1
|
Sharma P, Chukwuka AV, Chatterjee S, Chakraborty D, Bhowmick S, Mistri TK, Saha NC. Biomarker and adverse outcome pathway responses of Tubifex tubifex (sludge worm) exposed to environmentally-relevant levels of acenaphthene: insights from behavioral, physiological, and chemical structure-activity analyses. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:61894-61911. [PMID: 39448429 DOI: 10.1007/s11356-024-35290-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 10/08/2024] [Indexed: 10/26/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs), including acenaphthene, pose a significant threat to aquatic ecosystems by harming vital organisms such as benthic invertebrates. This study evaluated the impact of environmentally relevant concentrations of acenaphthene on Tubifex tubifex, focusing on sublethal acute toxicity and subchronic biomarker responses. Key biomarkers assessed included histopathological changes and the modulation of antioxidant enzymes: catalase (CAT), superoxide dismutase (SOD), glutathione S-transferase (GST), and malondialdehyde (MDA). Additionally, the study examined structure-activity relationships and species sensitivity distribution (SSD). Concentrations exceeding the solubility threshold of acenaphthene (3.9 mg/L) triggered distinct, concentration-dependent behavioral responses in Tubifex tubifex, such as clumping, mucus secretion, and body wrinkling. Prolonged exposure exacerbated these behavioral dysfunctions, while subchronic exposure resulted in significant histopathological alterations, including epithelial hyperplasia, inflammation, edema, fibrosis, and degenerative changes. The edematic appearance of the body wall suggested a potential immune response to exposure. Furthermore, increased activities of CAT, SOD, and GST indicated oxidative stress in the worms. The study found a 1.5-fold increase in CAT and GST activity, a fivefold increase in SOD, and a striking 100-fold increase in MDA levels compared to controls, signifying an overwhelmed antioxidant defense system and potential cellular disruption. The SSD curve revealed hazard concentrations (HC50 and HC90), indicating that Tubifex tubifex exhibited lower sensitivity to acenaphthene compared to other taxa. In silico analysis and read-across models confirmed the potential of acenaphthene to induce significant oxidative stress upon exposure. The correlation between biomarker responses and structure-activity relationship analysis highlighted the aromatic nature of acenaphthene as a key factor in generating reactive metabolites, inhibiting antioxidant enzymes, and promoting redox cycling, ultimately contributing to adverse outcomes. These findings, coupled with behavioral responses and SSD curve inferences, underscore the importance of the solubility threshold of acenaphthene as a critical benchmark for evaluating its ecological impact in aquatic environments.
Collapse
Affiliation(s)
- Pramita Sharma
- Department of Zoology, The University of Burdwan, Burdwan, West Bengal, India
| | - Azubuike Victor Chukwuka
- Department of Environmental Quality Control (EQC), National Environmental Standards and Regulations Enforcement Agency, Abuja, Nigeria.
| | | | | | - Shovonlal Bhowmick
- Department of Chemical Technology, University of Calcutta, 92, A.P.C. Road, Kolkata, 700009, India
| | - Tapan Kumar Mistri
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur Campus, SRM Nagar, Potheri, Chennai, 603203, India
| | | |
Collapse
|
2
|
Mennen R, Hallmark N, Pallardy M, Bars R, Tinwell H, Piersma A. Genome-wide expression screening in the cardiac embryonic stem cell test shows additional differentiation routes that are regulated by morpholines and piperidines. Curr Res Toxicol 2022; 3:100086. [PMID: 36157598 PMCID: PMC9489494 DOI: 10.1016/j.crtox.2022.100086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 08/08/2022] [Accepted: 09/08/2022] [Indexed: 11/29/2022] Open
Abstract
The cardiac embryonic stem cell test (ESTc) is a well-studied non-animal alternative test method based on cardiac cell differentiation inhibition as a measure for developmental toxicity of tested chemicals. In the ESTc, a heterogenic cell population is generated besides cardiomyocytes. Using the full biological domain of ESTc may improve the sensitivity of the test system, possibly broadening the range of chemicals for which developmental effects can be detected in the test. In order to improve our knowledge of the biological and chemical applicability domains of the ESTc, we applied a hypothesis-generating data-driven approach on control samples as follows. A genome-wide expression screening was performed, using Next Generation Sequencing (NGS), to map the range of developmental pathways in the ESTc and to search for a predictive embryotoxicity biomarker profile, instead of the conventional read-out of beating cardiomyocytes. The detected developmental pathways included circulatory system development, skeletal system development, heart development, muscle and organ tissue development, and nervous system and cell development. Two pesticidal chemical classes, the morpholines and piperidines, were assessed for perturbation of differentiation in the ESTc using NGS. In addition to the anticipated impact on cardiomyocyte differentiation, the other developmental pathways were also regulated, in a concentration-response fashion. Despite the structural differences between the morpholine and piperidine pairs, their gene expression effect patterns were largely comparable. In addition, some chemical-specific gene regulation was also observed, which may help with future mechanistic understanding of specific effects with individual test compounds. These similar and unique regulations of gene expression profiles by the test compounds, adds to our knowledge of the chemical applicability domain, specificity and sensitivity of the ESTc. Knowledge of both the biological and chemical applicability domain contributes to the optimal placement of ESTc in test batteries and in Integrated Approaches to Testing and Assessment (IATA).
Collapse
Affiliation(s)
- R.H. Mennen
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - N. Hallmark
- Bayer AG Crop Science Division, Monheim, Germany
| | - M. Pallardy
- Inflammation, Microbiome and Immunosurveillance, Université Paris-Saclay, INSERM UMR996, Châtenay-Malabry 92296, France
| | - R. Bars
- Bayer Crop Science, Sophia-Antipolis, France
| | - H. Tinwell
- Bayer Crop Science, Sophia-Antipolis, France
| | - A.H. Piersma
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, the Netherlands
| |
Collapse
|
3
|
Lin Z, Huang Y, Jiang H, Zhang D, Yang Y, Geng X, Li B. Functional differences and similarities in activated peripheral blood mononuclear cells by lipopolysaccharide or phytohemagglutinin stimulation between human and cynomolgus monkeys. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:257. [PMID: 33708884 PMCID: PMC7940909 DOI: 10.21037/atm-20-4548] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Background The monkey is a primary species used in toxicological research. However, the failures of preclinical studies to predict a life-threatening “cytokine storm”, which, for instance, rapidly occurred in six healthy volunteers with the CD28 superagonist monoclonal antibody (mAb) TGN1412 in the first-in-human phase I clinical trial, have emphasized a need to clarify the differences between human and monkey immune systems. Methods In the present study, we analyzed and compared the lymphocyte proliferation, cytokine secretion, and gene expression profiles after phytohemagglutinin (PHA) and lipopolysaccharide (LPS) stimulation of peripheral blood mononuclear cells (PBMCs) from three healthy humans and cynomolgus monkeys (Macaca fascicularis). Results The results derived from comparison with the corresponding control groups showed that PHA in humans induced a stronger proliferation and wider range of cytokine secretion, along with a greater number of differently expressed genes (DEGs), than when PHA was applied in cynomolgus monkeys. The significant upregulation of genes involved in the mitotic cell cycle, including cyclin B2, TOP2A, TYMS, and CEP55, was observed in human PBMCs with PHA stimulation, while only infrequent or slight upregulation occurred in cynomolgus monkey PBMCs, which may be one of the reasons for a stronger response to PHA in humans. In contrast to PHA, LPS in both species induced a similar proliferation ratio, cytokine profile, and DEG count, suggesting that human and cynomolgus monkeys have a similar response intensity for innate immune responses. Furthermore, 38 and 20 overlapped genes under PHA and LPS stimulation, respectively, were found in both species. These overlapped DEGs were associated with the same biological functions, including DNA replication, mitosis, immune response, chemotaxis, and inflammatory response. Thus, these results might reflect the highly conserved signatures of immune responses to PHA/LPS stimulation across the primates. Moreover, there were some differences in antigen processing and presentation, and the interferon gamma (INF-γ)–mediated signaling pathway in these species detected by gene expression profile study. Conclusions In conclusion, this is the first study to compare data on the responses of PBMCs to PHA and LPS in humans versus cynomolgus monkeys, and these findings may provide crucial insights into translating non-human primate (NHP) studies into human trials.
Collapse
Affiliation(s)
- Zhi Lin
- National Institute for Food and Drug Control, National Center for Safety Evaluation of Drugs, Beijing Key Lab for Preclinical Safety Evaluation of Drugs, Beijing, China
| | - Ying Huang
- National Institute for Food and Drug Control, National Center for Safety Evaluation of Drugs, Beijing Key Lab for Preclinical Safety Evaluation of Drugs, Beijing, China
| | - Hua Jiang
- National Institute for Food and Drug Control, National Center for Safety Evaluation of Drugs, Beijing Key Lab for Preclinical Safety Evaluation of Drugs, Beijing, China
| | - Di Zhang
- National Institute for Food and Drug Control, National Center for Safety Evaluation of Drugs, Beijing Key Lab for Preclinical Safety Evaluation of Drugs, Beijing, China
| | - Yanwei Yang
- National Institute for Food and Drug Control, National Center for Safety Evaluation of Drugs, Beijing Key Lab for Preclinical Safety Evaluation of Drugs, Beijing, China
| | - Xingchao Geng
- National Institute for Food and Drug Control, National Center for Safety Evaluation of Drugs, Beijing Key Lab for Preclinical Safety Evaluation of Drugs, Beijing, China
| | - Bo Li
- National Institute for Food and Drug Control, National Center for Safety Evaluation of Drugs, Beijing Key Lab for Preclinical Safety Evaluation of Drugs, Beijing, China
| |
Collapse
|
4
|
Vo AH, Van Vleet TR, Gupta RR, Liguori MJ, Rao MS. An Overview of Machine Learning and Big Data for Drug Toxicity Evaluation. Chem Res Toxicol 2019; 33:20-37. [DOI: 10.1021/acs.chemrestox.9b00227] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Andy H. Vo
- Department of Preclinical Safety, AbbVie, 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Terry R. Van Vleet
- Department of Preclinical Safety, AbbVie, 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Rishi R. Gupta
- Information Research, Research and Development, AbbVie, 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Michael J. Liguori
- Department of Preclinical Safety, AbbVie, 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Mohan S. Rao
- Department of Preclinical Safety, AbbVie, 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| |
Collapse
|
5
|
Ose K, Yamada F, Ohara A, Suzuki N, Fukuda T, Miyamoto M, Sumida K. A microarray‐based comparative analysis of gene expression profiles in thyroid glands in amphibian metamorphosis: differences in effects between chemical exposure and food restriction. J Appl Toxicol 2019; 39:1030-1042. [DOI: 10.1002/jat.3791] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Keiko Ose
- Environmental Health Science LaboratorySumitomo Chemical Co., Ltd. 4‐2‐1, Takatsukasa Takarazuka City Hyogo 665‐8558 Japan
| | - Fumihiro Yamada
- Bioscience Research LaboratorySumitomo Chemical Co., Ltd., 3‐1‐98 Kasugade‐naka, Konohana‐ku Osaka City Osaka 554‐8558 Japan
| | - Ayako Ohara
- Bioscience Research LaboratorySumitomo Chemical Co., Ltd., 3‐1‐98 Kasugade‐naka, Konohana‐ku Osaka City Osaka 554‐8558 Japan
| | - Noriyuki Suzuki
- Bioscience Research LaboratorySumitomo Chemical Co., Ltd., 3‐1‐98 Kasugade‐naka, Konohana‐ku Osaka City Osaka 554‐8558 Japan
| | - Takako Fukuda
- Bioscience Research LaboratorySumitomo Chemical Co., Ltd., 3‐1‐98 Kasugade‐naka, Konohana‐ku Osaka City Osaka 554‐8558 Japan
| | - Mitsugu Miyamoto
- Environmental Health Science LaboratorySumitomo Chemical Co., Ltd. 4‐2‐1, Takatsukasa Takarazuka City Hyogo 665‐8558 Japan
| | - Kayo Sumida
- Bioscience Research LaboratorySumitomo Chemical Co., Ltd., 3‐1‐98 Kasugade‐naka, Konohana‐ku Osaka City Osaka 554‐8558 Japan
| |
Collapse
|
6
|
Gaukler SM, Ruff JS, Galland T, Underwood TK, Kandaris KA, Liu NM, Morrison LC, Veranth JM, Potts WK. Quantification of cerivastatin toxicity supports organismal performance assays as an effective tool during pharmaceutical safety assessment. Evol Appl 2016; 9:685-96. [PMID: 27247619 PMCID: PMC4869410 DOI: 10.1111/eva.12365] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 01/19/2016] [Indexed: 11/29/2022] Open
Abstract
A major problem in pharmaceutical development is that adverse effects remain undetected during preclinical and clinical trials, but are later revealed after market release when prescribed to many patients. We have developed a fitness assay known as the organismal performance assay (OPA), which evaluates individual performance by utilizing outbred wild mice (Mus musculus) that are assigned to an exposed or control group, which compete against each other for resources within semi-natural enclosures. Performance measurements included reproductive success, survival, and male competitive ability. Our aim was to utilize cerivastatin (Baycol(®), Bayer), a pharmaceutical with known adverse effects, as a positive control to assess OPAs as a potential tool for evaluating the safety of compounds during preclinical trials. Mice were exposed to cerivastatin (~4.5 mg/kg/day) into early adulthood. Exposure ceased and animals were released into semi-natural enclosures. Within enclosures, cerivastatin-exposed females had 25% fewer offspring and cerivastatin-exposed males had 10% less body mass, occupied 63% fewer territories, sired 41% fewer offspring, and experienced a threefold increase in mortality when compared to controls. OPAs detected several cerivastatin-induced adverse effects indicating that fitness assays, commonly used in ecology and evolutionary biology, could be useful as an additional tool in safety testing during pharmaceutical development.
Collapse
Affiliation(s)
- Shannon M Gaukler
- Department of Biology University of Utah Salt Lake City UT USA; Los Alamos National Laboratory Environmental Stewardship Group Los Alamos NM USA
| | - James S Ruff
- Department of Biology University of Utah Salt Lake City UT USA
| | - Tessa Galland
- Department of Biology University of Utah Salt Lake City UT USA
| | | | | | - Nicole M Liu
- Department of Biology University of Utah Salt Lake City UT USA
| | | | - John M Veranth
- Department of Pharmacology and Toxicology University of Utah Salt Lake City UT USA
| | - Wayne K Potts
- Department of Biology University of Utah Salt Lake City UT USA
| |
Collapse
|
7
|
Risk assessment of Soulatrolide and Mammea (A/BA+A/BB) coumarins from Calophyllum brasiliense by a toxicogenomic and toxicological approach. Food Chem Toxicol 2016; 91:117-29. [PMID: 26995226 DOI: 10.1016/j.fct.2016.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/08/2016] [Accepted: 03/12/2016] [Indexed: 12/29/2022]
Abstract
Calophyllum brasiliense (Calophyllaceae) is a tropical rain forest tree distributed in Central and South America. It is an important source of tetracyclic dipyrano coumarins (Soulatrolide) and Mammea type coumarins. Soulatrolide is a potent inhibitor of HIV-1 reverse transcriptase and displays activity against Mycobacterium tuberculosis. Meanwhile, Mammea A/BA and A/BB, pure or as a mixture, are highly active against several human leukemia cell lines, Trypanosoma cruzi and Leishmania amazonensis. Nevertheless, there are few studies evaluating their safety profile. In the present work we performed toxicogenomic and toxicological analysis for both type of compounds. Soulatrolide, and the Mammea A/BA + A/BB mixture (2.1) were slightly toxic accordingly to Lorke assay classification (DL50 > 3000 mg/kg). After a short-term administration (100 mg/kg/daily, orally, 1 week) liver toxicogenomic analysis revealed 46 up and 72 downregulated genes for Mammea coumarins, and 665 up and 1077 downregulated genes for Soulatrolide. Gene enrichment analysis identified transcripts involved in drug metabolism for both compounds. In addition, network analysis through protein-protein interactions, tissue evaluation by TUNEL assay, and histological examination revealed no tissue damage on liver, kidney and spleen after treatments. Our results indicate that both type of coumarins displayed a safety profile, supporting their use in further preclinical studies to determine its therapeutic potential.
Collapse
|
8
|
Moffat I, Chepelev N, Labib S, Bourdon-Lacombe J, Kuo B, Buick JK, Lemieux F, Williams A, Halappanavar S, Malik A, Luijten M, Aubrecht J, Hyduke DR, Fornace AJ, Swartz CD, Recio L, Yauk CL. Comparison of toxicogenomics and traditional approaches to inform mode of action and points of departure in human health risk assessment of benzo[a]pyrene in drinking water. Crit Rev Toxicol 2015; 45:1-43. [PMID: 25605026 DOI: 10.3109/10408444.2014.973934] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Toxicogenomics is proposed to be a useful tool in human health risk assessment. However, a systematic comparison of traditional risk assessment approaches with those applying toxicogenomics has never been done. We conducted a case study to evaluate the utility of toxicogenomics in the risk assessment of benzo[a]pyrene (BaP), a well-studied carcinogen, for drinking water exposures. Our study was intended to compare methodologies, not to evaluate drinking water safety. We compared traditional (RA1), genomics-informed (RA2) and genomics-only (RA3) approaches. RA2 and RA3 applied toxicogenomics data from human cell cultures and mice exposed to BaP to determine if these data could provide insight into BaP's mode of action (MOA) and derive tissue-specific points of departure (POD). Our global gene expression analysis supported that BaP is genotoxic in mice and allowed the development of a detailed MOA. Toxicogenomics analysis in human lymphoblastoid TK6 cells demonstrated a high degree of consistency in perturbed pathways with animal tissues. Quantitatively, the PODs for traditional and transcriptional approaches were similar (liver 1.2 vs. 1.0 mg/kg-bw/day; lungs 0.8 vs. 3.7 mg/kg-bw/day; forestomach 0.5 vs. 7.4 mg/kg-bw/day). RA3, which applied toxicogenomics in the absence of apical toxicology data, demonstrates that this approach provides useful information in data-poor situations. Overall, our study supports the use of toxicogenomics as a relatively fast and cost-effective tool for hazard identification, preliminary evaluation of potential carcinogens, and carcinogenic potency, in addition to identifying current limitations and practical questions for future work.
Collapse
Affiliation(s)
- Ivy Moffat
- Water and Air Quality Bureau, Health Canada, Ottawa, ON, Canada.,Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Nikolai Chepelev
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Sarah Labib
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Julie Bourdon-Lacombe
- Water and Air Quality Bureau, Health Canada, Ottawa, ON, Canada.,Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Byron Kuo
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Julie K Buick
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - France Lemieux
- Water and Air Quality Bureau, Health Canada, Ottawa, ON, Canada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Amal Malik
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Mirjam Luijten
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | | | - Daniel R Hyduke
- Biological Engineering Department, Utah State University, Logan, UT, USA
| | - Albert J Fornace
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC, USA
| | - Carol D Swartz
- Integrated Laboratory Systems Inc., Research Triangle Park, NC, USA
| | - Leslie Recio
- Integrated Laboratory Systems Inc., Research Triangle Park, NC, USA
| | - Carole L Yauk
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| |
Collapse
|
9
|
Chan CTY, Deng W, Li F, DeMott MS, Babu IR, Begley TJ, Dedon PC. Highly Predictive Reprogramming of tRNA Modifications Is Linked to Selective Expression of Codon-Biased Genes. Chem Res Toxicol 2015; 28:978-88. [PMID: 25772370 PMCID: PMC4438938 DOI: 10.1021/acs.chemrestox.5b00004] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
Cells respond to stress by controlling
gene expression at several
levels, with little known about the role of translation. Here, we
demonstrate a coordinated translational stress response system involving
stress-specific reprogramming of tRNA wobble modifications that leads
to selective translation of codon-biased mRNAs representing different
classes of critical response proteins. In budding yeast exposed to
four oxidants and five alkylating agents, tRNA modification patterns
accurately distinguished among chemically similar stressors, with
14 modified ribonucleosides forming the basis for a data-driven model
that predicts toxicant chemistry with >80% sensitivity and specificity.
tRNA modification subpatterns also distinguish SN1 from
SN2 alkylating agents, with SN2-induced increases
in m3C in tRNA mechanistically linked to selective translation
of threonine-rich membrane proteins from genes enriched with ACC and
ACT degenerate codons for threonine. These results establish tRNA
modifications as predictive biomarkers of exposure and illustrate
a novel regulatory mechanism for translational control of cell stress
response.
Collapse
Affiliation(s)
| | | | | | | | | | - Thomas J Begley
- ∥College of Nanoscale Science, State University of New York, Albany, New York 12203, United States
| | | |
Collapse
|
10
|
Adler M, Leich E, Ellinger-Ziegelbauer H, Hewitt P, Dekant W, Rosenwald A, Mally A. Application of RNA interference to improve mechanistic understanding of omics responses to a hepatotoxic drug in primary rat hepatocytes. Toxicology 2014; 326:86-95. [DOI: 10.1016/j.tox.2014.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/26/2014] [Accepted: 10/15/2014] [Indexed: 10/24/2022]
|
11
|
A novel toxicogenomics-based approach to categorize (non-)genotoxic carcinogens. Arch Toxicol 2014; 89:2413-27. [DOI: 10.1007/s00204-014-1368-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/04/2014] [Indexed: 10/24/2022]
|
12
|
Kiyama R, Zhu Y. DNA microarray-based gene expression profiling of estrogenic chemicals. Cell Mol Life Sci 2014; 71:2065-82. [PMID: 24399289 PMCID: PMC11113397 DOI: 10.1007/s00018-013-1544-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 12/06/2013] [Accepted: 12/16/2013] [Indexed: 12/31/2022]
Abstract
We summarize updated information about DNA microarray-based gene expression profiling by focusing on its application to estrogenic chemicals. First, estrogenic chemicals, including natural/industrial estrogens and phytoestrogens, and the methods for detection and evaluation of estrogenic chemicals were overviewed along with a comprehensive list of estrogenic chemicals of natural or industrial origin. Second, gene expression profiling of chemicals using a focused microarray containing estrogen-responsive genes is summarized. Third, silent estrogens, a new type of estrogenic chemicals characterized by their estrogenic gene expression profiles without growth stimulative or inhibitory effects, have been identified so far exclusively by DNA microarray assay. Lastly, the prospect of a microarray assay is discussed, including issues such as commercialization, future directions of applications and quality control methods.
Collapse
Affiliation(s)
- Ryoiti Kiyama
- Signaling Molecules Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan,
| | | |
Collapse
|
13
|
Currie RA, Peffer RC, Goetz AK, Omiecinski CJ, Goodman JI. Phenobarbital and propiconazole toxicogenomic profiles in mice show major similarities consistent with the key role that constitutive androstane receptor (CAR) activation plays in their mode of action. Toxicology 2014; 321:80-8. [PMID: 24675475 DOI: 10.1016/j.tox.2014.03.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 03/05/2014] [Accepted: 03/15/2014] [Indexed: 01/10/2023]
Abstract
Toxicogenomics (TGx) is employed frequently to investigate underlying molecular mechanisms of the compound of interest and, thus, has become an aid to mode of action determination. However, the results and interpretation of a TGx dataset are influenced by the experimental design and methods of analysis employed. This article describes an evaluation and reanalysis, by two independent laboratories, of previously published TGx mouse liver microarray data for a triazole fungicide, propiconazole (PPZ), and the anticonvulsant drug phenobarbital (PB). Propiconazole produced an increase incidence of liver tumors in male CD-1 mice only at a dose that exceeded the maximum tolerated dose (2500 ppm). Firstly, we illustrate how experimental design differences between two in vivo studies with PPZ and PB may impact the comparisons of TGx results. Secondly, we demonstrate that different researchers using different pathway analysis tools can come to different conclusions on specific mechanistic pathways, even when using the same datasets. Finally, despite these differences the results across three different analyses also show a striking degree of similarity observed for PPZ and PB treated livers when the expression data are viewed as major signaling pathways and cell processes affected. Additional studies described here show that the postulated key event of hepatocellular proliferation was observed in CD-1 mice for both PPZ and PB, and that PPZ is also a potent activator of the mouse CAR nuclear receptor. Thus, with regard to the events which are hallmarks of CAR-induced effects that are key events in the mode of action (MOA) of mouse liver carcinogenesis with PB, PPZ-induced tumors can be viewed as being promoted by a similar PB-like CAR-dependent MOA.
Collapse
Affiliation(s)
- Richard A Currie
- Syngenta Ltd., Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, UK.
| | - Richard C Peffer
- Syngenta Crop Protection, LLC, P.O. Box 18300, Greensboro, NC 27419-8300, United States.
| | - Amber K Goetz
- Syngenta Crop Protection, LLC, P.O. Box 18300, Greensboro, NC 27419-8300, United States.
| | - Curtis J Omiecinski
- Center for Molecular Toxicology and Carcinogenesis, Penn State University, University Park, PA 16802, United States.
| | - Jay I Goodman
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, United States.
| |
Collapse
|
14
|
Yang Y, Maxwell A, Zhang X, Wang N, Perkins EJ, Zhang C, Gong P. Differential reconstructed gene interaction networks for deriving toxicity threshold in chemical risk assessment. BMC Bioinformatics 2013; 14 Suppl 14:S3. [PMID: 24268022 PMCID: PMC3851258 DOI: 10.1186/1471-2105-14-s14-s3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Pathway alterations reflected as changes in gene expression regulation and gene interaction can result from cellular exposure to toxicants. Such information is often used to elucidate toxicological modes of action. From a risk assessment perspective, alterations in biological pathways are a rich resource for setting toxicant thresholds, which may be more sensitive and mechanism-informed than traditional toxicity endpoints. Here we developed a novel differential networks (DNs) approach to connect pathway perturbation with toxicity threshold setting. Methods Our DNs approach consists of 6 steps: time-series gene expression data collection, identification of altered genes, gene interaction network reconstruction, differential edge inference, mapping of genes with differential edges to pathways, and establishment of causal relationships between chemical concentration and perturbed pathways. A one-sample Gaussian process model and a linear regression model were used to identify genes that exhibited significant profile changes across an entire time course and between treatments, respectively. Interaction networks of differentially expressed (DE) genes were reconstructed for different treatments using a state space model and then compared to infer differential edges/interactions. DE genes possessing differential edges were mapped to biological pathways in databases such as KEGG pathways. Results Using the DNs approach, we analyzed a time-series Escherichia coli live cell gene expression dataset consisting of 4 treatments (control, 10, 100, 1000 mg/L naphthenic acids, NAs) and 18 time points. Through comparison of reconstructed networks and construction of differential networks, 80 genes were identified as DE genes with a significant number of differential edges, and 22 KEGG pathways were altered in a concentration-dependent manner. Some of these pathways were perturbed to a degree as high as 70% even at the lowest exposure concentration, implying a high sensitivity of our DNs approach. Conclusions Findings from this proof-of-concept study suggest that our approach has a great potential in providing a novel and sensitive tool for threshold setting in chemical risk assessment. In future work, we plan to analyze more time-series datasets with a full spectrum of concentrations and sufficient replications per treatment. The pathway alteration-derived thresholds will also be compared with those derived from apical endpoints such as cell growth rate.
Collapse
|
15
|
McHale CM, Zhang L, Thomas R, Smith MT. Analysis of the transcriptome in molecular epidemiology studies. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2013; 54:500-517. [PMID: 23907930 PMCID: PMC5142298 DOI: 10.1002/em.21798] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 06/07/2013] [Accepted: 06/08/2013] [Indexed: 05/29/2023]
Abstract
The human transcriptome is complex, comprising multiple transcript types, mostly in the form of non-coding RNA (ncRNA). The majority of ncRNA is of the long form (lncRNA, ≥ 200 bp), which plays an important role in gene regulation through multiple mechanisms including epigenetics, chromatin modification, control of transcription factor binding, and regulation of alternative splicing. Both mRNA and ncRNA exhibit additional variability in the form of alternative splicing and RNA editing. All aspects of the human transcriptome can potentially be dysregulated by environmental exposures. Next-generation RNA sequencing (RNA-Seq) is the best available methodology to measure this although it has limitations, including experimental bias. The third phase of the MicroArray Quality Control Consortium project (MAQC-III), also called Sequencing Quality Control (SeQC), aims to address these limitations through standardization of experimental and bioinformatic methodologies. A limited number of toxicogenomic studies have been conducted to date using RNA-Seq. This review describes the complexity of the human transcriptome, the application of transcriptomics by RNA-Seq or microarray in molecular epidemiology studies, and limitations of these approaches including the type of cell or tissue analyzed, experimental variation, and confounding. By using good study designs with precise, individual exposure measurements, sufficient power and incorporation of phenotypic anchors, studies in human populations can identify biomarkers of exposure and/or early effect and elucidate mechanisms of action underlying associated diseases, even at low doses. Analysis of datasets at the pathway level can compensate for some of the limitations of RNA-Seq and, as more datasets become available, will increasingly elucidate the exposure-disease continuum.
Collapse
Affiliation(s)
- Cliona M McHale
- Division of Environmental Health Sciences, Genes and Environment Laboratory, School of Public Health, University of California, Berkeley, California 94720, USA.
| | | | | | | |
Collapse
|
16
|
Vähäkangas K. Research ethics in the post-genomic era. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2013; 54:599-610. [PMID: 23908016 DOI: 10.1002/em.21804] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 06/04/2013] [Accepted: 06/12/2013] [Indexed: 06/02/2023]
Abstract
New high-throughput 'omics techniques are providing exciting opportunities in clinical medicine and toxicology, especially in the development of biomarkers. In health science research there are traditional ethical considerations that are reasonably obvious, like balancing health benefits and health risks, autonomy mainly pursued by informed consent, and protecting privacy. Epidemiological studies applying new large-scale approaches (e.g., high-throughput or high-content methods and global studies that utilize biobanking of samples and produce large-scale datasets) present new challenges that call for re-evaluation of standard ethical considerations. In this context, assessment of the ethics underlying study designs, bioinformatics, and statistics applied in the generation and clinical translation of research results should also be considered. Indeed, there are ethical considerations in the research process itself, in research objectives and how research is pursued (e.g., which methodologies are selected and how they are carried out). Maintaining research integrity is critical, as demonstrated by the relatively frequent retraction of scientific papers following violations of good scientific practice. Abiding by the laws is necessary but not sufficient for good research ethics, which is and remains in the hands of the scientific community at the level of both individual scientists and organizations. Senior scientists are responsible for the transfer of research tradition to the next generation of scientists through education, mentorship, and setting an example by their own behavior, as well as by creating systems in institutions that support good research ethics.
Collapse
Affiliation(s)
- Kirsi Vähäkangas
- Faculty of Health Sciences, School of Pharmacy/Toxicology, University of Eastern Finland, Kuopio, FI-70211, Finland.
| |
Collapse
|
17
|
Gene expression profiling to identify potentially relevant disease outcomes and support human health risk assessment for carbon black nanoparticle exposure. Toxicology 2012; 303:83-93. [PMID: 23146762 PMCID: PMC7125805 DOI: 10.1016/j.tox.2012.10.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 10/11/2012] [Accepted: 10/16/2012] [Indexed: 11/21/2022]
Abstract
New approaches are urgently needed to evaluate potential hazards posed by exposure to nanomaterials. Gene expression profiling provides information on potential modes of action and human relevance, and tools have recently become available for pathway-based quantitative risk assessment. The objective of this study was to use toxicogenomics in the context of human health risk assessment. We explore the utility of toxicogenomics in risk assessment, using published gene expression data from C57BL/6 mice exposed to 18, 54 and 162 μg Printex 90 carbon black nanoparticles (CBNP). Analysis of CBNP-perturbed pathways, networks and transcription factors revealed concomitant changes in predicted phenotypes (e.g., pulmonary inflammation and genotoxicity), that correlated with dose and time. Benchmark doses (BMDs) for apical endpoints were comparable to minimum BMDs for relevant pathway-specific expression changes. Comparison to inflammatory lung disease models (i.e., allergic airway inflammation, bacterial infection and tissue injury and fibrosis) and human disease profiles revealed that induced gene expression changes in Printex 90 exposed mice were similar to those typical for pulmonary injury and fibrosis. Very similar fibrotic pathways were perturbed in CBNP-exposed mice and human fibrosis disease models. Our synthesis demonstrates how toxicogenomic profiles may be used in human health risk assessment of nanoparticles and constitutes an important step forward in the ultimate recognition of toxicogenomic endpoints in human health risk. As our knowledge of molecular pathways, dose-response characteristics and relevance to human disease continues to grow, we anticipate that toxicogenomics will become increasingly useful in assessing chemical toxicities and in human health risk assessment.
Collapse
|