1
|
Becker LC, Cherian PA, Bergfeld WF, Belsito DV, Hill RA, Klaassen CD, Liebler DC, Marks JG, Shank RC, Slaga TJ, Snyder PW, Fiume M, Heldreth B. Safety Assessment of Hydrogen Peroxide as Used in Cosmetics. Int J Toxicol 2024; 43:5S-63S. [PMID: 38469819 DOI: 10.1177/10915818241237790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The Expert Panel for Cosmetic Ingredient Safety (Panel) assessed the safety of Hydrogen Peroxide for use in cosmetics. This ingredient is reported to function in cosmetics as an antimicrobial agent, cosmetic biocide, oral health care agent, and oxidizing agent. The Panel reviewed the data relevant to the safety of this ingredient and concluded that Hydrogen Peroxide is safe in cosmetics in the present practices of use and concentration described in this safety assessment.
Collapse
Affiliation(s)
| | | | | | | | - Ronald A Hill
- Expert Panel for Cosmetic Ingredient Safety Former Member
| | | | | | - James G Marks
- Expert Panel for Cosmetic Ingredient Safety Former Member
| | - Ronald C Shank
- Expert Panel for Cosmetic Ingredient Safety Former Member
| | | | | | | | | |
Collapse
|
2
|
Suarez-Diez M, Porras S, Laguna-Teno F, Schaap PJ, Tamayo-Ramos JA. Toxicological response of the model fungus Saccharomyces cerevisiae to different concentrations of commercial graphene nanoplatelets. Sci Rep 2020; 10:3232. [PMID: 32094381 PMCID: PMC7039959 DOI: 10.1038/s41598-020-60101-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/22/2020] [Indexed: 12/17/2022] Open
Abstract
Graphene nanomaterials have attracted a great interest during the last years for different applications, but their possible impact on different biological systems remains unclear. Here, an assessment to understand the toxicity of commercial polycarboxylate functionalized graphene nanoplatelets (GN) on the unicellular fungal model Saccharomyces cerevisiae was performed. While cell proliferation was not negatively affected even in the presence of 800 mg L-1 of the nanomaterial for 24 hours, oxidative stress was induced at a lower concentration (160 mg L-1), after short exposure periods (2 and 4 hours). No DNA damage was observed under a comet assay analysis under the studied conditions. In addition, to pinpoint the molecular mechanisms behind the early oxidative damage induced by GN and to identify possible toxicity pathways, the transcriptome of S. cerevisiae exposed to 160 and 800 mg L-1 of GN was studied. Both GN concentrations induced expression changes in a common group of genes (337), many of them related to the fungal response to reduce the nanoparticles toxicity and to maintain cell homeostasis. Also, a high number of genes were only differentially expressed in the GN800 condition (3254), indicating that high GN concentrations can induce severe changes in the physiological state of the yeast.
Collapse
Affiliation(s)
- Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneg, 4 6708WE, Wageningen, The Netherlands
| | - Santiago Porras
- Departamento de Economía Aplicada, University of Burgos, Plaza Infanta Doña Elena, s/n, 09001, Burgos, Spain
| | - Felix Laguna-Teno
- International Research Centre in Critical Raw Materials-ICCRAM, University of Burgos, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain
| | - Peter J Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneg, 4 6708WE, Wageningen, The Netherlands
| | - Juan A Tamayo-Ramos
- International Research Centre in Critical Raw Materials-ICCRAM, University of Burgos, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain.
| |
Collapse
|
3
|
Zhang M, Cao G, Guo X, Gao Y, Li W, Lu D. A Comet Assay for DNA Damage and Repair After Exposure to Carbon-Ion Beams or X-rays in Saccharomyces Cerevisiae. Dose Response 2018; 16:1559325818792467. [PMID: 30116170 PMCID: PMC6088507 DOI: 10.1177/1559325818792467] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 11/17/2022] Open
Abstract
Ionizing radiation (IR) can result in serious genomic instability and genotoxicity by causing DNA damage. Carbon ion (CI) beams and X-rays are typical IRs and possess high-linear energy transfer (LET) and low-LET, respectively. In this article, a comet assay that was optimized by decreasing the electrophoresis time (8 minutes) and voltage (0.5 V/cm) was performed to elucidate and quantify the DNA damage induced by CI or X-rays radiation. Two quantitative methods for the comet assay, namely, comet score and olive tail moment, were compared, and the appropriate means and parameter values were selected for the present assay. The dose-effect relationship for CI or X-rays radiation and the DNA repair process were studied in yeast cells. These results showed that the quadratic function fitted the dose-effect relationship after CI or X-rays exposure, and the trend for the models fitted the dose-effect curves for various repair times was precisely described by the cubic function. A kinetics model was also creatively used to describe the process of DNA repair, and equations were calculated within repairable ranges that could be used to roughly evaluate the process and time necessary for DNA repair.
Collapse
Affiliation(s)
- Miaomiao Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Microbial Resources Exploitation and Application, Lanzhou, China
| | - Guozhen Cao
- Department of Pharmacology, School of Preclinical Medicine of Xinjiang Medical University, Urumqi, China
| | - Xiaopeng Guo
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yue Gao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Wenjian Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Microbial Resources Exploitation and Application, Lanzhou, China
| | - Dong Lu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Microbial Resources Exploitation and Application, Lanzhou, China
| |
Collapse
|
4
|
Yeast-based genotoxicity tests for assessing DNA alterations and DNA stress responses: a 40-year overview. Appl Microbiol Biotechnol 2018; 102:2493-2507. [PMID: 29423630 DOI: 10.1007/s00253-018-8783-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/12/2018] [Accepted: 01/14/2018] [Indexed: 10/18/2022]
Abstract
By damaging DNA molecules, genotoxicants cause genetic mutations and also increase human susceptibility to cancers and genetic diseases. Over the past four decades, several assays have been developed in the budding yeast Saccharomyces cerevisiae to screen potential genotoxic substances and provide alternatives to animal-based genotoxicity tests. These yeast-based genotoxicity tests are either DNA alteration-based or DNA stress-response reporter-based. The former, which came first, were developed from the genetic studies conducted on various types of DNA alterations in yeast cells. Despite their limited throughput capabilities, some of these tests have been used as short-term genotoxicity tests in addition to bacteria- or mammalian cell-based tests. In contrast, the latter tests are based on the emergent transcriptional induction of DNA repair-related genes via activation of the DNA damage checkpoint kinase cascade triggered by DNA damage. Some of these reporter assays have been linked to DNA damage-responsive promoters to assess chemical carcinogenicity and ecotoxicity in environmental samples. Yeast-mediated genotoxicity tests are being continuously improved by increasing the permeability of yeast cell walls, by the ectopic expression of mammalian cytochrome P450 systems, by the use of DNA repair-deficient host strains, and by integrating them into high-throughput formats or microfluidic devices. Notably, yeast-based reporter assays linked with the newer toxicogenomic approaches are becoming powerful short-term genotoxicity tests for large numbers of compounds. These tests can also be used to detect polluted environmental samples, and as effective screening tools during anticancer drug development.
Collapse
|
5
|
Carmello JC, Pavarina AC, Oliveira R, Johansson B. Genotoxic effect of photodynamic therapy mediated by curcumin on Candida albicans. FEMS Yeast Res 2015; 15:fov018. [PMID: 25900893 DOI: 10.1093/femsyr/fov018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2015] [Indexed: 12/29/2022] Open
Abstract
Photodynamic therapy (PDT) is a promising method for localized and specific inactivation of fungi and bacteria. A nontoxic light-sensitive compound is taken up by cells, which are then exposed selectively to light, which activates toxicity of the compound. We investigated the potential of sublethal PDT using light-sensitive curcumin (CUR) in combination with blue (455 nm) light to promote reactive oxygen species (ROS) formation in the form of singlet oxygen and DNA damage of Candida albicans. Surprisingly, CUR-mediated PDT but also light alone caused significantly longer comet tails, an indication of DNA damage of C. albicans when compared with the negative control. The intracellular ROS production was also significantly higher for the group treated only with light. However, PDT compared to blue light alone significantly slowed DNA repair. Comet tails decreased during 30 min visualized as a 90% reduction in length in the absence of light for cells treated with light alone, while comet tails of cells treated with PDT only diminished in size about 45%. These results indicate that complex mechanisms may result in PDT in a way that should be considered when choosing the photosensitive compound and other aspects of the treatment design.
Collapse
Affiliation(s)
- Juliana Cabrini Carmello
- Department of Dental Materials and Prosthodontics, Araraquara Dental School, São Paulo State University-UNESP-Rua Humaitá, nº 1680-CEP: 14801-903, Araraquara, SP, Brazil
| | - Ana Cláudia Pavarina
- Department of Dental Materials and Prosthodontics, Araraquara Dental School, São Paulo State University-UNESP-Rua Humaitá, nº 1680-CEP: 14801-903, Araraquara, SP, Brazil
| | - Rui Oliveira
- Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Björn Johansson
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
6
|
Staneva D, Peycheva E, Georgieva M, Efremov T, Miloshev G. Application of comet assay for the assessment of DNA damage caused by chemical genotoxins in the dairy yeast Kluyveromyces lactis. Antonie van Leeuwenhoek 2012; 103:143-52. [PMID: 22914887 DOI: 10.1007/s10482-012-9793-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 08/07/2012] [Indexed: 10/28/2022]
Abstract
Kluyveromyces lactis, also known as dairy yeast, has numerous applications in scientific research and practice. It has been approved as a GRAS (Generally Recognized As Safe) organism, a probiotic, a biotechnological producer of important enzymes at industrial scale and a bioremediator of waste water from the dairy industry. Despite these important practical applications the sensitivity of this organism to genotoxic substances has not yet been assessed. In order to evaluate the response of K. lactis cells to genotoxic agents we have applied several compounds with well-known cyto- and genotoxic activity. The method of comet assay (CA) widely used for the assessment of DNA damages is presented here with new special modifications appropriate for K. lactis cells. The comparison of the response of K. lactis to genotoxins with that of Saccharomyces cerevisiae showed that both yeasts, although considered close relatives, exhibit species-specific sensitivity toward the genotoxins examined.
Collapse
Affiliation(s)
- Dessislava Staneva
- Laboratory of Yeast Molecular Genetics, Institute of Molecular Biology Roumen Tsanev, Bulgarian Academy of Sciences, Acad. G. Bonchev str., 1113, Sofia, Bulgaria
| | | | | | | | | |
Collapse
|
7
|
Azevedo F, Marques F, Fokt H, Oliveira R, Johansson B. Measuring oxidative DNA damage and DNA repair using the yeast comet assay. Yeast 2010; 28:55-61. [DOI: 10.1002/yea.1820] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 07/27/2010] [Indexed: 11/07/2022] Open
|
8
|
Current awareness on yeast. Yeast 2009. [DOI: 10.1002/yea.1624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|