1
|
Birudukota S, Mangalapu B, Ramakrishna RA, Halder S. Risk-based in silico mutagenic assessment of benzodiazepine impurities using three QSAR tools. Toxicol Rep 2025; 14:102008. [PMID: 40230516 PMCID: PMC11995136 DOI: 10.1016/j.toxrep.2025.102008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/14/2025] [Accepted: 03/20/2025] [Indexed: 04/16/2025] Open
Abstract
Benzodiazepines, widely prescribed psychoactive drugs, may contain DNA-reactive (mutagenic) impurities formed during synthesis, posing significant health risks. Owing to animal testing requirements, traditional in vitro and in vivo methods for assessing mutagenicity are time-consuming, costly, and ethically challenging. Computational approaches, particularly in silico (Q)SAR models, provide an efficient alternative for predicting toxicity based on chemical structure. This study evaluated the mutagenic potential of 88 benzodiazepine-related impurities using three freely accessible (Q)SAR tools: TOXTREE (Ames Test Alert by ISS), Toxicity Estimation Software Tool (TEST) with nearest neighbour and consensus models, and VEGA, a QSAR tool that integrates multiple mutagenicity prediction models, including the CAESAR Ames Mutagenicity Model. The tools were validated using a dataset of 99 chemicals with known Ames test results. TOXTREE exhibited the highest sensitivity (80.7 %) and accuracy (72.2 %) for predicting mutagenicity, whereas VEGA and TEST provided balanced accuracy (66.2 % and 66.7 %, respectively) and high specificity (74.5 % and 76.6 %, respectively). The risk assessment categorised 21 impurities as high risk, 11 as moderate-high risk, 28 as moderate-low risk, 22 as low risk, and 6 as equivocal, with expert review finalising classifications. The findings emphasise the integration of multiple (Q)SAR tools for early mutagenicity detection, regulatory compliance, and reduced reliance on animal testing. Further refinement of predictive models and additional computational approaches are recommended to enhance the accuracy of the risk assessment.
Collapse
Affiliation(s)
- Srinivas Birudukota
- Department of Chemistry, School of Applied Sciences, Rukmini Knowledge Park, REVA University, Kattigenahalli, Yelahanka, Bangalore 560064, India
- Trroy Life Sciences Pvt Ltd., Yelahanka New Town, Bangalore 560106, India
| | - Bhaskar Mangalapu
- Department of Chemistry, School of Applied Sciences, Rukmini Knowledge Park, REVA University, Kattigenahalli, Yelahanka, Bangalore 560064, India
- Flowchem Pharma Pvt Ltd., Gollapuram Industrial Park, Hindupur, Srisatyasai 515211, India
| | | | - Swagata Halder
- Department of Chemistry, School of Applied Sciences, Rukmini Knowledge Park, REVA University, Kattigenahalli, Yelahanka, Bangalore 560064, India
| |
Collapse
|
2
|
Lima E, Ferreira O, Boto RE, Fernandes JR, Almeida P, Silvestre SM, Santos AO, Reis LV. D-(+)-Biotinylated squaraine dyes: A journey from synthetic conception, photophysical and -chemical characterization, to the exploration of their photoantitumoral action mechanisms. Eur J Med Chem 2025; 293:117699. [PMID: 40349637 DOI: 10.1016/j.ejmech.2025.117699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/14/2025] [Accepted: 04/27/2025] [Indexed: 05/14/2025]
Abstract
Biotin is primarily taken up by cells through sodium-dependent multivitamin transporter, which is highly expressed in aggressive cancer cell lines, often at levels surpassing those of the folate receptor. This makes biotin an attractive ligand for tumor-targeted drug delivery. Building on this rationale, this study presents a series of six D-(+)-biotin-conjugated squaraine dyes derived from benzothiazole, indolenine, and benz[e]indole, with N-ethyl and N-hexyl chains. These compounds were thoroughly characterized in terms of their photophysical and photochemical properties, revealing strong absorption in the so-called "phototherapeutic window", notable fluorescence, especially the benzothiazole derivatives, aqueous stability, particularly the indolenine-based dyes, and moderate to high photostability. Computational studies further indicated a strong binding affinity to human serum albumin and avidin proteins. All dyes exhibited photodynamic activity, with indolenine derivatives showing remarkable tumor selectivity and benz[e]indole analogs evidencing superior photocytotoxicity. The most promising compounds preferentially accumulated in mitochondria, and both singlet oxygen and other reactive oxygen species were found to play a role in their photobiological effects. Additionally, they were non-genotoxic in the absence of irradiation, and apoptosis was the primary mechanism of cell death upon light activation. This was evidenced by preserved cytoplasmic membrane integrity, nuclear fragmentation, and caspase-3/7 activation, reinforcing the safety and potential of these compounds as phototherapeutic agents. Although cellular uptake via the sodium-dependent multivitamin transporter was not established, and diffusion is expected to be the predominant mechanism, the high predicted avidin-binding affinity of these dyes opens exciting new avenues for photodynamic therapy-combined strategies.
Collapse
Affiliation(s)
- Eurico Lima
- CQ-VR - Chemistry Centre of Vila Real, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5001-801, Vila Real, Portugal; RISE-Health, Faculty of Health Sciences, University of Beira Interior, Avenida Infante D. Henrique, 6201-506, Covilhã, Portugal.
| | - Octávio Ferreira
- RISE-Health, Faculty of Health Sciences, University of Beira Interior, Avenida Infante D. Henrique, 6201-506, Covilhã, Portugal
| | - Renato E Boto
- RISE-Health, Faculty of Health Sciences, University of Beira Interior, Avenida Infante D. Henrique, 6201-506, Covilhã, Portugal
| | - José R Fernandes
- CQ-VR - Chemistry Centre of Vila Real, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5001-801, Vila Real, Portugal
| | - Paulo Almeida
- RISE-Health, Faculty of Health Sciences, University of Beira Interior, Avenida Infante D. Henrique, 6201-506, Covilhã, Portugal
| | - Samuel M Silvestre
- RISE-Health, Faculty of Health Sciences, University of Beira Interior, Avenida Infante D. Henrique, 6201-506, Covilhã, Portugal; RISE-Health, Faculty of Sciences, University of Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001, Covilhã, Portugal.
| | - Adriana O Santos
- RISE-Health, Faculty of Health Sciences, University of Beira Interior, Avenida Infante D. Henrique, 6201-506, Covilhã, Portugal.
| | - Lucinda V Reis
- CQ-VR - Chemistry Centre of Vila Real, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5001-801, Vila Real, Portugal.
| |
Collapse
|
3
|
Synthesis, spectral characterization, DNA binding ability and anti-cancer screening of new acridine-based derivatives. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1931-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
4
|
Cisáriková A, Barbieriková Z, Janovec L, Imrich J, Hunáková L, Bačová Z, Paulíková H. Acridin-3,6-dialkyldithiourea hydrochlorides as new photosensitizers for photodynamic therapy of mouse leukemia cells. Bioorg Med Chem 2016; 24:2011-22. [DOI: 10.1016/j.bmc.2016.03.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/20/2016] [Accepted: 03/16/2016] [Indexed: 10/22/2022]
|
5
|
Manasfi T, De Méo M, Coulomb B, Di Giorgio C, Boudenne JL. Identification of disinfection by-products in freshwater and seawater swimming pools and evaluation of genotoxicity. ENVIRONMENT INTERNATIONAL 2016; 88:94-102. [PMID: 26735347 DOI: 10.1016/j.envint.2015.12.028] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 12/09/2015] [Accepted: 12/19/2015] [Indexed: 05/08/2023]
Abstract
Exposure to disinfection byproducts (DBPs) in swimming pools has been linked to adverse health effects. Numerous DBPs that occur in swimming pools are genotoxic and carcinogenic. This toxicity is of a greater concern in the case of brominated DBPs that have been shown to have substantially greater toxicities than their chlorinated analogs. In chlorinated seawater swimming pools, brominated DBPs are formed due to the high content of bromide. Nevertheless, very little data is reported about DBP occurrence and mutagenicity of water in these pools. In the present study, three seawater and one freshwater swimming pools located in Southeastern France were investigated to determine qualitatively and quantitatively their DBP contents. An evaluation of the genotoxic properties of water samples of the freshwater pool and a seawater pool was conducted through the Salmonella assay (Ames test). The predominant DBPs identified in the freshwater pool were chlorinated species and included trichloroacetic acid, chloral hydrate, dichloroacetonitrile, 1,1,1-trichloropropanone and chloroform. In the seawater pools, brominated DBPs were the predominant species and included dibromoacetic acid, bromoform and dibromoacetonitile. Bromal hydrate levels were also reported. In both types of pools, haloacetic acids were the most prevalent chemical class among the analyzed DBP classes. The distribution of other DBP classes varied depending on the type of pool. As to genotoxicity, the results of Ames test showed higher mutagenicity in the freshwater pool as a consequence of its considerably higher DBP contents in comparison to the tested seawater pool.
Collapse
Affiliation(s)
- Tarek Manasfi
- Aix Marseille Université, CNRS, LCE UMR 7376, 13331 Marseille, France.
| | - Michel De Méo
- Aix Marseille Université, CNRS, IRD, Avignon Université, IMBE UMR 7263, Laboratoire de Mutagénèse Environnementale, 13385, Marseille, France.
| | - Bruno Coulomb
- Aix Marseille Université, CNRS, LCE UMR 7376, 13331 Marseille, France.
| | - Carole Di Giorgio
- Aix Marseille Université, CNRS, IRD, Avignon Université, IMBE UMR 7263, Laboratoire de Mutagénèse Environnementale, 13385, Marseille, France.
| | - Jean-Luc Boudenne
- Aix Marseille Université, CNRS, LCE UMR 7376, 13331 Marseille, France.
| |
Collapse
|
6
|
Inhibition of DNA topoisomerases I and II and growth inhibition of HL-60 cells by novel acridine-based compounds. Eur J Pharm Sci 2015; 76:192-202. [PMID: 25960253 DOI: 10.1016/j.ejps.2015.04.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/04/2015] [Accepted: 04/25/2015] [Indexed: 11/20/2022]
Abstract
HL-60 cancer cells were treated with a series of novel acridine derivatives (derivatives 1-4) in order to test the compounds' ability to inhibit both cancer cell growth and topoisomerase I and II activity. Binding studies of derivatives 1-4 with calf thymus DNA were also performed using a number of techniques (UV-Vis and fluorescence spectroscopy, thermal denaturation, linear dichroism and viscometry) to determine the nature of the interaction between the compounds and ctDNA. The binding constants for the complexes of the studied acridine derivatives with DNA were calculated from UV-Vis spectroscopic titrations (K=3.1×10(4)-2.0×10(3)M(-1)). Some of the compounds showed a strong inhibitory effect against Topo II at the relatively low concentration of 5μM. Topo I/II inhibition mode assays were also performed and verified that the novel compounds are topoisomerase suppressors rather than poisons. The biological activities of derivatives were studied using MTT assay and flow cytometric methods (detection of mitochondrial membrane potential, measurement of cell viability) after 24 and 48h incubation. The ability of derivatives to impair cell proliferation was tested by an analysis of cell cycle distribution.
Collapse
|
7
|
Čižeková L, Grolmusová A, Ipóthová Z, Barbieriková Z, Brezová V, Hunáková L, Imrich J, Janovec L, Dovinová I, Paulíková H. Novel 3,6-bis(imidazolidine)acridines as effective photosensitizers for photodynamic therapy. Bioorg Med Chem 2014; 22:4684-93. [DOI: 10.1016/j.bmc.2014.07.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 07/01/2014] [Accepted: 07/09/2014] [Indexed: 01/28/2023]
|
8
|
Liman R. Genotoxic effects of Bismuth (III) oxide nanoparticles by Allium and Comet assay. CHEMOSPHERE 2013; 93:269-73. [PMID: 23790828 DOI: 10.1016/j.chemosphere.2013.04.076] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/21/2013] [Accepted: 04/27/2013] [Indexed: 05/25/2023]
Abstract
Genotoxic effects of Bismuth (III) oxide nanoparticles (BONPs) were investigated on the root cells of Allium cepa by Allium and Comet assay. A. cepa roots were treated with the aqueous dispersions of BONPs at five different concentrations (12.5, 25, 50, 75, and 100ppm) for 4h. Exposure of BONPs significantly increased mitotic index (MI) except 12.5ppm, total chromosomal aberrations (CAs) in Allium test. While stickiness chromosome laggards, disturbed anaphase-telophase and anaphase bridges were observed in anaphase-telophase cells, pro-metaphase and c-metaphase in other cells. A significant increase in DNA damage was also observed at all concentrations of BONPs except 12.5ppm by Comet assay. The results were also analyzed statistically by using SPSS for Windows; Duncan's multiple range test was performed. These results indicate that BONPs exhibit genotoxic activity in A. cepa root meristematic cells.
Collapse
Affiliation(s)
- Recep Liman
- Usak University, Faculty of Arts and Sciences, Molecular Biology and Genetics Department, 1 Eylül Campus, 64300 Uşak, Turkey.
| |
Collapse
|
9
|
Luzhna L, Kathiria P, Kovalchuk O. Micronuclei in genotoxicity assessment: from genetics to epigenetics and beyond. Front Genet 2013; 4:131. [PMID: 23874352 PMCID: PMC3708156 DOI: 10.3389/fgene.2013.00131] [Citation(s) in RCA: 249] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 06/19/2013] [Indexed: 12/11/2022] Open
Abstract
Micronuclei (MN) are extra-nuclear bodies that contain damaged chromosome fragments and/or whole chromosomes that were not incorporated into the nucleus after cell division. MN can be induced by defects in the cell repair machinery and accumulation of DNA damages and chromosomal aberrations. A variety of genotoxic agents may induce MN formation leading to cell death, genomic instability, or cancer development. In this review, the genetic and epigenetic mechanisms of MN formation after various clastogenic and aneugenic effects on cell division and cell cycle are described. The knowledge accumulated in literature on cytotoxicity of various genotoxins is precisely reflected and individual sensitivity to MN formation due to single gene polymorphisms is discussed. The importance of rapid MN scoring with respect to the cytokinesis-block micronucleus assay is also evaluated.
Collapse
Affiliation(s)
- Lidiya Luzhna
- Department of Biological Sciences, University of Lethbridge Lethbridge, AB, Canada
| | | | | |
Collapse
|
10
|
Doak SH, Manshian B, Jenkins GJS, Singh N. In vitro genotoxicity testing strategy for nanomaterials and the adaptation of current OECD guidelines. Mutat Res 2012; 745:104-11. [PMID: 21971291 PMCID: PMC4028084 DOI: 10.1016/j.mrgentox.2011.09.013] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 09/12/2011] [Indexed: 04/13/2023]
Abstract
There is a pressing requirement to define a hazard identification and risk management strategy for nanomaterials due to the rapid growth in the nanotechnology industry and their promise of life-style revolutions through the development of wide-ranging nano-containing consumer products. Consequently, a battery of well defined and appropriate in vitro assays to assess a number of genotoxicity endpoints is required to minimise extensive and costly in vivo testing. However, the validity of the established protocols in current OECD recognised genotoxicity assays for nanomaterials is currently being questioned. In this report, we therefore consider the in vitro OECD genotoxicity test battery including the Ames, micronucleus and HPRT forward mutation assays, and their potential role in the safety assessment of nanomaterial induced DNA damage in vitro.
Collapse
Affiliation(s)
- S H Doak
- Institute of Life Science, College of Medicine, Swansea University, Singleton Park, Swansea SA2 8PP, Wales, UK.
| | | | | | | |
Collapse
|
11
|
Di Giorgio C, Benchabane Y, Boyer G, Piccerelle P, De Méo M. Evaluation of the mutagenic/clastogenic potential of 3,6-di-substituted acridines targeted for anticancer chemotherapy. Food Chem Toxicol 2011; 49:2773-9. [DOI: 10.1016/j.fct.2011.07.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 07/13/2011] [Accepted: 07/16/2011] [Indexed: 10/18/2022]
|
12
|
Antosova A, Chelli B, Bystrenova E, Siposova K, Valle F, Imrich J, Vilkova M, Kristian P, Biscarini F, Gazova Z. Structure-activity relationship of acridine derivatives to amyloid aggregation of lysozyme. Biochim Biophys Acta Gen Subj 2011; 1810:465-74. [DOI: 10.1016/j.bbagen.2011.01.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 12/23/2010] [Accepted: 01/20/2011] [Indexed: 10/18/2022]
|
13
|
Naven RT, Louise-May S, Greene N. The computational prediction of genotoxicity. Expert Opin Drug Metab Toxicol 2010; 6:797-807. [DOI: 10.1517/17425255.2010.495118] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|