1
|
Gi M, Fujioka M, Yamano S, Kakehashi A, Oishi Y, Okuno T, Yukimatsu N, Yamaguchi T, Tago Y, Kitano M, Hayashi SM, Wanibuchi H. Chronic dietary toxicity and carcinogenicity studies of dammar resin in F344 rats. Arch Toxicol 2018; 92:3565-3583. [PMID: 30251054 DOI: 10.1007/s00204-018-2316-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 09/19/2018] [Indexed: 01/09/2023]
Abstract
Dammar resin is a natural food additive and flavoring substance present in many foods and drinks. The present study evaluates the chronic toxicity and carcinogenicity of dietary dammar resin in F344 rats. Dietary concentrations in the 52-week chronic toxicity study were 0, 0.03, 0.125, 0.5, or 2%. The major treatment-related deleterious effects were body weight suppression, increased relative liver weight, and low hemoglobin levels in males and females. Foci of cellular alteration in the liver were observed in the male 2% group, but not in any other group. The no-observed-adverse-effect level for chronic toxicity was 0.125% for males (200.4 mg/kg b.w./day) and females (241.9 mg/kg b.w./day). Dietary concentrations in the 104-week carcinogenicity study were 0, 0.03, 0.5, or 2%. Dammar resin induced hemorrhagic diathesis in males and females, possibly via the inhibition of extrinsic and intrinsic coagulation pathways. Incidences of hepatocellular adenomas and carcinomas were significantly increased in the male 2% group, but not in any other group. In the 4-week subacute toxicity study, the livers of male rat-fed diet-containing 2% dammar resin had increased levels of protein oxidation and increased the expression of two anti-apoptotic and seven cytochrome P450 (CYP) genes. There was also an increased tendency of oxidative DNA damage. These findings demonstrate that dammar resin is hepatocarcinogenic in male F344 rats and underlines the roles of inhibition of apoptosis, induction of CYP enzymes, and oxidative stress in dammar resin-induced hepatocarcinogenesis.
Collapse
Affiliation(s)
- Min Gi
- Department of Molecular Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Masaki Fujioka
- Department of Molecular Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Shotaro Yamano
- Department of Molecular Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
- Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety, Hadano, 257-0015, Kanagawa, Japan
| | - Anna Kakehashi
- Department of Molecular Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Yuji Oishi
- Department of Molecular Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Takahiro Okuno
- Department of Molecular Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Nao Yukimatsu
- Department of Molecular Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Takashi Yamaguchi
- Department of Molecular Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Yoshiyuki Tago
- Department of Molecular Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Mistuaki Kitano
- Department of Molecular Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Shim-Mo Hayashi
- Global Scientific and Regulatory Affairs, San-Ei Gen F.F.I., Inc., 1-1-11 Sanwa-cho, Toyonaka, 561-8588, Osaka, Japan
| | - Hideki Wanibuchi
- Department of Molecular Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan.
| |
Collapse
|
2
|
Kanki M, Gi M, Fujioka M, Wanibuchi H. Detection of non-genotoxic hepatocarcinogens and prediction of their mechanism of action in rats using gene marker sets. J Toxicol Sci 2016; 41:281-92. [PMID: 26961613 DOI: 10.2131/jts.41.281] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Several studies have successfully detected hepatocarcinogenicity in rats based on gene expression data. However, prediction of hepatocarcinogens with certain mechanisms of action (MOAs), such as enzyme inducers and peroxisome proliferator-activated receptor α (PPARα) agonists, can prove difficult using a single model and requires a highly toxic dose. Here, we constructed a model for detecting non-genotoxic (NGTX) hepatocarcinogens and predicted their MOAs in rats. Gene expression data deposited in the Open Toxicogenomics Project-Genomics Assisted Toxicity Evaluation System (TG-GATEs) was used to investigate gene marker sets. Principal component analysis (PCA) was applied to discriminate different MOAs, and a support vector machine algorithm was applied to construct the prediction model. This approach identified 106 probe sets as gene marker sets for PCA and enabled the prediction model to be constructed. In PCA, NGTX hepatocarcinogens were classified as follows based on their MOAs: cytotoxicants, PPARα agonists, or enzyme inducers. The prediction model detected hepatocarcinogenicity with an accuracy of more than 90% in 14- and 28-day repeated-dose studies. In addition, the doses capable of predicting NGTX hepatocarcinogenicity were close to those required in rat carcinogenicity assays. In conclusion, our PCA and prediction model using gene marker sets will help assess the risk of hepatocarcinogenicity in humans based on MOAs and reduce the number of two-year rodent bioassays.
Collapse
Affiliation(s)
- Masayuki Kanki
- Department of Molecular Pathology, Osaka City University Graduate School of Medicine
| | | | | | | |
Collapse
|
3
|
Xie XL, Gi M, Fujioka M, Doi K, Yamano S, Tachibana H, Fang H, Kakehashi A, Wanibuchi H. Ethanol-extracted propolis enhances BBN-initiated urinary bladder carcinogenesis via non-mutagenic mechanisms in rats. Food Chem Toxicol 2015; 83:193-200. [DOI: 10.1016/j.fct.2015.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 06/02/2015] [Accepted: 06/10/2015] [Indexed: 10/23/2022]
|
4
|
Sanpa S, Popova M, Bankova V, Tunkasiri T, Eitssayeam S, Chantawannakul P. Antibacterial Compounds from Propolis of Tetragonula laeviceps and Tetrigona melanoleuca (Hymenoptera: Apidae) from Thailand. PLoS One 2015; 10:e0126886. [PMID: 25992582 PMCID: PMC4436274 DOI: 10.1371/journal.pone.0126886] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 03/26/2015] [Indexed: 11/19/2022] Open
Abstract
This study investigated the chemical composition and antimicrobial activity of propolis collected from two stingless bee species Tetragonula laeviceps and Tetrigona melanoleuca (Hymenoptera: Apidae). Six xanthones, one triterpene and one lignane were isolated from Tetragonula laeviceps propolis. Triterpenes were the main constituents in T. melanoleuca propolis. The ethanol extract and isolated compounds from T. laeviceps propolis showed a higher antibacterial activity than those of T. melanoleuca propolis as the constituent α-mangostin exhibited the strongest activity. Xanthones were found in propolis for the first time; Garcinia mangostana (Mangosteen) was the most probable plant source. In addition, this is the first report on the chemical composition and bioactivity of propolis from T. melanoleuca.
Collapse
Affiliation(s)
- Sirikarn Sanpa
- The Graduate School, Chiang Mai University, Chiang Mai, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Milena Popova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Vassya Bankova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Tawee Tunkasiri
- Department of Physics, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Sukum Eitssayeam
- Department of Physics, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Panuwan Chantawannakul
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- * E-mail:
| |
Collapse
|
5
|
L-Leucine and L-isoleucine enhance growth of BBN-induced urothelial tumors in the rat bladder by modulating expression of amino acid transporters and tumorigenesis-associated genes. Food Chem Toxicol 2013; 59:137-44. [PMID: 23747718 DOI: 10.1016/j.fct.2013.05.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 05/09/2013] [Accepted: 05/29/2013] [Indexed: 12/19/2022]
Abstract
We investigated the underlying mechanisms of L-leucine and L-isoleucine mediated promotion of bladder carcinogenesis using an initiation-promotion model. Rats were administered N-butyl-N-(4-hydroxybutyl) nitrosamine for 4 weeks and then fed AIN-93G basal diet or diet supplemented with L-leucine or L-isoleucine for 8 weeks followed by the basal diet for another 8 weeks. At the end of the experiment, week 20, there was a significant elevation of papillary and nodular (PN) hyperplasia multiplicity in the amino acid groups. L-Leucine and L-isoleucine transporters were up-regulated in PN hyperplasias and/or bladder tumors compared with concomitant normal-appearing bladder urothelium at weeks 12 and/or 20 in all groups. In addition, in normal-appearing bladder urothelium, significantly increased mRNA levels of y+LAT1, LAT2, LAT4, and 4F2hc were observed in the amino acid groups compared with the BBN control group at both weeks 12 and 20, and increased mRNA levels of LAT1 were observed at week 20. Furthermore, up-regulation of TNF-α, c-fos, β-catenin, p53, p21(Cip1/WAF1), cdk4, cyclin D1 and caspase 3 in the amino acid groups was detected in normal-appearing bladder urothelium. Overall, our results indicate that supplementation with l-leucine or l-isoleucine enhanced growth of bladder urothelial tumors by triggering expression of amino acid transporters and tumorigenesis-associated genes.
Collapse
|
6
|
Matsushita K, Kijima A, Ishii Y, Takasu S, Jin M, Kuroda K, Kawaguchi H, Miyoshi N, Nohmi T, Ogawa K, Umemura T. Development of a Medium-term Animal Model Using gpt Delta Rats to Evaluate Chemical Carcinogenicity and Genotoxicity. J Toxicol Pathol 2013; 26:19-27. [PMID: 23723564 PMCID: PMC3620210 DOI: 10.1293/tox.26.19] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 11/06/2012] [Indexed: 12/19/2022] Open
Abstract
In this study, the potential for development of an animal model (GPG46) capable of rapidly detecting chemical carcinogenicity and the underlying mechanisms of action were examined in gpt delta rats using a reporter gene assay to detect mutations and a medium-term rat liver bioassay to detect tumor promotion. The tentative protocol for the GPG46 model was developed based on the results of dose-response exposure to diethylnitrosamine (DEN) and treatment with phenobarbital over time following DEN administration. Briefly, gpt delta rats were exposed to various chemicals for 4 weeks, followed by a partial hepatectomy (PH) to collect samples for an in vivo mutation assay. The mutant frequencies (MFs) of the reporter genes were examined as an indication of tumor initiation. A single intraperitoneal (ip) injection of 10 mg/kg DEN was administered to rats 18 h after the PH to initiate hepatocytes. Tumor-promoting activity was evaluated based on the development of glutathione S-transferase placental form (GST-P)-positive foci at week 10. The genotoxic carcinogens 2-acetylaminofluorene (2-AAF), 2-amino-3-methylimidazo [4,5-f] quinolone (IQ) and safrole (SF), the non-genotoxic carcinogens piperonyl butoxide (PBO) and phenytoin (PHE), the non-carcinogen acetaminophen (APAP) and the genotoxic non-hepatocarcinogen aristolochic acid (AA) were tested to validate the GPG46 model. The validation results indicate that the GPG46 model could be a powerful tool in understanding chemical carcinogenesis and provide valuable information regarding human risk hazards.
Collapse
Affiliation(s)
- Kohei Matsushita
- Division of Pathology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|