YTP promotes dendritic cell maturation and increases the expression of cytokines IL-1β, IL-6, TNF-α and immunoglobulins IgA, IgG, and IgM. A combination of antibody-specific blocking assay, SPR, molecular dynamics simulations and western blotting suggest that the immunomodulatory effect of YTP is associated with its activation of the TLR2-NF-кB signaling axis. In sum, we demonstrate that peptide hybridization is an effective strategy for redirecting biological activity to generate novel bioactive molecules with desired properties.
Collapse
Affiliation(s)
- Junyong Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yuan Tang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xuelian Zhao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zetao Ding
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Marhaba Ahmat
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Xingjian Laboratory of Special Environmental Microbiology, Urumqi, China
| | - Dayong Si
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Rijun Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xubiao Wei
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Lunin SM, Novoselova EG, Glushkova OV, Parfenyuk SB, Novoselova TV, Khrenov MO. Cell Senescence and Central Regulators of Immune Response. Int J Mol Sci 2022; 23:ijms23084109. [PMID: 35456927 PMCID: PMC9028919 DOI: 10.3390/ijms23084109] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 12/13/2022] Open
Abstract
Pathways regulating cell senescence and cell cycle underlie many processes associated with ageing and age-related pathologies, and they also mediate cellular responses to exposure to stressors. Meanwhile, there are central mechanisms of the regulation of stress responses that induce/enhance or weaken the response of the whole organism, such as hormones of the hypothalamic-pituitary-adrenal (HPA) axis, sympathetic and parasympathetic systems, thymic hormones, and the pineal hormone melatonin. Although there are many analyses considering relationships between the HPA axis and organism ageing, we found no systematic analyses of relationships between the neuroendocrine regulators of stress and inflammation and intracellular mechanisms controlling cell cycle, senescence, and apoptosis. Here, we provide a review of the effects of neuroendocrine regulators on these mechanisms. Our analysis allowed us to postulate a multilevel system of central regulators involving neurotransmitters, glucocorticoids, melatonin, and the thymic hormones. This system finely regulates the cell cycle and metabolic/catabolic processes depending on the level of systemic stress, stage of stress response, and energy capabilities of the body, shifting the balance between cell cycle progression, cell cycle stopping, senescence, and apoptosis. These processes and levels of regulation should be considered when studying the mechanisms of ageing and the proliferation on the level of the whole organism.
Collapse
|
3
|
Wei X, Zhang L, Zhang R, Wu R, Petitte JN, Hou Y, Si D, Ahmad B, Guo H, Zhang M, Cheng Q, Tong Y. Targeting the TLR2 Receptor With a Novel Thymopentin-Derived Peptide Modulates Immune Responses. Front Immunol 2021; 12:620494. [PMID: 34122400 PMCID: PMC8191578 DOI: 10.3389/fimmu.2021.620494] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 05/07/2021] [Indexed: 11/17/2022] Open
Abstract
The innate and adaptive immune systems act in concert to protect us from infectious agents and other harmful substances. As a state of temporary or permanent immune dysfunction, immunosuppression can make an organism more susceptible to infection, organ injury, and cancer due to damage to the immune system. It takes a long time to develop new immunomodulatory agents to prevent and treat immunosuppressive diseases, with slow progress. Toll-like receptor 2 (TLR2) agonists have been reported as potential immunomodulatory candidates due to their effective activation of immune responses. It has been demonstrated that thymopentin (TP5) could modulate immunity by binding to the TLR2 receptor. However, the fairly short half-life of TP5 greatly reduces its pharmacological potential for immunosuppression therapy. Although peptide cathelicidin 2 (CATH2) has a long half-life, it shows poor immunomodulatory activity and severe cytotoxicity, which seriously hampers its clinical development. Peptide hybridization is an effective approach for the design and engineering of novel functional peptides because hybrid peptides combine the advantages and benefits of various native peptides. In this study, to overcome all these challenges faced by the parental peptides, six hybrid peptides (CaTP, CbTP, CcTP, TPCa, TPCb, and TPCc) were designed by combining the full-length TP5 with different active fragments of CATH2. CbTP, the most potent TLR2 agonist among the six hybrid peptides, was effectively screened through in silico analysis and in vitro experiments. The CbTP peptide exhibited lower cytotoxicity than either CATH2 or TP5. Furthermore, the immunomodulatory effects of CbTP were confirmed in a CTX-immunosuppressed mouse model, which showed that CbTP has increased immunopotentiating activity and physiological stability compared to the parental peptides. CbTP successfully inhibited immunosuppression and weight loss, increased immune organ indices, and improved CD4+/CD8+ T lymphocyte subsets. In addition, CbTP significantly increased the production of the cytokine TNF-α and IL-6, and the immunoglobulins IgA, IgM, and IgG. The immunoenhancing effects of CbTP were attributed to its TLR2-binding activity, promoting the formation of the TLR2 cluster, the activation of the TLR2 receptor, and thus activation of the downstream MyD88-NF-кB signaling pathway.
Collapse
Affiliation(s)
- Xubiao Wei
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lulu Zhang
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Rijun Zhang
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Rujuan Wu
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - James N Petitte
- Prestage Department of Poultry Science, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, United States
| | - Yanfei Hou
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Dayong Si
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Baseer Ahmad
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Henan Guo
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Manyi Zhang
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qiang Cheng
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yucui Tong
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Zhang L, Wei X, Zhang R, Mozdziak PE, Si D, Ahmad B, Cheng Q, Tong Y. Design and Immunological Evaluation of a Hybrid Peptide as a Potent TLR2 Agonist by Structure-Based Virtual Screening. Front Cell Dev Biol 2021; 9:620370. [PMID: 33644058 PMCID: PMC7905067 DOI: 10.3389/fcell.2021.620370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/15/2021] [Indexed: 12/23/2022] Open
Abstract
Immunity is a versatile defensive response that is involved in protecting against disease by identifying and destroying self and non-self harmful substances. As a state of temporary or permanent immune dysfunction, immunosuppression can make an organism more susceptible to infection, organ injury, and cancer due to damage to the immune system. It has taken a long time to develop new immunomodulatory agents to prevent and treat immunosuppressive diseases. In recent years, Toll-like receptor 2 (TLR2) agonists have been reported to have profound effects on the immune system, and they are regarded as potent immunomodulatory candidates. TP5 and LL-37, the potent immunomodulatory agents, have been reported to produce a robust innate immune response by binding to TLR2. However, their development has been weakened by several concerns, such as potential cytotoxicity, weak physiological stability and poor immunomodulatory activity. To overcome these challenges, hybridization has been proposed. Therefore, six hybrid peptides (LTPa, LTPb, LTPc, TPLa, TPLb, and TPLc) were designed by combining the full-length TP5 with a characteristic fragment of LL-37 that included LL-37 (13-36), LL-37 (17-29), and LL-37 (13-31). LTPa, the most potent TLR2 agonist, was simply and effectively screened by molecular docking and in vitro experiments. Furthermore, the immunomodulatory effects of LTPa were confirmed by a CTX-immunosuppressed murine model, which demonstrated that LTPa successfully inhibit immunosuppression, increased immune organ indices, enhanced DC maturation, regulated T lymphocyte subsets, and increased cytokine and Ig contents. Our study also revealed that the immunomodulatory effects of LTPa are associated with binding to TLR2, forming TLR2 clusters, and activating the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Lulu Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xubiao Wei
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China.,School of Pharmaceutical Sciences, Tsinghua University, Beijing, China.,Prestage Department of Poultry Science, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, United States
| | - Rijun Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Paul E Mozdziak
- Prestage Department of Poultry Science, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, United States
| | - Dayong Si
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Baseer Ahmad
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qiang Cheng
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yucui Tong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Zhang L, Wei X, Zhang R, Koci M, Si D, Ahmad B, Guo H, Hou Y. C-Terminal Amination of a Cationic Anti-Inflammatory Peptide Improves Bioavailability and Inhibitory Activity Against LPS-Induced Inflammation. Front Immunol 2021; 11:618312. [PMID: 33613547 PMCID: PMC7892475 DOI: 10.3389/fimmu.2020.618312] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/15/2020] [Indexed: 12/05/2022] Open
Abstract
Lipopolysaccharide (LPS) has been implicated as a major cause of inflammation and an uncontrolled LPS response increases the risk of localized inflammation and sepsis. While some native peptides are helpful in the treatment of LPS-induced inflammation, the use of these peptides is limited due to their potential cytotoxicity and poor anti-inflammatory activity. Hybridization is an effective approach for overcoming this problem. In this study, a novel hybrid anti-inflammatory peptide that combines the active center of Cathelicidin 2 (CATH2) with thymopentin (TP5) was designed [CTP, CATH2 (1–13)-TP5]. CTP was found to have higher anti-inflammatory effects than its parental peptides through directly LPS neutralization. However, CTP scarcely inhibited the attachment of LPS to cell membranes or suppressed an established LPS-induced inflammation due to poor cellular uptake. The C-terminal amine modification of CTP (CTP-NH2) was then designed based on the hypothesis that C-terminal amidation can enhance the cell uptake by increasing the hydrophobicity of the peptide. Compared with CTP, CTP-NH2 showed enhanced anti-inflammatory activity and lower cytotoxicity. CTP-NH2 not only has strong LPS neutralizing activity, but also can significantly inhibit the LPS attachment and the intracellular inflammatory response. The intracellular anti-inflammatory effect of CTP-NH2 was associated with blocking of LPS binding to the Toll-like receptor 4-myeloid differentiation factor 2 complex and inhibiting the nuclear factor-kappa B pathway. In addition, the anti-inflammatory effect of CTP-NH2 was confirmed using a murine LPS-induced sepsis model. Collectively, these findings suggest that CTP-NH2 could be developed into a novel anti-inflammatory drug. This successful modification provides a design strategy to improve the cellular uptake and anti-inflammatory activity of peptide agents.
Collapse
Affiliation(s)
- Lulu Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xubiao Wei
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Rijun Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Matthew Koci
- Prestage Department of Poultry Science, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, United States
| | - Dayong Si
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Baseer Ahmad
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Henan Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yanfei Hou
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
6
|
Zhang L, Wei X, Zhang R, Si D, Petitte JN, Ahmad B, Zhang M. A Novel Peptide Ameliorates LPS-Induced Intestinal Inflammation and Mucosal Barrier Damage via Its Antioxidant and Antiendotoxin Effects. Int J Mol Sci 2019; 20:E3974. [PMID: 31443263 PMCID: PMC6720008 DOI: 10.3390/ijms20163974] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/12/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023] Open
Abstract
Intestinal inflammation is an inflammatory disease resulting from immune dysregulation in the gut. It can increase the risk of enteric cancer, which is a common malignancy globally. As a new class of anti-inflammatory agents, native peptides have potential for use in the treatment of several intestinal inflammation conditions; however, their potential cytotoxicity and poor anti-inflammatory activity and stability have prevented their development. Hybridization has been proposed to overcome this problem. Thus, in this study, we designed a hybrid peptide (LL-37-TP5, LTP) by combing the active centre of LL-37 (13-36) with TP5. The half-life and cytotoxicity were tested in vitro, and the hybrid peptide showed a longer half-life and lower cytotoxicity than its parental peptides. We also detected the anti-inflammatory effects and mechanisms of LTP on Lipopolysaccharide (LPS)-induced intestinal inflammation in murine model. The results showed that LTP effectively prevented LPS-induced weight loss, impairment of intestinal tissues, leukocyte infiltration, and histological evidence of inflammation. Additionally, LTP decreased the levels of tumour necrosis factor-alpha, interferon-gamma, and interleukin-6; increased the expression of zonula occludens-1 and occludin; and reduced permeability in the jejunum of LPS-treated mice. Notably, LTP appeared to be more potent than the parental peptides LL-37 and TP5. The anti-inflammatory effects of LTP may be associated with the neutralization of LPS, inhibition of oxidative stress, and inhibition of the NF-κB signalling pathway. The findings of this study suggest that LTP might be an effective therapeutic agent for treating intestinal inflammation.
Collapse
Affiliation(s)
- Lulu Zhang
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xubiao Wei
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Rijun Zhang
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Dayong Si
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - James N Petitte
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Baseer Ahmad
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Manyi Zhang
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
7
|
Zheng K, Zhan R, Hong Y, Li J, Shi W, Li S. Synthesis of a precursor tripeptide Z-Asp-Val-Tyr-OH of thymopentin by chemo-enzymatic method. Prep Biochem Biotechnol 2012; 42:520-34. [PMID: 23030464 DOI: 10.1080/10826068.2012.660902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The precursor tripeptide of thymopentin was synthesized by a combination of chemical and enzymatic methods. First, Val-Tyr-OH dipeptide was synthesized by a novel chemical method in two steps involving preparation of NCA-Val. Second, the linkage of the third amino acid Z-Asp-OMe to Val-Tyr-OH was completed by an enzymatic method under kinetic control. An industrial alkaline protease alcalase was used in water-organic cosolvent systems. The synthesis reaction conditions were optimized by examining the effects of several factors including organic solvents, water content, temperature, pH, and reaction time on the yield of Z-Asp-Val-Tyr-OH. The optimum condition is of pH 10.0, 35°C, acetonitrile/Na₂CO₃-NaHCO₃ buffer system (85:15, v/v), and reaction time of 2.5 hr, which achieves tripeptide yield of more than 70%.
Collapse
Affiliation(s)
- Kun Zheng
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, Jilin University, Changchun, P.R. China
| | | | | | | | | | | |
Collapse
|
8
|
Levine JB, Youngs RM, MacDonald ML, Chu M, Leeder AD, Berthiaume F, Konradi C. Isolation rearing and hyperlocomotion are associated with reduced immediate early gene expression levels in the medial prefrontal cortex. Neuroscience 2007; 145:42-55. [PMID: 17239545 DOI: 10.1016/j.neuroscience.2006.11.063] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Revised: 11/17/2006] [Accepted: 11/20/2006] [Indexed: 11/30/2022]
Abstract
Environmental deprivation contributes in important ways to the development of a wide range of psychiatric disorders. Isolation rearing of rodents, a model for environmental deprivation in humans, consistently produces hyperlocomotion, which provides a measurable parameter to study the underlying mechanisms of early adverse psychosocial stressors. Male Sprague-Dawley rat pups were separated from dams at postnatal (PN) day 20 and reared either in groups of three or in isolation. On PN 38, locomotion was assessed in the open field. On PN 46, rats were killed and gene expression patterns examined in the medial prefrontal cortex (mPFC). Isolation-reared rats displayed increased locomotor activity and decreased resting time in the open field. Specific gene expression patterns in the mPFC were associated with both isolation rearing and hyperlocomotive behavior in the open field. Genes involved in these expression patterns included immediate early genes (IEGs) and genes that regulate cell differentiation and apoptosis. The study of these genes could provide important insights into how abnormal early psychosocial events affect brain function and behavior.
Collapse
Affiliation(s)
- J B Levine
- Laboratory of Neuroplasticity, McLean Hospital, Belmont, MA 02478, USA.
| | | | | | | | | | | | | |
Collapse
|
9
|
Fan YZ, Chang H, Yu Y, Liu J, Zhao L, Yang DJ, Wang R. Thymopentin (TP5), an immunomodulatory peptide, suppresses proliferation and induces differentiation in HL-60 cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1059-66. [PMID: 16952408 DOI: 10.1016/j.bbamcr.2006.07.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Revised: 06/20/2006] [Accepted: 07/13/2006] [Indexed: 11/25/2022]
Abstract
Thymopentin (Arg-Lys-Asp-Val-Tyr, TP5) has shown immuno-regulatory activities in humans. In the present study, we investigated the effects of TP5 on the proliferation and differentiation of a human promyelocyte leukemia cell line, HL-60. It is noteworthy that TP5 displayed concentration-dependent inhibitory effects on the proliferation and colony formation of HL-60 cells. Furthermore, the decrease or even disappearance of AgNORs from nucleoli was observed in HL-60 cells after the treatment with TP5. The suppression induced by TP5 was accompanied by an accumulation of cell cycle in the G0/G1 phase. Moreover, TP5 significantly increased the NBT-reduction activity of HL-60 cells. Cytofluorometric and morphologic analysis indicated that TP5 had induced differentiation along the granulocytes lineage in HL-60 cells. d-tubocurarine (TUB) significantly antagonized the inhibitory effects induced by TP5, whereas atropine did not exhibit such effect. All the results indicated that TP5 was able to significantly inhibit proliferation and induce differentiation in HL-60 cells. Our observations also implied that TP5 not only acted as an immunomodulatory factor in cancer chemotherapy, but is also a potential chemotherapeutic agent in the human leukemia therapy.
Collapse
Affiliation(s)
- Ying-zhe Fan
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Department of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, 222 Tian Shui South Road, Lanzhou, 730000, PR China
| | | | | | | | | | | | | |
Collapse
|