1
|
Rana V, Dani U, Shah A. Environmental toxicity assessment of engineered nanoparticles manifest histo-hemato alterations to fresh water fish. Nanotoxicology 2024; 18:645-660. [PMID: 39578698 DOI: 10.1080/17435390.2024.2423653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/16/2024] [Accepted: 10/25/2024] [Indexed: 11/24/2024]
Abstract
The present study rigorously examined the toxicological effects of nanoparticles (NPs), specifically nickel (Ni) and chromium oxide (Cr3O4) NPs, synthesized under controlled conditions and characterized. To evaluate their potential environmental impact exposed the freshwater fish Labeo rohita (L. rohita) to environmentally relevant concentrations of both NPs within a controlled laboratory conditions. Vital organs, including gills and liver were subjected to histopathological analysis, revealing profound alterations in tissue architecture that were distinctly correlated with pathological damage. The lesions exhibited moderate to severe changes that are further correlated with the semi-quantitative mean alteration value (MAV). Furthermore, conducted a quantitative assessment of tissue-specific morphological changes. Notably, there was a significant reduction in critical hematological changes, including red blood cell (RBC) and white blood cell (WBC) counts, hemoglobin concentrations and other parameters. All of which exhibited significant fluctuations in relation to increasing NPs concentrations. These findings underscore the critical necessity for continued investigation into the ecological risks associated with these nanoparticles.
Collapse
Affiliation(s)
- Vaishnavi Rana
- Department of Zoology, B. P. Baria Science Institute, Navsari, Gujarat, India
| | - Unnati Dani
- Department of Zoology, B. P. Baria Science Institute, Navsari, Gujarat, India
| | - Alkesh Shah
- Department of Zoology, B. P. Baria Science Institute, Navsari, Gujarat, India
| |
Collapse
|
2
|
Wu JX, Lau ATY, Xu YM. Indoor Secondary Pollutants Cannot Be Ignored: Third-Hand Smoke. TOXICS 2022; 10:363. [PMID: 35878269 PMCID: PMC9316611 DOI: 10.3390/toxics10070363] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/17/2022] [Accepted: 06/24/2022] [Indexed: 02/05/2023]
Abstract
Smoking has been recognized by the World Health Organization (WHO) as the fifth highest threat to humanity. Smoking, a leading disease promoter, is a major risk factor for non-communicable diseases (NCDs) such as cancer, cardiovascular disease, diabetes, and chronic respiratory diseases. NCDs account for 63% of all deaths worldwide. Passive smoking is also a health risk. Globally, more than a third of all people are regularly exposed to harmful smoke. Air pollution is a common global problem in which pollutants emitted into the atmosphere undergo a series of physical or chemical reactions to produce various oxidation products, which are often referred to as secondary pollutants. Secondary pollutants include ozone (O3), sulfur trioxide (SO3), nitrogen dioxide (NO2), and respirable particulate matter (PM). It is worth mentioning that third-hand smoke (THS), formed by the reaction of nicotine with second-hand smoke (SHS) caused by indoor O3 or nitrous acid (HONO), is a major indoor secondary pollutant that cannot be ignored. As a form of indoor air pollution that is relatively difficult to avoid, THS exists in any corner of the environment where smokers live. In this paper, we summarize the important research progress on the main components, detection, and toxicity of THS and look forward to future research directions. Scientific understanding of THS and its hazards will facilitate smoking bans in indoor and public places and raise public concern for how to prevent and remove THS.
Collapse
Affiliation(s)
- Jia-Xun Wu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | | | - Yan-Ming Xu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
3
|
Saleh SAK, Adly HM, Aljahdali IA, Khafagy AA. Correlation of Occupational Exposure to Carcinogenic Polycyclic Aromatic Hydrocarbons (cPAHs) and Blood Levels of p53 and p21 Protiens. Biomolecules 2022; 12:biom12020260. [PMID: 35204761 PMCID: PMC8961663 DOI: 10.3390/biom12020260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/01/2022] [Indexed: 01/27/2023] Open
Abstract
Carcinogenic polycyclic aromatic hydrocarbons (cPAHs) are considered the most serious cancer risk. This study was conducted to assess the effect of acute exposure to cPAHs on cancer biomarker proteins p53 and p21 in occupational workers during the hajj season in Makkah. One hundred five participants were recruited, including occupational workers and apparently healthy individuals; air samples were collected using personal sample monitors to identify the subjects’ exposure to cPAHs. Quantitative analyses of benzo(a)anthracene (BaA), benzo(b)fluoranthene (BbF), benzo(a)pyrene (BaP), dibenzo(a,h)fluronathene (DBA), indeno(1,2,3-c,d)pyrene (IND) and chyresene (CRY) were carried out using the GC/Mass technique. Serum p53 and p21 proteins were analyzed using ELISA. The ambient air samples collected by the occupationally exposed group were more highly polluted by cPAHs, (90.25 ± 14.1) ng/m3, than those of the unexposed control groups, (30.12 ± 5.56) ng/m3. The concentration of distributive cPAHs was markedly more elevated in the air samples of the exposed group than in those taken from the non-exposed group. The study results demonstrated significant links between short-term exposure to cPAHs and serum p53 and p21 levels. Serum p53 and p21 proteins potentially influence biomarkers when exposed to ambient air cPAHs.
Collapse
Affiliation(s)
- Saleh A. K. Saleh
- Biochemistry Department, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
- Oncology Diagnostic Unit, Faculty of Medicine, Ain Shams University, Cairo 11435, Egypt
| | - Heba M. Adly
- Community Medicine and Pilgrims Healthcare Department, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (I.A.A.); (A.A.K.)
- Correspondence:
| | - Imad A. Aljahdali
- Community Medicine and Pilgrims Healthcare Department, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (I.A.A.); (A.A.K.)
| | - Abdullah A. Khafagy
- Community Medicine and Pilgrims Healthcare Department, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (I.A.A.); (A.A.K.)
| |
Collapse
|
4
|
Ge J, Hao R, Rong X, Dou QP, Tan X, Li G, Li F, Li D. Secoisolariciresinol diglucoside mitigates benzo[a]pyrene-induced liver and kidney toxicity in mice via miR-101a/MKP-1-mediated p38 and ERK pathway. Food Chem Toxicol 2021; 159:112733. [PMID: 34856318 DOI: 10.1016/j.fct.2021.112733] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/16/2021] [Accepted: 11/28/2021] [Indexed: 02/09/2023]
Abstract
Benzo[a]pyrene (BaP) can cause hepatorenal toxicity. Secoisolariciresinol diglucoside (SDG), a polyphenolic compound present in flaxseed, has shown a variety of biological activities including antioxidant, anti-inflammatory, anti-apoptotic effects. This study aimed to investigate the protective effects and working mechanisms of SDG against BaP-induced hepatorenal injury. Forty male mice were administrated daily (via gastric gavage; 4 weeks) with 0.9% saline (control), BaP (75 mg/kg body weight (b.w.)), SDG (100 mg/kg b.w.), SDG (100 mg/kg b.w.)+BaP (75 mg/kg b.w.). Results showed that the mice treated with SDG + BaP had significantly (P < 0.05) higher body weight, lower organ-to-body weight ratio, alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP) activities, and less levels of serum creatinine (CRE) and blood urea nitrogen (BUN) than those treated with BaP alone. SDG administration alleviated BaP-induced oxidative damages, inflammation and apoptosis. Furthermore, it significantly (P < 0.05) downregulated phosphor-p38 (p-p38) and phosphor-extracellular regulated protein kinases (p-ERK) levels, upregulated mitogen-activated protein kinase phosphatase-1 (MKP-1) level, and suppressed miR-101a expression compared with BaP alone group. Taken together, these results showed for the first time that SDG has protective effects against BaP-induced liver and kidney toxicity in mice through regulating oxidative stress, inflammation and apoptosis via miR-101a/MKP-1-mediated p38 and ERK pathway.
Collapse
Affiliation(s)
- Junlin Ge
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Rili Hao
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Xue Rong
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Q Ping Dou
- Departments of Oncology, Pharmacology & Pathology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI, 48201, USA
| | - Xintong Tan
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Guannan Li
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Feng Li
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Taian, 271018, China.
| | - Dapeng Li
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
5
|
Cheng T, Chaousis S, Kodagoda Gamage SM, Lam AKY, Gopalan V. Polycyclic Aromatic Hydrocarbons Detected in Processed Meats Cause Genetic Changes in Colorectal Cancers. Int J Mol Sci 2021; 22:10959. [PMID: 34681617 PMCID: PMC8537007 DOI: 10.3390/ijms222010959] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/03/2021] [Accepted: 10/06/2021] [Indexed: 12/12/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are commonly ingested via meat and are produced from high-temperature cooking of meat. Some of these PAHs have potential roles in carcinogenesis of colorectal cancer (CRC). We aimed to investigate PAH concentrations in eight types of commonly consumed ready-to-eat meat samples and their potential effects on gene expressions related to CRC. Extraction and clean-up of meat samples were performed using QuEChERS method, and PAHs were detected using GC-MS. Nine different PAHs were found in meat samples. Interestingly, roast turkey contained the highest total PAH content, followed by salami meat. Hams of varying levels of smokedness showed a proportional increase of phenanthrene (PHEN), anthracene (ANTH), and fluorene (FLU). Triple-smoked ham samples showed significantly higher levels of these PAHs compared to single-smoked ham. These three PAHs plus benzo[a]pyrene (B[a]P), being detected in three meat samples, were chosen as treatments to investigate in vitro gene expression changes in human colon cells. After PAH treatment, total RNA was extracted and rtPCR was performed, investigating gene expression related to CRC. B[a]P decreased mRNA expression of TP53. In addition, at high concentrations, B[a]P significantly increased KRAS expression. Treatments with 1 µM PHEN, 25 µM, and 10 µM FLU significantly increased KRAS mRNA expression in vitro, implying the potential basis for PAH-induced colorectal carcinogenesis. Opposingly, the ANTH treatment led to increased TP53 and APC expression and decreased KRAS expression, suggesting an anti-carcinogenic effect. To conclude, PAHs are common in ready-to-eat meat samples and are capable of significantly modifying the expression of key genes related to CRC.
Collapse
Affiliation(s)
- Tracie Cheng
- Cancer Molecular Pathology, School of Medicine & Dentistry, Griffith University, Gold Coast 4222, Australia; (T.C.); (S.C.); (S.M.K.G.)
| | - Stephanie Chaousis
- Cancer Molecular Pathology, School of Medicine & Dentistry, Griffith University, Gold Coast 4222, Australia; (T.C.); (S.C.); (S.M.K.G.)
| | - Sujani Madhurika Kodagoda Gamage
- Cancer Molecular Pathology, School of Medicine & Dentistry, Griffith University, Gold Coast 4222, Australia; (T.C.); (S.C.); (S.M.K.G.)
- Department of Anatomy, Faculty of Medicine, University of Peradeniya, Kandy 20404, Sri Lanka
| | - Alfred King-yin Lam
- Cancer Molecular Pathology, School of Medicine & Dentistry, Griffith University, Gold Coast 4222, Australia; (T.C.); (S.C.); (S.M.K.G.)
| | - Vinod Gopalan
- Cancer Molecular Pathology, School of Medicine & Dentistry, Griffith University, Gold Coast 4222, Australia; (T.C.); (S.C.); (S.M.K.G.)
| |
Collapse
|
6
|
Health Benefits of Turmeric and Curcumin Against Food Contaminants. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1328:171-197. [DOI: 10.1007/978-3-030-73234-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
7
|
Barangi S, Mehri S, Moosavi Z, Hayesd AW, Reiter RJ, Cardinali DP, Karimi G. Melatonin inhibits Benzo(a)pyrene-Induced apoptosis through activation of the Mir-34a/Sirt1/autophagy pathway in mouse liver. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 196:110556. [PMID: 32247962 DOI: 10.1016/j.ecoenv.2020.110556] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/26/2020] [Accepted: 03/28/2020] [Indexed: 06/11/2023]
Abstract
Benzo(a)pyrene (BaP), an important environmental pollutant, is produced as the result of incomplete combustion of organic materials in many industries and food cooking process. It has been purposed that BaP induces hepatotoxicity through oxidative stress and apoptosis. Several studies have shown that melatonin can protect against chemical-induced apoptosis through autophagy pathway. In this study, we assessed the modulating effect of melatonin, a well-known antioxidant, on BaP-induced hepatotoxicity through induction of autophagy. Thirty male mice were treated daily for 28 consecutive days. BaP (75 mg/kg; oral gavage) and melatonin (10 and 20 mg/kg, i.p.) were administered to mice. The liver histopathology and the levels of apoptosis and autophagy proteins as well as the expression of miR-34a were determined. The BaP exposure induced severe liver histological injury and markedly enhanced AST, ALT and MDA level. Also, apoptosis proteins and hepatic miR-34a expression increased. However, the level of Sirt1 and autophagy markers such as LC3 II/I ratio and Beclin-1 reduced. The co-administration of melatonin reversed all changes caused by BaP. In summary, melatonin appears to be effective in BaP-induced hepatotoxicity maybe through the miR-34a/Sirt1/autophagy molecular pathway.
Collapse
Affiliation(s)
- Samira Barangi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soghra Mehri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Moosavi
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - A Wallace Hayesd
- University of South Florida, Tampa, FL, USA; Michigan State University, East Lansing, MI, USA
| | - Russel J Reiter
- University of Texas, Health Science Center at San Antonio, Department of Cellular and Structural Biology, USA
| | - Daniel P Cardinali
- Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, Aires, Argentina
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Das DN, Naik PP, Mukhopadhyay S, Panda PK, Sinha N, Meher BR, Bhutia SK. Elimination of dysfunctional mitochondria through mitophagy suppresses benzo[a]pyrene-induced apoptosis. Free Radic Biol Med 2017; 112:452-463. [PMID: 28843778 DOI: 10.1016/j.freeradbiomed.2017.08.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 08/20/2017] [Accepted: 08/22/2017] [Indexed: 01/10/2023]
Abstract
Mitophagy, a special type of autophagy, plays an important role in the mitochondria quality control and cellular homeostasis. In this study, we examined the molecular mechanism of mitophagy induction with benzo[a]pyrene (B[a]P), a ubiquitous polycyclic aromatic hydrocarbon, which acts as a prosurvival response against apoptotic cell death. Our study showed that B[a]P displayed higher cytotoxicity in autophagy-deficient HaCaT cells as compared to control. Further, we showed that B[a]P triggered the Beclin-1-dependent autophagy through the mammalian target of rapamycin (mTOR)/AMP-activated protein kinase (AMPK) pathway. Moreover, our study indicated that the B[a]P-induced autophagy was initiated through the activation of cytochrome P450 1B1 (CYP1B1) and the aryl hydrocarbon receptor (AhR) in HaCaT cells. Intriguingly, the B[a]P-induced Beclin-1-mediated mitophagy was suppressed in CYP1B1 and AhR knockdown HaCaT cells, indicating a crucial role of B[a]P activation in the mitophagy induction to regulate cell death. B[a]P was shown to increase the mitochondrial dysfunction and decrease the mitochondrial membrane potential, resulting in depletion of ATP level along with the inhibition of the oxygen consumption rate in HaCaT cells. Importantly, the supplementation of methyl pyruvate compensated for the B[a]P-induced drop in the ATP level and mitigated the reactive oxygen species burden and autophagy. Mechanistically, B[a]P inhibited the manganese superoxide dismutase (MnSOD) activity and we found that the activated mitochondrial CYP1B1 interacted with MnSOD, inflicting mitophagy to protect from B[a]P-induced apoptosis. In summary, our study reveals mitophagy induction as a cellular protection mechanism against B[a]P-triggered toxicity and carcinogenesis.
Collapse
Affiliation(s)
- Durgesh Nandini Das
- Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Prajna Paramita Naik
- Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Subhadip Mukhopadhyay
- Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Prashanta Kumar Panda
- Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Niharika Sinha
- Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Biswa Ranjan Meher
- Centre for Life Sciences, Central University of Jharkhand, Brambe, Ranchi 835205, Jharkhand, India
| | - Sujit K Bhutia
- Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India.
| |
Collapse
|
9
|
Bolden AL, Rochester JR, Schultz K, Kwiatkowski CF. Polycyclic aromatic hydrocarbons and female reproductive health: A scoping review. Reprod Toxicol 2017; 73:61-74. [PMID: 28739294 DOI: 10.1016/j.reprotox.2017.07.012] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 07/18/2017] [Accepted: 07/20/2017] [Indexed: 12/14/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a class of common persistent environmental pollutants found in water, air, soil, and plants and can be released by natural sources. However, the majority of atmospheric PAHs are from vehicular emissions, coal-burning plants, and the production and use of petroleum-derived substances. Exposure to PAHs has been implicated in cancer and other diseases, including reproductive disorders. This scoping review is a preliminary step that explores the utility and feasibility of completing a systematic review evaluating the effect of PAHs on female reproduction. We performed literature searches in PubMed, Web of Science, and Scopus, then screened, identified, and categorized relevant studies. Our results identified fertility and pregnancy/fetal viability as outcomes with sufficient research for systematic review. In addition to presenting the relevant studies, the review identifies data gaps, and provides the groundwork to develop the most appropriate research questions for systematic review.
Collapse
Affiliation(s)
- Ashley L Bolden
- The Endocrine Disruption Exchange (TEDX), www.TEDX.org., Eckert, CO, United States.
| | - Johanna R Rochester
- The Endocrine Disruption Exchange (TEDX), www.TEDX.org., Eckert, CO, United States
| | - Kim Schultz
- The Endocrine Disruption Exchange (TEDX), www.TEDX.org., Eckert, CO, United States
| | - Carol F Kwiatkowski
- The Endocrine Disruption Exchange (TEDX), www.TEDX.org., Eckert, CO, United States; Department of Integrative Physiology, University of Colorado, Boulder, CO, United States
| |
Collapse
|
10
|
da Silva GS, Fé LML, da Silva MDNP, Val VMFDAE. Ras oncogene and Hypoxia-inducible factor-1 alpha (hif-1α) expression in the Amazon fish Colossoma macropomum (Cuvier, 1818) exposed to benzo[a]pyrene. Genet Mol Biol 2017; 40:491-501. [PMID: 28486571 PMCID: PMC5488454 DOI: 10.1590/1678-4685-gmb-2016-0066] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 10/05/2016] [Indexed: 12/21/2022] Open
Abstract
Benzo[a]pyrene (B[a]P) is a petroleum derivative capable of inducing cancer in human and animals. In this work, under laboratory conditions, we analyzed the responses of Colossoma macropomum to B[a]P acute exposure through intraperitoneal injection of four different B[a]P concentrations (4, 8, 16 and 32 μmol/kg) or corn oil (control group). We analyzed expression of the ras oncogene and the Hypoxia-inducible factor-1 alpha (hif-1α) gene using quantitative real-time PCR. Additionally, liver histopathological changes and genotoxic effects were evaluated through the comet assay. Ras oncogene was overexpressed in fish exposed to 4, 8 of 16 μmol/kg B[a]P, showing 4.96, 7.10 and 6.78-fold increases, respectively. Overexpression also occurred in hif-1α in fish injected with 4 and 8 μmol/kg B[a]P, showing 8.82 and 4.64-fold increases, respectively. Histopathological damage in fish liver was classified as irreparable in fish exposed to 8, 16 and 32 μmol/kg μM B[a]P. The genotoxic damage increased in fish injected with 8 and 16 μmol/kg in comparison with the control group. Acute exposure of B[a]P was capable to interrupt the expression of ras oncogene and hif-1α, and increase DNA breaks due to tissue damage.
Collapse
Affiliation(s)
- Grazyelle Sebrenski da Silva
- Laboratory of Ecophysiology and Molecular Evolution (LEEM), Instituto
Nacional de Pesquisas da Amazônia (INPA), Manaus, AM, Brazil
- Department of Morphology of the Institute of Biological Sciences
(DM-ICB) Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
| | - Luciana Mara Lopes Fé
- Laboratory of Ecophysiology and Molecular Evolution (LEEM), Instituto
Nacional de Pesquisas da Amazônia (INPA), Manaus, AM, Brazil
| | - Maria de Nazaré Paula da Silva
- Laboratory of Ecophysiology and Molecular Evolution (LEEM), Instituto
Nacional de Pesquisas da Amazônia (INPA), Manaus, AM, Brazil
| | | |
Collapse
|
11
|
Das DN, Naik PP, Nayak A, Panda PK, Mukhopadhyay S, Sinha N, Bhutia SK. Bacopa monnieri
-Induced Protective Autophagy Inhibits Benzo[a]pyrene-Mediated Apoptosis. Phytother Res 2016; 30:1794-1801. [DOI: 10.1002/ptr.5682] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 06/08/2016] [Accepted: 06/20/2016] [Indexed: 01/17/2023]
Affiliation(s)
- Durgesh Nandini Das
- Department of Life Science; National Institute of Technology; Rourkela India
| | | | - Aditi Nayak
- Department of Life Science; National Institute of Technology; Rourkela India
| | | | | | - Niharika Sinha
- Department of Life Science; National Institute of Technology; Rourkela India
| | - Sujit K Bhutia
- Department of Life Science; National Institute of Technology; Rourkela India
| |
Collapse
|
12
|
Gao M, Li Y, Ji X, Xue X, Chen L, Feng G, Zhang H, Wang H, Shah W, Hou Z, Kong Y. Disturbance of Bcl-2, Bax, Caspase-3, Ki-67 and C-myc expression in acute and subchronic exposure to benzo(a)pyrene in cervix. Acta Histochem 2016; 118:63-73. [PMID: 26709117 DOI: 10.1016/j.acthis.2015.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 10/31/2015] [Accepted: 11/02/2015] [Indexed: 12/18/2022]
Abstract
Epidemiological studies have demonstrated that cigarette smoking is an important cofactor or an independent risk factor for the development of cervical cancer. Benzo(a)pyrene (BaP) is one of the most potent tobacco smoke carcinogens in tobacco smoke. BaP induced DNA damage and over expression in p53 cervical tissue of mice as demonstrated in our previous study. Here we present the findings of exposure to BaP on the expression of Bcl-2, C-myc, Ki-67, Caspase-3 and Bax genes in mouse cervix. Acute intraperitoneal administration of BaP (12.5, 25, 50, 100mg/kg body weight) to ICR female mice induced a significant increase in Bcl-2, C-myc, Ki-67 mRNA and protein level till 72h except in Bcl-2 at 24h with 12.5, 25, 50mg/kg as well as at 48h with 12.5mg/kg body weight post treatment. A significant increase was also seen in Caspase-3 and Bax mRNA and protein level with peak level at 24h and gradual decrease till 72h, however, the expression of caspase-3 increased while that of Bax decreased with increasing dose of Bap after 24h. In sub chronic intraperitoneal and oral gavage administration of BaP (2.5, 5, 10mg/kg body weight), similar significant increase was observed for all the examined genes as compared to the control and vehicle groups, however the expression of Bax decreased in a dose dependent manner. The findings of this study will help in further understanding the molecular mechanism of BaP induced carcinogenesis of cervical cancer.
Collapse
|
13
|
He J, Ji X, Li Y, Xue X, Feng G, Zhang H, Wang H, Gao M. Subchronic exposure of benzo(a)pyrene interferes with the expression of Bcl-2, Ki-67, C-myc and p53, Bax, Caspase-3 in sub-regions of cerebral cortex and hippocampus. ACTA ACUST UNITED AC 2016; 68:149-56. [DOI: 10.1016/j.etp.2015.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/05/2015] [Accepted: 11/25/2015] [Indexed: 12/23/2022]
|
14
|
Gao M, Li Y, Xue X, Long J, Chen L, Shah W, Kong Y. Impact of AhR, CYP1A1 and GSTM1 genetic polymorphisms on TP53 R273G mutations in individuals exposed to polycyclic aromatic hydrocarbons. Asian Pac J Cancer Prev 2015; 15:2699-705. [PMID: 24761888 DOI: 10.7314/apjcp.2014.15.6.2699] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
This study was to undertaken to investigate the impacts of AhR, CYP1A1, GSTM1 genetic polymorphisms on the R273G mutation in exon 8 of the tumor suppressor p53 gene (TP53) among polycyclic aromatic hydrocarbons (PAHs) exposed to coke-oven workers. One hundred thirteen workers exposed to PAH and 82 control workers were recruited. We genotyped for polymorphisms in the AhR, CYP1A1, GSTM1, and TP53 R273G mutation in blood by PCR methods, and determined the levels of 1-hydroxypyrene as PAH exposure marker in urine using the high pressure liquid chromatography assay. We found that the distribution of alcohol users and the urinary excretion of 1-OHP in the exposed workers were significantly higher than that of the control workers (p=0.004, p<0.001, respectively). Significant differences were observed in the p53 genotype distributions of smoking subjects (p=0.01, 95%CI: 1.23-6.01) and PAH exposure (p=0.008, 95%CI: 1.24-4.48), respectively. Further, significant differences were observed in the p53 exon 8 mutations for the genetic polymorphisms of Lys/Arg for AhR (p=0.02, 95%CI: 0.70-15.86), Val/Val for CYP1A1 (p=0.04, 95%CI: 0.98-19.09) and null for GSTM1 (p=0.02, 95%CI: 1.19-6.26), respectively. Our findings indicated that polymorphisms of PAH metabolic genes, such as AhR, CYP1A1, GSTM1 polymorphisms may interact with p53 genetic variants and may contribute to PAH related cancers.
Collapse
Affiliation(s)
- Meili Gao
- Institute of Mitochondrial Biology and Medicine, Department of Biological Science and Engineering, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China E-mail :
| | | | | | | | | | | | | |
Collapse
|
15
|
Lymphocyte oxidative stress/genotoxic effects are related to serum IgG and IgA levels in coke oven workers. ScientificWorldJournal 2014; 2014:801346. [PMID: 25136686 PMCID: PMC4129152 DOI: 10.1155/2014/801346] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 06/07/2014] [Accepted: 06/09/2014] [Indexed: 11/24/2022] Open
Abstract
We investigated oxidative stress/genotoxic effects levels, immunoglobulin levels, polycyclic aromatic hydrocarbons (PAHs) levels exposed in 126 coke oven workers and in 78 control subjects, and evaluated the association between oxidative stress/genotoxic effects levels and immunoglobulin levels. Significant differences were observed in biomarkers, including 1-hydroxypyrene levels, employment time, percentages of alcohol drinkers, MDA, 8-OHdG levels, CTL levels and CTM, MN, CA frequency, and IgG, IgA levels between the control and exposed groups. Slightly higher 1-OHP levels in smoking users were observed. For the dose-response relationship of IgG, IgA, IgM, and IgE by 1-OHP, each one percentage increase in urinary 1-OHP generates a 0.109%, 0.472%, 0.051%, and 0.067% decrease in control group and generates a 0.312%, 0.538%, 0.062%, and 0.071% decrease in exposed group, respectively. Except for age, alcohol and smoking status, IgM, and IgE, a significant correlation in urinary 1-OHP and other biomarkers in the total population was observed. Additionally, a significant negative correlation in genotoxic/oxidative damage biomarkers of MDA, 8-OH-dG, CTL levels, and immunoglobins of IgG and IgA levels, especially in coke oven workers, was found. These data suggest that oxidative stress/DNA damage induced by PAHs may play a role in toxic responses for PAHs in immunological functions.
Collapse
|
16
|
Prediction and validation of apoptosis through cytochrome P450 activation by benzo[a]pyrene. Chem Biol Interact 2014; 208:8-17. [PMID: 24239969 DOI: 10.1016/j.cbi.2013.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 09/14/2013] [Accepted: 11/05/2013] [Indexed: 02/07/2023]
|
17
|
Effects of side-stream tobacco smoke and smoke extract on glutathione- and oxidative DNA damage repair-deficient mice and blood cells. Mutat Res 2013; 749:58-65. [PMID: 23748015 DOI: 10.1016/j.mrfmmm.2013.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 04/21/2013] [Accepted: 05/28/2013] [Indexed: 02/07/2023]
Abstract
Cigarette smoke causes direct oxidative DNA damage as well as indirect damage through inflammation. Epidemiological studies show a strong relationship between secondhand smoke and cancer; however, the mechanisms of secondhand smoke-induced cancer are not well understood. Animal models with either (i) deficient oxidative DNA damage repair, or (ii) a decreased capacity to combat oxidative stress may help determine the pathways important in mitigating damage caused by smoke. In this study, we used mice lacking Ogg1 and Myh, both of which are involved in base excision repair by removing oxidatively damaged DNA bases. Gclm-deficient mice, which have decreased levels of glutathione (GSH), were used to look at the role of smoke-induced oxidative damage. Ex vivo experiments show significantly elevated levels of DNA single-strand breaks and chromosomal aberrations in peripheral blood lymphocytes from Ogg1(-/-)Myh(-/-) double knockout mice compared to wild type (WT) mice after 24h of exposure to cigarette smoke extract (CSE). The average γH2AX foci per cell was significantly elevated 3h after exposure to CSE in cells from Ogg1(-/-)Myh(-/-) double knockout mice compared to wildtype mice. In vivo we found that all mice had increased markers of DNA damage after exposure to side-stream tobacco smoke (SSTS). Ogg1(-/-)Myh(-/-) and Gclm(-/-) mice had altered levels of peripheral blood glutathione after SSTS exposure whereas wild type mice did not. This may be due to differential regulation of glutathione synthesis in the lung. We also found that Ogg1(-/-)Myh(-/-) mice had a decreased lifespan after oral gavage with benzo[a]pyrene compared to wildtype mice and sham-exposed Ogg1(-/-)Myh(-/-) mice. Our results are important in investigating the roles of oxidative stress and oxidative DNA damage repair in cigarette smoke-induced cancers and characterizing the role of genetic polymorphisms in smoke-related disease susceptibility.
Collapse
|
18
|
Roshandel G, Semnani S, Malekzadeh R, Dawsey SM. Polycyclic aromatic hydrocarbons and esophageal squamous cell carcinoma. ARCHIVES OF IRANIAN MEDICINE 2013; 15:713-22. [PMID: 23102250 DOI: 0121511/aim.0013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Esophageal cancer (EC) is the 8th most common cancer and the 6th most frequent cause of cancer mortality worldwide. Esophageal squamous cell carcinoma (ESCC) is the most common type of EC. Exposure to polycyclic aromatic hydrocarbons (PAHs) has been suggested as a risk factor for developing ESCC. In this paper we will review different aspects of the relationship between PAH exposure and ESCC. PAHs are a group of compounds that are formed by incomplete combustion of organic matter. Studies in humans have shown an association between PAH exposure and development of ESCC in many populations. The results of a recent case-control study in a high risk population in northeastern Iran showed a dramatic dose-response relationship between PAH content in non-tumor esophageal tissue (the target tissue for esophageal carcinogenesis) and ESCC case status, consistent with a causal role for PAH exposure in the pathogenesis of ESCC. Identifying the main sources of exposure to PAHs may be the first and most important step in designing appropriate PAH-reduction interventions for controlling ESCC, especially in high risk areas. Coal smoke and drinking mate have been suggested as important modifiable sources of PAH exposure in China and Brazil, respectively. But the primary source of exposure to PAHs in other high risk areas for ESCC, such as northeastern Iran, has not yet been identified. Thus, environmental studies to determining important sources of PAH exposure should be considered as a high priority in future research projects in these areas.
Collapse
Affiliation(s)
- Gholamreza Roshandel
- Digestive Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | |
Collapse
|