1
|
Radović Jakovljević M, Grujičić D, Stanković M, Milošević-Djordjević O. Artemisia vulgaris L., Artemisia alba Turra and their constituents reduce mitomycin C-induced genomic instability in human peripheral blood lymphocytes in vitro. Drug Chem Toxicol 2024; 47:156-165. [PMID: 36476306 DOI: 10.1080/01480545.2022.2154358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/13/2022]
Abstract
This study aimed to evaluate the effect of aqueous and acetone extracts from Artemisia vulgaris L. (AV) and Artemisia alba Turra (AA), and two major polyphenols compounds (3,5-dihydroxybenzoic acid and quercetin-3-O-glucopyranoside) presented in both extracts of the plants against mitomycin C (MMC)-induced genomic instability. Genomic instability was measured using cytokinesis block micronucleus (MN) assay in human peripheral blood lymphocytes (PBLs) in vitro by analyzing two biomarkers - MN and nuclear division index (NDI). Extracts were tested in a concentration-dependent manner (10-250 µg/mL), while 3,5-dihydroxybenzoic acid and quercetin-3-O-glucopyranoside were tested in three different concentrations, in combination with 0.5 µg/mL of MMC. Aqueous and acetone extracts obtained from both plants significantly reduced MMC-induced MN frequency in PBLs, compared to positive control cells (p < 0.05). Extracts from AV did not affect NDI, whereas the concentrations of 10-100 μg/mL of aqueous and acetone AA extracts significantly elevated MMC-decreased NDI values in comparison to positive control cells (p < 0.05). Combined treatment of 3,5-dihydroxybenzoic acid and MMC showed a significant reduction of MMC-induced MN frequency, while quercetin-3-O-glucopyranoside increased MN frequency compared to positive control cells (p < 0.05). Both compounds decreased NDI values but only at the highest tested concentration of quercetin-3-O-glucopyranoside it was of greater significance. In conclusion, all extracts from AV and AA and 3,5-dihydroxybenzoic acid showed protective effect, whereby aqueous AA demonstrated the highest protective effect on MMC- induced genomic instability, while quercetin-3-O-glucopyranoside showed co-mutagen effect.
Collapse
Affiliation(s)
| | - Darko Grujičić
- Faculty of Science, Department of Biology and Ecology, University of Kragujevac, Kragujevac, Serbia
| | - Milan Stanković
- Faculty of Science, Department of Biology and Ecology, University of Kragujevac, Kragujevac, Serbia
| | - Olivera Milošević-Djordjević
- Faculty of Science, Department of Biology and Ecology, University of Kragujevac, Kragujevac, Serbia
- Faculty of Medical Sciences, Department of Genetics, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
2
|
Sy B, Krisa S, Richard T, Courtois A. Resveratrol, ε-Viniferin, and Vitisin B from Vine: Comparison of Their In Vitro Antioxidant Activities and Study of Their Interactions. Molecules 2023; 28:7521. [PMID: 38005243 PMCID: PMC10672907 DOI: 10.3390/molecules28227521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
The control of oxidative stress with natural active substances could limit the development of numerous pathologies. Our objective was to study the antiradical effects of resveratrol (RSV), ε-viniferin (VNF), and vitisin B (VB) alone or in combination, and those of a standardized stilbene-enriched vine extract (SSVE). In the DPPH-, FRAP-, and NO-scavenging assays, RSV presented the highest activity with an IC50 of 81.92 ± 9.17, 13.36 ± 0.91, and 200.68 ± 15.40 µM, respectively. All binary combinations resulted in additive interactions in the DPPH- and NO-scavenging assays. In the FRAP assay, a synergic interaction for RSV + VNF, an additive for VNF + VB, and an antagonistic for RSV + VB were observed. The ternary combination of RSV + VNF + VB elicited an additive interaction in the DPPH assay and a synergic interaction in the FRAP- and NO-scavenging assays. There was no significant difference between the antioxidant activity of the SSVE and that of the combination of RSV + VNF. In conclusion, RSV presented the highest effects, followed by VNF and VB. The interactions revealed additive or synergistic effects, depending on the combination of the stilbenes and assay.
Collapse
Affiliation(s)
- Biranty Sy
- Université de Bordeaux, Institute of Vine and Wine Sciences, INRAE, Bordeaux INP, Bordeaux Sciences Agro, OENO, UMR 1366, ISVV, 33140 Villenave d’Ornon, France; (B.S.); (S.K.)
| | - Stéphanie Krisa
- Université de Bordeaux, Institute of Vine and Wine Sciences, INRAE, Bordeaux INP, Bordeaux Sciences Agro, OENO, UMR 1366, ISVV, 33140 Villenave d’Ornon, France; (B.S.); (S.K.)
| | - Tristan Richard
- Université de Bordeaux, Institute of Vine and Wine Sciences, INRAE, Bordeaux INP, Bordeaux Sciences Agro, OENO, UMR 1366, ISVV, 33140 Villenave d’Ornon, France; (B.S.); (S.K.)
| | - Arnaud Courtois
- Université de Bordeaux, Institute of Vine and Wine Sciences, INRAE, Bordeaux INP, Bordeaux Sciences Agro, OENO, UMR 1366, ISVV, 33140 Villenave d’Ornon, France; (B.S.); (S.K.)
- CHU de Bordeaux, Centre Antipoison de Nouvelle Aquitaine, Emergency Building, 33076 Bordeaux, France
| |
Collapse
|
3
|
Tagorti G, Yalçın B, Güneş M, Kurşun AY, Kaya B. Genotoxic and genoprotective effects of phytoestrogens: a systematic review. Drug Chem Toxicol 2023; 46:1242-1254. [PMID: 36606318 DOI: 10.1080/01480545.2022.2146134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/17/2022] [Accepted: 09/11/2022] [Indexed: 01/07/2023]
Abstract
Phytoestrogens are xenoestrogens found in plants with a myriad of health benefits. However, various studies reported the genotoxic effects of these substances. Thus, we reviewed in vitro and in vivo studies published in PubMed, Scopus, and Web of Science to evaluate the genotoxic and the genoprotective potential of phytoestrogens. Only studies written in English and intended to study commercially available phytoestrogens were included. The screening was performed manually. Moreover, the underlying mechanism of action of phytoestrogens was described. Around half of those studies (43%) reported genoprotective results. However, several studies revealed positive results for genotoxicity with specific model organisms and with dose/concentration dependence. The assessment of the selected articles showed substantial differences in the used concentrations and a biphasic response was recorded in some phytoestrogens. As far as we know, this is the first study to assess the genotoxic and genoprotective effects of phytoestrogens systematically.
Collapse
Affiliation(s)
- Ghada Tagorti
- Department of Biology, Akdeniz University, Antalya, Turkey
| | - Burçin Yalçın
- Department of Biology, Akdeniz University, Antalya, Turkey
| | - Merve Güneş
- Department of Biology, Akdeniz University, Antalya, Turkey
| | | | - Bülent Kaya
- Department of Biology, Akdeniz University, Antalya, Turkey
| |
Collapse
|
4
|
Dormousoglou M, Boti V, Hela D, Vlastos D, Antonopoulou M, Chondrogiannis C, Petropoulou Y, Dailianis S. Beneficial properties of Drimia numidica leaf methanolic extract against the cytogenotoxic effects of mitomycin C on human lymphocytes. Food Chem Toxicol 2023; 173:113626. [PMID: 36682415 DOI: 10.1016/j.fct.2023.113626] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
This study investigated the phytochemical profile of Drimia numidica leaf methanolic extract, as well as its cyto-genotoxic and cyto/genoprotective potential against mitomycin C (MMC) mediated effects on healthy human lymphocytes. Photosynthetic pigments, trace elements, and secondary metabolites were estimated and/or identified in methanolic extract of mature leaves, and the latter was further used for assessing its in vitro biological effects on MMC-free and/or MMC-treated human lymphocytes (at low, non-toxic concentrations of 0.001 and 0.01% v/v). The results showed that D. numidica leaf methanolic extract, being rich in carotenoids, phenolics, flavonoids, organic acids and bufadienolides, could be protective against MMC mediated cyto/genotoxic potential in healthy human lymphocytes. Biomolecules possessing antioxidant and antitumor potential, such as beta-carotene and lutein among others, chlorogenic acid, caffeic acid and their derivatives, minerals such as Si, as well as apigenin- and luteolin-derived glycosides, either individual or in a mixture, could be beneficial rather than harmful, at least at the extract concentrations tested. Although further in vitro and in vivo studies are still needed for elucidating the beneficial (individual and/or additive/synergistic) role of those compounds, the results of the present study are quite promising, thus encouraging new challenges for the appropriate utilization of D. numidica leaf extract.
Collapse
Affiliation(s)
- Margarita Dormousoglou
- Department of Biology, School of Natural Sciences, University of Patras, GR-26500, Rio, Patras, Greece; Department of Sustainable Agriculture, University of Patras, GR-30100, Agrinio, Greece
| | - Vasiliki Boti
- Department of Chemistry, University of Ioannina, GR-45110, Ioannina, Greece; Institute of Environment and Sustainable Development, University Research Center of Ioannina (URCI), Ioannina, GR-45110, Greece; Unit of Environmental, Organic and Biochemical High-resolution Analysis-Orbitrap-LC-MS, University of Ioannina, Ioannina, GR-45110, Greece
| | - Dimitra Hela
- Department of Chemistry, University of Ioannina, GR-45110, Ioannina, Greece; Institute of Environment and Sustainable Development, University Research Center of Ioannina (URCI), Ioannina, GR-45110, Greece
| | - Dimitris Vlastos
- Department of Biology, School of Natural Sciences, University of Patras, GR-26500, Rio, Patras, Greece
| | - Maria Antonopoulou
- Department of Sustainable Agriculture, University of Patras, GR-30100, Agrinio, Greece
| | - Christos Chondrogiannis
- Department of Biology, School of Natural Sciences, University of Patras, GR-26500, Rio, Patras, Greece
| | - Yiola Petropoulou
- Department of Biology, School of Natural Sciences, University of Patras, GR-26500, Rio, Patras, Greece
| | - Stefanos Dailianis
- Department of Biology, School of Natural Sciences, University of Patras, GR-26500, Rio, Patras, Greece.
| |
Collapse
|
5
|
Mostafa H, Behrendt I, Meroño T, González-Domínguez R, Fasshauer M, Rudloff S, Andres-Lacueva C, Kuntz S. Plasma anthocyanins and their metabolites reduce in vitro migration of pancreatic cancer cells, PANC-1, in a FAK- and NF-kB dependent manner: Results from the ATTACH-study a randomized, controlled, crossover trial in healthy subjects. Biomed Pharmacother 2023; 158:114076. [PMID: 36516693 DOI: 10.1016/j.biopha.2022.114076] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/25/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022] Open
Abstract
Pancreatic cancer is primarily considered to be a metastatic disease with a low 5-year survival rate. We aimed to detect if plasma-isolated anthocyanins and their metabolites (PAMs) modulate pancreatic cancer cells migration and to describe molecular targets of PAMs in this process. Plasma metabolites were isolated by solid-phase extraction before and after a 28-days intervention trial involving 35 healthy subjects comparing effects of a daily anthocyanin-rich juice intake vs. placebo. Plasma extracts were used for migration and mechanistic in vitro studies as well as for metabolomic analysis. Pancreatic PANC-1 and AsPC-1 were used for migration studies in a Boyden chamber co-cultured with endothelial cells. Expression of adhesion molecules on cancer and endothelial cells were determined by flow cytometry and NF-kB (nuclear factor-kappa B) p65 and focal adhesion kinase activation were measured by immunoassays. UHPLC-MS/MS metabolomics was done in plasma and urine samples. Plasma extracts isolated after the intake of the anthocyanin-rich juice significantly reduced PANC-1 migration, but not AsPC-1 migration. In PANC-1, and to a lower extent in endothelial cells, plasma extracts after juice intake decreased the expression of ß1- and ß4-integrins and intercellular adhesion molecule-1. Pooled plasma from volunteers with the highest inhibition of PANC-1 migration (n = 10) induced a reduction of NF-kB-p65 and FAK-phosphorylation in cancer and in endothelial cells. Concerning metabolites, 14 were significantly altered by juice intervention and PANC-1 migration was inversely associated with the increase of o-coumaric acid and peonidin-3-galactoside. PAMs were associated with lower PANC-1 cell migration opening new strategies for metastatic pancreatic cancer treatment.
Collapse
Affiliation(s)
- Hamza Mostafa
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Innovation Network (XIA), Nutrition and Food Safety Research Institute (INSA), Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Inken Behrendt
- Department of Nutritional Science, Human Nutrition, Justus-Liebig-University, 35390 Giessen, Germany.
| | - Tomás Meroño
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Innovation Network (XIA), Nutrition and Food Safety Research Institute (INSA), Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid 28029, Spain.
| | - Raúl González-Domínguez
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Innovation Network (XIA), Nutrition and Food Safety Research Institute (INSA), Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Mathias Fasshauer
- Department of Nutritional Science, Human Nutrition, Justus-Liebig-University, 35390 Giessen, Germany
| | - Silvia Rudloff
- Department of Nutritional Science, Human Nutrition, Justus-Liebig-University, 35390 Giessen, Germany; Department of Nutritional Science and Department of Pediatrics, Justus-Liebig-University, 35392 Giessen, Germany
| | - Cristina Andres-Lacueva
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Innovation Network (XIA), Nutrition and Food Safety Research Institute (INSA), Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Sabine Kuntz
- Department of Nutritional Science, Human Nutrition, Justus-Liebig-University, 35390 Giessen, Germany
| |
Collapse
|
6
|
Huang C, Zhang B, Xu D. The effects of natural active substances in food on the toxicity of patulin. WORLD MYCOTOXIN J 2022. [DOI: 10.3920/wmj2022.2794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Patulin (PAT) is a mycotoxin, a secondary metabolite mainly produced by fungi of the genera Aspergillus, Byssochlamys, and Penicillium. Many studies have looked into the potential impacts of this mycotoxin due to its high risk. Researchers are currently doing a more in-depth investigation of and employing physical, chemical, and biological ways to remove PAT. However, existing technology cannot completely remove it, and the residual PAT will continue to pose a threat to human health. As a result, substances capable of reducing PAT toxicity need be discovered. According to previous studies, natural components in food could reduce the toxicity of PAT. This article will review the different types of active compounds and discus the detoxification processes, as well as give recommendations for decreasing the toxicity of PAT and future research directions.
Collapse
Affiliation(s)
- C. Huang
- College of Life Science and Engineering, Lanzhou University of Technology, No.287 Langongping Road, Lanzhou, Gansu 730050, China P.R
| | - B. Zhang
- College of Life Science and Engineering, Lanzhou University of Technology, No.287 Langongping Road, Lanzhou, Gansu 730050, China P.R
| | - D. Xu
- College of Life Science and Engineering, Lanzhou University of Technology, No.287 Langongping Road, Lanzhou, Gansu 730050, China P.R
| |
Collapse
|
7
|
Dormousoglou M, Efthimiou I, Antonopoulou M, Fetzer DL, Hamerski F, Corazza ML, Papadaki M, Santzouk S, Dailianis S, Vlastos D. Investigation of the Genotoxic, Antigenotoxic and Antioxidant Profile of Different Extracts from Equisetum arvense L. Antioxidants (Basel) 2022; 11:antiox11071393. [PMID: 35883882 PMCID: PMC9312020 DOI: 10.3390/antiox11071393] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 01/24/2023] Open
Abstract
The present study investigated the cyto-genotoxic and antigenotoxic effects of four different extracts of Equisetum arvense L. (common name: field horsetail) on human lymphocytes. Specifically, Soxhlet’s prepared extracts from E. arvense L., using different solvents (S1: methanol (MeOH)-, S2: ethanol (EtOH)-, S3: water-, and S4: ethanol/water (EtOH-W)-) were analyzed for (a) their total phenolic and flavonoid content (TPC and TFC, respectively), (b) their antioxidant activity (AA), via the DPPH, FRAP and ABTS assays, and (c) their cyto-genotoxic and/or protective efficiency against the mutagenic agent mitomycin C, via the Cytokinesis Block MicroNucleus assay. All extracts showed increased TPC, TFC, and AA values in almost all cases. S1, S3 and S4 demonstrated no cytotoxic potential, whereas S2 was cytotoxic only at the highest concentrations. Genotoxicity was not observed in the tested extracts. The highest antigenotoxic activity was observed for EtOH-W (S4) extract, which was found to be rich in flavonoids, flavonoid-O-glycosides, phytosterols, phenolic and fatty acids as well as in minerals and mainly in K, Ca, Mg, Si and P, as assessed by using various mass spectrometry techniques. Those findings confirm that E. arvense L. extracts could be valuable candidates for medicinal applications and pharmaceutical products, thus alleviating the effects of more conventional drugs.
Collapse
Affiliation(s)
- Margarita Dormousoglou
- Department of Environmental Engineering, University of Patras, Seferi 2, GR-30100 Agrinio, Greece; (M.D.); (I.E.); (M.A.); (M.P.)
| | - Ioanna Efthimiou
- Department of Environmental Engineering, University of Patras, Seferi 2, GR-30100 Agrinio, Greece; (M.D.); (I.E.); (M.A.); (M.P.)
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology, Biotechnology and Aquaculture, Anavyssos, GR-19013 Athens, Greece
| | - Maria Antonopoulou
- Department of Environmental Engineering, University of Patras, Seferi 2, GR-30100 Agrinio, Greece; (M.D.); (I.E.); (M.A.); (M.P.)
| | - Damian L. Fetzer
- Department of Chemical Engineering, Federal University of Paraná, Curitiba 81531-990, Brazil; (D.L.F.); (F.H.); (M.L.C.)
| | - Fabiane Hamerski
- Department of Chemical Engineering, Federal University of Paraná, Curitiba 81531-990, Brazil; (D.L.F.); (F.H.); (M.L.C.)
| | - Marcos L. Corazza
- Department of Chemical Engineering, Federal University of Paraná, Curitiba 81531-990, Brazil; (D.L.F.); (F.H.); (M.L.C.)
| | - Maria Papadaki
- Department of Environmental Engineering, University of Patras, Seferi 2, GR-30100 Agrinio, Greece; (M.D.); (I.E.); (M.A.); (M.P.)
| | - Samir Santzouk
- Santzouk Samir and Co. General Partnership, PANAX, Chrissostomou Smirnis 14, GR-30100 Agios Konstantinos, Greece;
| | | | - Dimitris Vlastos
- Department of Biology, University of Patras, GR-26500 Patras, Greece;
- Correspondence: ; Tel.: +30-2610969239
| |
Collapse
|
8
|
Antigenotoxic, Anti-photogenotoxic, and Antioxidant Properties of Polyscias filicifolia Shoots Cultivated In Vitro. Molecules 2020; 25:molecules25051090. [PMID: 32121158 PMCID: PMC7179227 DOI: 10.3390/molecules25051090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/17/2020] [Accepted: 02/22/2020] [Indexed: 11/16/2022] Open
Abstract
Traditional medicinal plants are an important source of active compounds with potential antimutagenic activity. Polyscias filicifolia Bailey (Araliaceae) is a South Asian traditional herb used as an adaptogenic and cardiac drug. Extracts of P. filicifolia contain a wide range of biologically active compounds like phenolic acids and triterpenoid saponins. In the present study. antigenotoxic potential of three naturally occurring phenolic acids and extracts of P. filicifolia growing in vitro with the addition of elicitors was evaluated against direct (4-nitroquinoline-N-oxide (4NQO) and mitomycin C (MMC)) and indirect mutagens (2-aminoanthracene (2AA)). The evaluation was made using a bacterial umu-test. Moreover, the ability to prevent photogenotoxicity induced by chlorpromazine (CPZ) under UVA irradiation was measured. The phytochemical profiling of examined extracts revealed the presence of numerous compounds with the prevelance of chlorogenic, caffeic, and ferulic acid derivatives; however, saponin fractions were also determined. The antioxidant potential of extracts strictly correlated with their composition. The tested extracts exhibited high antigenotoxic activity if the assay was performed with 2AA and metabolic activation. Moreover, the extracts slightly decreased the MMC-induced genotoxicity. However, an increase of the genotoxic effect was observed in the assay performed with 4NQO. In addition, photo-antigenotoxic activity was observed. In our study, phenolic acids exhibited lower activity than the extracts.
Collapse
|
9
|
Walker VE, Degner A, Carter EW, Nicklas JA, Walker DM, Tretyakova N, Albertini RJ. 1,3-Butadiene metabolite 1,2,3,4 diepoxybutane induces DNA adducts and micronuclei but not t(9;22) translocations in human cells. Chem Biol Interact 2019; 312:108797. [PMID: 31422076 DOI: 10.1016/j.cbi.2019.108797] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/26/2019] [Accepted: 08/14/2019] [Indexed: 11/26/2022]
Abstract
Epidemiological studies of 1,3-butadiene (BD) exposures have reported a possible association with chronic myelogenous leukemia (CML), which is defined by the presence of the t(9;22) translocation (Philadelphia chromosome) creating an oncogenic BCR-ABL fusion gene. Butadiene diepoxide (DEB), the most mutagenic of three epoxides resulting from BD, forms DNA-DNA crosslink adducts that can lead to DNA double-strand breaks (DSBs). Thus, a study was designed to determine if (±)-DEB exposure of HL60 cells, a promyelocytic leukemia cell line lacking the Philadelphia chromosome, can produce t(9;22) translocations. In HL60 cells exposed for 3 h to 0-10 μM DEB, overlapping dose-response curves suggested a direct relationship between 1,4-bis-(guan-7-yl)-2,3-butanediol crosslink adduct formation (R = 0.977, P = 0.03) and cytotoxicity (R = 0.961, P = 0.002). Experiments to define the relationships between cytotoxicity and the induction of micronuclei (MN), a dosimeter of DNA DSBs, showed that 24 h exposures of HL60 cells to 0-5.0 μM DEB caused significant positive correlations between the concentration and (i) the degree of cytotoxicity (R = 0.998, p = 0.002) and (ii) the frequency of MN (R = 0.984, p = 0.016) at 48 h post exposure. To determine the relative induction of MN and t(9;22) translocations following exposures to DEB, or x-rays as a positive control for formation of t(9;22) translocations, HL60 cells were exposed for 24 h to 0, 1, 2.5, or 5 μM DEB or to 0, 2.0, 3.5, or 5.0 Gy x-rays, or treatments demonstrated to yield 0, 20%, 50%, or 80% cytotoxicity. Treatments between 0 and 3.5 Gy x-rays caused significant dose-related increases in both MN (p < 0.001) and t(9;22) translocations (p = 0.01), whereas DEB exposures causing similar cytotoxicity levels did not increase translocations over background. These data indicate that, while DEB induces DNA DSBs required for formation of MN and translocations, acute DEB exposures of HL60 cells did not produce the Philadelphia chromosome obligatory for CML.
Collapse
Affiliation(s)
- Vernon E Walker
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, United States.
| | - Amanda Degner
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, United States.
| | - Elizabeth W Carter
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, United States.
| | - Janice A Nicklas
- Department of Pediatrics, University of Vermont, Burlington, VT, United States.
| | - Dale M Walker
- The Burlington HC Research Group, Inc., Jericho, VT, United States.
| | - Natalia Tretyakova
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, United States.
| | - Richard J Albertini
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, United States.
| |
Collapse
|
10
|
Dhivya S, Khandelwal N, Abraham SK, Premkumar K. Impact of Anthocyanidins on Mitoxantrone-Induced Cytotoxicity and Genotoxicity: An In Vitro and In Vivo Analysis. Integr Cancer Ther 2016; 15:525-534. [PMID: 27146128 PMCID: PMC5739156 DOI: 10.1177/1534735416628344] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/11/2015] [Accepted: 12/24/2015] [Indexed: 12/22/2022] Open
Abstract
Hypothesis Anthocyanins possess well-known biological effects and suppress DNA damage induced by therapeutic topoisomerase poisons. Our study focusses on the modulatory effects of anthocyanidins-malvidin (MAL) and pelargonidin (PEL)-on topoisomerase II poison mitoxantrone (MXT)-induced cytotoxicity and genotoxicity in in vitro and in vivo conditions. Study design HepG2 cells were treated with MXT (1-10 µM), MAL (10-100 µM,) and PEL (5-640 µM) to determine cell viability. Further, experiments on cytotoxicity and apoptosis induction by single agents or combinations were performed. In vitro and in vivo antigenotoxic effect of MAL/PEL against MXT was evaluated in human lymphocytes and mouse bone marrow cells. Methods Cytotoxicity of test agents and apoptosis induction in HepG2 cells was assessed by MTT assay, trypan blue dye exclusion assay and Hoechst 33258 staining. Antigenotoxic effects of MAL/PEL against MXT were assessed in co-treated human lymphocytes and bone marrow from mice that received MXT intraperitoneally 30 minutes post MAL/PEL oral administration Results Dose-dependent cytotoxicity was observed with all 3 test agents in HepG2 cells. Highest test concentration of 100 µM MAL, 640 µM PEL, and 10 µM MXT decreased HepG2 cell viability by 80%, 30%, and 90%, respectively. The combination of 1 µM MXT + 80 µM MAL reduced cell viability better than single agents. MAL/PEL treatment significantly reduced MXT-induced genotoxicity in human lymphocytes and micronuclei formation in mice. Conclusion Combination of MAL/PEL with lower doses of MXT, especially MAL+MXT increases the cytotoxicity in cancer cells. In addition, MXT treatment with MAL/PEL reduced MXT-induced genotoxicity and protected normal cells during chemotherapy.
Collapse
Affiliation(s)
- Sridaran Dhivya
- Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | | | | | | |
Collapse
|
11
|
Das J, Samadder A, Mondal J, Abraham SK, Khuda-Bukhsh AR. Nano-encapsulated chlorophyllin significantly delays progression of lung cancer both in in vitro and in vivo models through activation of mitochondrial signaling cascades and drug-DNA interaction. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 46:147-157. [PMID: 27458703 DOI: 10.1016/j.etap.2016.07.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 07/12/2016] [Accepted: 07/15/2016] [Indexed: 06/06/2023]
Abstract
Chlorophyllin (CHL), a sodium-copper-salt derived from chlorophyll, has been widely used as a food-dye, also reportedly having some anti-cancer effect. We tested if PLGA-loaded CHL (NCHL) could have additional protective abilities through its faster and targeted drug delivery in cancer cells. Physico-chemical characterization of NCHL was done through atomic-force microscopy and UV-spectroscopy. NCHL demonstrated greater ability of drug uptake and strong anti-cancer potentials in non-small cell lung cancer cells, A549, as revealed from data of% cell viability, generation of reactive-oxygen-species and expression of bax, bcl2, caspase3, p53 and cytochrome c proteins. Circular dichroic spectral data indicated strong binding of NCHL with calf-thymus-DNA, causing a conformational/structural change in DNA. Further, NCHL could cross the blood-brain-barrier in mice and showed greater efficacy in recovery process of tissue damage, reduction in chromosomal aberrations and% of micronuclei in co-mutagens (Sodiumarsenite+Benzo[a]Pyrene)-treated mice at a much reduced dose, indicating its use in therapeutic oncology.
Collapse
Affiliation(s)
- Jayeeta Das
- Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani-741235, India
| | - Asmita Samadder
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India; Department of Zoology, Dum Dum Motijheel College, Kolkata-700074, India
| | - Jesmin Mondal
- Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani-741235, India
| | - Suresh K Abraham
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Anisur Rahman Khuda-Bukhsh
- Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani-741235, India.
| |
Collapse
|
12
|
Kuntz S, Kunz C, Rudloff S. Inhibition of pancreatic cancer cell migration by plasma anthocyanins isolated from healthy volunteers receiving an anthocyanin-rich berry juice. Eur J Nutr 2015; 56:203-214. [PMID: 26476633 DOI: 10.1007/s00394-015-1070-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/30/2015] [Indexed: 12/12/2022]
Abstract
PURPOSE Pancreatic cancer is an aggressive cancer type, of which the most important characteristics are migration and metastasis. Anthocyanins (ACN) are discussed to be protective phytochemicals; however, up to now only scarce data are available regarding their effects on cancer prevention. In this study, we aimed to determine whether ACN and their metabolites from plasma (PAM), isolated from blood of healthy volunteers after ingestion of an ACN-rich juice, are effective in modulating cancer cell migration in vitro. METHODS PAM were isolated from blood of healthy volunteers (n = 10) after consumption of an ACN-rich berry juice. Before ingestion (PAM0min) and after 60 min (PAM60min), blood was taken and PAM were isolated from plasma by solid-phase extraction. Migration of pancreatic cancer cells PANC-1 and AsPC-1 was assayed in a Boyden chamber. The influence of PAM on cellular reactive oxygen species (ROS) or mitochondria-specific ROS was measured fluorimetrically. mRNA expression levels of matrix metalloproteinases (MMP-2 and MMP-9) and NF-κB mRNA were determined by real-time PCR. RESULTS After application of PAM60min to PANC-1, we observed a reduced cell migration, which was associated with reduced levels of endogenously generated ROS concomitant with reduced NF-κB as well as MMP-2 and MMP-9 mRNA expression levels. In AsPC-1 cells, however, migration was not affected by PAM60min. CONCLUSION It can be assumed that physiologically relevant ACN and their metabolites were able to inhibit pancreatic cancer cell migration in dependency of the phenotype of cells and may thus deserve further attention as potential bioactive phytochemicals in cancer prevention.
Collapse
Affiliation(s)
- Sabine Kuntz
- Institute of Nutritional Science, Justus Liebig University Giessen, Wilhelmstrasse 20, 35392, Giessen, Germany.
| | - Clemens Kunz
- Institute of Nutritional Science, Justus Liebig University Giessen, Wilhelmstrasse 20, 35392, Giessen, Germany
| | - Silvia Rudloff
- Department of Pediatrics, Justus Liebig University Giessen, Feulgenstrasse 12, 35392, Giessen, Germany
| |
Collapse
|
13
|
Lombardi G, Vannini S, Blasi F, Marcotullio MC, Dominici L, Villarini M, Cossignani L, Moretti M. In Vitro Safety/Protection Assessment of Resveratrol and Pterostilbene in a Human Hepatoma Cell Line (HepG2). Nat Prod Commun 2015. [DOI: 10.1177/1934578x1501000823] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The aim of this work was to evaluate in vitro the genotoxic and/or antigenotoxic effects of resveratrol (RESV) and pterostilbene (PTER) on HepG2 cells. Moreover, additional tests were performed to evaluate early and late apoptosis events induced by the tested stilbenes. RESV and PTER did not show any genotoxic activity. As regards antigenotoxicity testing, RESV and PTER showed a typical, U-shaped hormetic dose-response relationship characterized by a biphasic trend with small quantities having opposite effects to large ones. HepG2 cells treated with PTER exhibited a marked increase in early apoptosis (40.1 %) at 250 μM; whereas, the highest concentration tested for both RESV and PTER significantly increased the proportion of HepG2 cells undergoing late apoptosis (32.5 and 51.2 %, respectively). The observed pro-apoptotic activity could, at least in part, explain the hormetic response observed when the compounds were tested for antigenotoxicity ( i.e., in the presence of induced DNA damage).
Collapse
Affiliation(s)
- Germana Lombardi
- Department of Pharmaceutical Sciences (Unit of Food Chemistry), University of Perugia, Via San Costanzo, 06126 Perugia, Italy
- Department of Pharmaceutical Sciences (Unit of Public Health),University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| | - Samuele Vannini
- Department of Pharmaceutical Sciences (Unit of Public Health),University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| | - Francesca Blasi
- Department of Pharmaceutical Sciences (Unit of Food Chemistry), University of Perugia, Via San Costanzo, 06126 Perugia, Italy
| | - Maria Carla Marcotullio
- Department of Pharmaceutical Sciences (Unit of Organic Chemistry),University of Perugia, Via del Liceo, 06123 Perugia, Italy
| | - Luca Dominici
- Department of Pharmaceutical Sciences (Unit of Public Health),University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| | - Milena Villarini
- Department of Pharmaceutical Sciences (Unit of Public Health),University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| | - Lina Cossignani
- Department of Pharmaceutical Sciences (Unit of Food Chemistry), University of Perugia, Via San Costanzo, 06126 Perugia, Italy
| | - Massimo Moretti
- Department of Pharmaceutical Sciences (Unit of Public Health),University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| |
Collapse
|
14
|
Abraham SK, Khandelwal N, Hintzsche H, Stopper H. Antigenotoxic effects of resveratrol: assessment of in vitro and in vivo response. Mutagenesis 2015; 31:27-33. [PMID: 26152226 DOI: 10.1093/mutage/gev048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Experiments were performed to evaluate the in vitro and in vivo dose response for antigenotoxic effects of resveratrol (RES). For the in vitro study, HL-60 cells were co-treated with the test genotoxin and three concentrations of RES. Thereafter, genotoxic effects were assessed in the cytokinesis-block micronucleus test. Results of the in vitro experiments using genotoxins nitroquinoline-1-oxide (NQO) and mitomycin C (MMC) showed maximum inhibition of genotoxicity with the lowest test concentration of RES. The mouse bone marrow micronucleus assay was used for evaluating the in vivo antigenotoxic effects of RES against genotoxins diepoxybutane (DEB), MMC, methyl methanesulfonate and procarbazine (PCB). The experimental animals received RES pre-treatment by gavage 30min, 24 and 48h before injecting the genotoxin intraperitoneally. The in vivo studies demonstrated efficacy of the lowest test dose of RES for exerting maximum protection against chromosomal damage induced by all four genotoxins. The antigenotoxic effect observed with 6.25mg/kg RES was significantly higher than that of 100mg/kg RES against PCB and DEB. In conclusion, the findings from the present study indicate that lower test concentrations/doses of RES are more effective in exerting antigenotoxic effects.
Collapse
Affiliation(s)
| | | | - Henning Hintzsche
- Institut für Pharmakologie und Toxikologie, Universität Würzburg 97078, Würzburg, Germany
| | - Helga Stopper
- Institut für Pharmakologie und Toxikologie, Universität Würzburg 97078, Würzburg, Germany
| |
Collapse
|
15
|
Investigation of the interaction between patulin and human serum albumin by a spectroscopic method, atomic force microscopy, and molecular modeling. BIOMED RESEARCH INTERNATIONAL 2014; 2014:734850. [PMID: 25110690 PMCID: PMC4119689 DOI: 10.1155/2014/734850] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 04/08/2014] [Indexed: 11/18/2022]
Abstract
The interaction of patulin with human serum albumin (HSA) was studied in vitro under normal physiological conditions. The study was performed using fluorescence, ultraviolet-visible spectroscopy (UV-Vis), circular dichroism (CD), atomic force microscopy (AFM), and molecular modeling techniques. The quenching mechanism was investigated using the association constants, the number of binding sites, and basic thermodynamic parameters. A dynamic quenching mechanism occurred between HSA and patulin, and the binding constants (K) were 2.60 × 10(4), 4.59 × 10(4), and 7.01 × 10(4) M(-1) at 288, 300, and 310 K, respectively. Based on fluorescence resonance energy transfer, the distance between the HSA and patulin was determined to be 2.847 nm. The ΔG (0), ΔH (0), and ΔS (0) values across various temperatures indicated that hydrophobic interaction was the predominant binding force. The UV-Vis and CD results confirmed that the secondary structure of HSA was altered in the presence of patulin. The AFM results revealed that the individual HSA molecule dimensions were larger after interaction with patulin. In addition, molecular modeling showed that the patulin-HSA complex was stabilized by hydrophobic and hydrogen bond forces. The study results suggested that a weak intermolecular interaction occurred between patulin and HSA. Overall, the results are potentially useful for elucidating the toxigenicity of patulin when it is combined with the biomolecular function effect, transmembrane transport, toxicological, testing and other experiments.
Collapse
|
16
|
Khandelwal N, Abraham SK. Intake of anthocyanidins pelargonidin and cyanidin reduces genotoxic stress in mice induced by diepoxybutane, urethane and endogenous nitrosation. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 37:837-843. [PMID: 24642102 DOI: 10.1016/j.etap.2014.02.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 02/12/2014] [Accepted: 02/13/2014] [Indexed: 06/03/2023]
Abstract
Pelargonidin (PEL) and cyanidin (CYN) are among the six most abundant anthocyanidins which provide red, blue and purple colors to fruits and vegetables. Health benefits associated with intake of anthocyanins have been attributed mainly to antioxidant activity of these color pigments. The aim of our present study was to assess in mice the impact of PEL and CYN intake on genotoxic stress induced by DNA damaging environmental toxicants. These anthocyanidins were administered by gavage to mice before exposure to genotoxic carcinogens diepoxybutane (DEB) and urethane (URE). In addition, the inhibitory effect of PEL and CYN on endogenous nitrosation was evaluated by using a model nitrosation reaction mixture consisting of methyl urea (MU)+sodium nitrite (SN) which reacts in the stomach to form the carcinogenic methyl nitrosourea (MNU). All the test doses of PEL (2.5-20 mg/kg) and CYN (1-4 mg/kg) significantly reduced the genotoxicity of DEB. A dose-related increase was observed for antigenotoxicity of PEL against URE. The lowest test-dose of CYN showed maximum protection against URE. Co-administration of PEL/CYN with the nitrosation reaction mixture led to reduction in genotoxicity. CYN was more effective as an inhibitor of endogenous nitrosation. Combination of PEL with ascorbic acid (AA) enhanced the antinitrosating effect when compared to that with each phytochemical alone. The results of our present study indicate that common anthocyanidins PEL and CYN can play a major role in reducing genotoxic stress induced by environmental toxicants.
Collapse
Affiliation(s)
- Nidhi Khandelwal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Suresh K Abraham
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
17
|
Serpeloni JM, Almeida MR, Mercadante AZ, Bianchi MLP, Antunes LMG. Effects of lutein and chlorophyll b on GSH depletion and DNA damage induced by cisplatin in vivo. Hum Exp Toxicol 2014; 32:828-36. [PMID: 23821640 DOI: 10.1177/0960327112468911] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recent studies have proposed the use of low concentrations of phytochemicals and combinations of phytochemicals in chemoprevention to reduce cytotoxicity and simulate normal ingestion through diet. The purpose of the present study was to evaluate whether the DNA damage, chromosome instability, and oxidative stress induced by cisplatin (cDDP) are modulated by a combination of the natural pigments lutein (LT) and chlorophyll b (CLb). The protective effects observed for synergism between phytochemicals have not been completely investigated. The comet assay and micronucleus test were performed and the catalase activities and glutathione (GSH) concentrations were measured in the peripheral blood, bone marrow, liver, and kidney cells of mice. The comet assay and micronucleus test results revealed that the pigments LT and CLb were not genotoxic or mutagenic and that the pigments presented antigenotoxic and antimutagenic effects in the different cell types evaluated. This protective effect is likely related to antioxidant properties in peripheral blood cells through the prevention of cDDP-induced GSH depletion. Altogether our results show that the combination of LT and CLb, which are both usually present in the same foods, such as leafy green vegetables, can be used safely.
Collapse
Affiliation(s)
- J M Serpeloni
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo. Avenida do Café, s/n, Ribeirão Preto, São Paulo, Brasil.
| | | | | | | | | |
Collapse
|
18
|
Antigenotoxic effect of lipoic acid against mitomycin-C in human lymphocyte cultures. Cytotechnology 2012; 65:553-65. [PMID: 23132681 DOI: 10.1007/s10616-012-9504-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 09/24/2012] [Indexed: 12/14/2022] Open
Abstract
Antitumor agents are used in therapy against many forms of human cancer. One of these is mitomycin-C (MMC). As with many agents, it can interact with biological molecules and can induce genetic hazards in non-tumor cells. One of the possible approaches to protect DNA from this damage is to supply antioxidants that can remove free radicals produced by antitumor agents. Lipoic acid (LA) is known as one of the most powerful antioxidants. The aim of this study was to investigate antigenotoxic effects of LA against MMC induced chromosomal aberrations (CA), sister chromatid exchanges (SCE) and micronucleus (MN) formation in human lymphocytes. Lymphocytes were treated with 0.2 μg MMC/heparinized mL for 48 h. Three different concentrations (0.5, 1, 2 μg/mL) of LA were used together with MMC in three different applications; 1 h pre-treatment, simultaneous treatment and 1 h post-treatment. A negative, a positive and a solvent control were also included. In all the cultures treated with MMC + LA, the frequency of abnormal cells and CA/cell significantly decreased compared to MMC. Statistically significant reduction was also observed in SCE/cell and MN frequencies in all treatments. These results demonstrated anticlastogenic and antimutagenic effects of LA against MMC induced genotoxicity. LA showed the most efficient effect during 1 h pretreatment. On the other hand, MMC + LA treatments induced significant reduction in mitotic index than that of MMC treatment alone. These results are encouraging that LA can be a possible chemopreventive agent in tumorigenesis in both cancer patients and in health care persons handling anti-cancer drugs.
Collapse
|