1
|
Baverstock K. The Gene: An appraisal. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 186:e73-e88. [PMID: 38044248 DOI: 10.1016/j.pbiomolbio.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The gene can be described as the foundational concept of modern biology. As such, it has spilled over into daily discourse, yet it is acknowledged among biologists to be ill-defined. Here, following a short history of the gene, I analyse critically its role in inheritance, evolution, development, and morphogenesis. Wilhelm Johannsen's genotype-conception, formulated in 1910, has been adopted as the foundation stone of genetics, giving the gene a higher degree of prominence than is justified by the evidence. An analysis of the results of the Long-Term Evolution Experiment (LTEE) with E. coli bacteria, grown over 60,000 generations, does not support spontaneous gene mutation as the source of variance for natural selection. From this it follows that the gene is not Mendel's unit of inheritance: that must be Johannsen's transmission-conception at the gamete phenotype level, a form of inheritance that Johannsen did not consider. Alternatively, I contend that biology viewed on the bases of thermodynamics, complex system dynamics, and self-organisation, provides a new framework for the foundations of biology. In this framework, the gene plays a passive role as a vital information store: it is the phenotype that plays the active role in inheritance, evolution, development, and morphogenesis.
Collapse
Affiliation(s)
- Keith Baverstock
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio Campus, Kuopio, Finland.
| |
Collapse
|
2
|
Rawsthorne-Manning H, Calahorro F, G. Izquierdo P, Tardy P, Boulin T, Holden-Dye L, O’Connor V, Dillon J. Confounds of using the unc-58 selection marker highlights the importance of genotyping co-CRISPR genes. PLoS One 2022; 17:e0253351. [PMID: 35041685 PMCID: PMC8765651 DOI: 10.1371/journal.pone.0253351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/29/2021] [Indexed: 11/19/2022] Open
Abstract
Multiple advances have been made to increase the efficiency of CRISPR/Cas9 editing using the model genetic organism Caenorhabditis elegans (C. elegans). Here we report on the use of co-CRISPR 'marker' genes: worms in which co-CRISPR events have occurred have overt, visible phenotypes which facilitates the selection of worms that harbour CRISPR events in the target gene. Mutation in the co-CRISPR gene is then removed by outcrossing to wild type but this can be challenging if the CRISPR and co-CRISPR gene are hard to segregate. However, segregating away the co-CRISPR modified gene can be less challenging if the worms selected appear wild type and are selected from a jackpot brood. These are broods in which a high proportion of the progeny of a single injected worm display the co-CRISPR phenotype suggesting high CRISPR efficiency. This can deliver worms that harbour the desired mutation in the target gene locus without the co-CRISPR mutation. We have successfully generated a discrete mutation in the C. elegans nlg-1 gene using this method. However, in the process of sequencing to authenticate editing in the nlg-1 gene we discovered genomic rearrangements that arise at the co-CRISPR gene unc-58 that by visual observation were phenotypically silent but nonetheless resulted in a significant reduction in motility scored by thrashing behaviour. This highlights that careful consideration of the hidden consequences of co-CRISPR mediated genetic changes should be taken before downstream analysis of gene function. Given this, we suggest sequencing of co-CRISPR genes following CRISPR procedures that utilise phenotypic selection as part of the pipeline.
Collapse
Affiliation(s)
| | - Fernando Calahorro
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Patricia G. Izquierdo
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Philippe Tardy
- Institut NeuroMyoGène, Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Lyon, France
| | - Thomas Boulin
- Institut NeuroMyoGène, Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Lyon, France
| | - Lindy Holden-Dye
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Vincent O’Connor
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - James Dillon
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
3
|
Baverstock K. The gene: An appraisal. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 164:46-62. [PMID: 33979646 DOI: 10.1016/j.pbiomolbio.2021.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/14/2021] [Accepted: 04/22/2021] [Indexed: 11/29/2022]
Abstract
The gene can be described as the foundational concept of modern biology. As such, it has spilled over into daily discourse, yet it is acknowledged among biologists to be ill-defined. Here, following a short history of the gene, I analyse critically its role in inheritance, evolution, development, and morphogenesis. Wilhelm Johannsen's genotype-conception, formulated in 1910, has been adopted as the foundation stone of genetics, giving the gene a higher degree of prominence than is justified by the evidence. An analysis of the results of the Long-Term Evolution Experiment (LTEE) with E. coli bacteria, grown over 60,000 generations, does not support spontaneous gene mutation as the source of variance for natural selection. From this it follows that the gene is not Mendel's unit of inheritance: that must be Johannsen's transmission-conception at the gamete phenotype level, a form of inheritance that Johannsen did not consider. Alternatively, I contend that biology viewed on the bases of thermodynamics, complex system dynamics and self-organisation, provides a new framework for the foundations of biology. In this framework, the gene plays a passive role as a vital information store: it is the phenotype that plays the active role in inheritance, evolution, development, and morphogenesis.
Collapse
Affiliation(s)
- Keith Baverstock
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio Campus, Kuopio, Finland.
| |
Collapse
|
4
|
Deng X, Tchieu J, Higginson DS, Hsu KS, Feldman R, Studer L, Shaham S, Powell SN, Fuks Z, Kolesnick R. Disabling the Fanconi Anemia Pathway in Stem Cells Leads to Radioresistance and Genomic Instability. Cancer Res 2021; 81:3706-3716. [PMID: 33941615 DOI: 10.1158/0008-5472.can-20-3309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 03/15/2021] [Accepted: 04/28/2021] [Indexed: 11/16/2022]
Abstract
Fanconi anemia is an inherited genome instability syndrome characterized by interstrand cross-link hypersensitivity, congenital defects, bone marrow failure, and cancer predisposition. Although DNA repair mediated by Fanconi anemia genes has been extensively studied, how inactivation of these genes leads to specific cellular phenotypic consequences associated with Fanconi anemia is not well understood. Here we report that Fanconi anemia stem cells in the C. elegans germline and in murine embryos display marked nonhomologous end joining (NHEJ)-dependent radiation resistance, leading to survival of progeny cells carrying genetic lesions. In contrast, DNA cross-linking does not induce generational genomic instability in Fanconi anemia stem cells, as widely accepted, but rather drives NHEJ-dependent apoptosis in both species. These findings suggest that Fanconi anemia is a stem cell disease reflecting inappropriate NHEJ, which is mutagenic and carcinogenic as a result of DNA misrepair, while marrow failure represents hematopoietic stem cell apoptosis. SIGNIFICANCE: This study finds that Fanconi anemia stem cells preferentially activate error-prone NHEJ-dependent DNA repair to survive irradiation, thereby conferring generational genomic instability that is instrumental in carcinogenesis.
Collapse
Affiliation(s)
- Xinzhu Deng
- Laboratory of Signal Transduction, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jason Tchieu
- Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Daniel S Higginson
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kuo-Shun Hsu
- Laboratory of Signal Transduction, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Regina Feldman
- Laboratory of Signal Transduction, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lorenz Studer
- Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Shai Shaham
- The Rockefeller University, New York, New York
| | - Simon N Powell
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Zvi Fuks
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Richard Kolesnick
- Laboratory of Signal Transduction, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
5
|
Electromagnetic Fields, Genomic Instability and Cancer: A Systems Biological View. Genes (Basel) 2019; 10:genes10060479. [PMID: 31242701 PMCID: PMC6627294 DOI: 10.3390/genes10060479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/19/2019] [Accepted: 06/22/2019] [Indexed: 12/12/2022] Open
Abstract
This review discusses the use of systems biology in understanding the biological effects of electromagnetic fields, with particular focus on induction of genomic instability and cancer. We introduce basic concepts of the dynamical systems theory such as the state space and attractors and the use of these concepts in understanding the behavior of complex biological systems. We then discuss genomic instability in the framework of the dynamical systems theory, and describe the hypothesis that environmentally induced genomic instability corresponds to abnormal attractor states; large enough environmental perturbations can force the biological system to leave normal evolutionarily optimized attractors (corresponding to normal cell phenotypes) and migrate to less stable variant attractors. We discuss experimental approaches that can be coupled with theoretical systems biology such as testable predictions, derived from the theory and experimental methods, that can be used for measuring the state of the complex biological system. We also review potentially informative studies and make recommendations for further studies.
Collapse
|
6
|
Sarapultseva EI, Dubrova YE. The long-term effects of acute exposure to ionising radiation on survival and fertility in Daphnia magna. ENVIRONMENTAL RESEARCH 2016; 150:138-143. [PMID: 27288911 DOI: 10.1016/j.envres.2016.05.046] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/17/2016] [Accepted: 05/26/2016] [Indexed: 06/06/2023]
Abstract
The results of recent studies have provided strong evidence for the transgenerational effects of parental exposure to ionising radiation and chemical mutagens. However, the transgenerational effects of parental exposure on survival and fertility remain poorly understood. To establish whether parental irradiation can affect the survival and fertility of directly exposed organisms and their offspring, crustacean Daphnia magna were given 10, 100, 1000 and 10,000mGy of acute γ-rays. Exposure to 1000 and 10,000mGy significantly compromised the viability of irradiated Daphnia and their first-generation progeny, but did not affect the second-generation progeny. The fertility of F0 and F1Daphnia gradually declined with the dose of parental exposure and significantly decreased at dose of 100mGy and at higher doses. The effects of parental irradiation on the number of broods were only observed among the F0Daphnia exposed to 1000 and 10,000mGy, whereas the brood size was equally affected in the two consecutive generations. In contrast, the F2 total fertility was compromised only among progeny of parents that received the highest dose of 10,000mGy. We propose that the decreased fertility observed among the F2 progeny of parents exposed to 10,000mGy is attributed to transgenerational effects of parental irradiation. Our results also indicate a substantial recovery of the F2 progeny of irradiated F0Daphnia exposed to the lower doses of acute γ-rays.
Collapse
Affiliation(s)
- Elena I Sarapultseva
- Department of Biology, Institute of Nuclear Power Engineering NRNU MEPhI, Studgorodok,1, Obninsk, Kaluga Region 249040, Russian Federation; National Research Nuclear University "MEPhI", Kashirskoe Highway, 31, Moscow 115409, Russian Federation
| | - Yuri E Dubrova
- Department of Genetics, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom; Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina Str. 3, 11933 Moscow, Russian Federation.
| |
Collapse
|
7
|
Taira W, Hiyama A, Nohara C, Sakauchi K, Otaki JM. Ingestional and transgenerational effects of the Fukushima nuclear accident on the pale grass blue butterfly. JOURNAL OF RADIATION RESEARCH 2015; 56 Suppl 1:i2-i18. [PMID: 26661851 PMCID: PMC4732531 DOI: 10.1093/jrr/rrv068] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 08/14/2015] [Accepted: 10/04/2015] [Indexed: 06/01/2023]
Abstract
One important public concern in Japan is the potential health effects on animals and humans that live in the Tohoku-Kanto districts associated with the ingestion of foods contaminated with artificial radionuclides from the collapsed Fukushima Dai-ichi Nuclear Power Plant. Additionally, transgenerational or heritable effects of radiation exposure are also important public concerns because these effects could cause long-term changes in animal and human populations. Here, we concisely review our findings and implications related to the ingestional and transgenerational effects of radiation exposure on the pale grass blue butterfly, Zizeeria maha, which coexists with humans. The butterfly larval ingestion of contaminated leaves found in areas of human habitation, even at low doses, resulted in morphological abnormalities and death for some individuals, whereas other individuals were not affected, at least morphologically. This variable sensitivity serves as a basis for the adaptive evolution of radiation resistance. The distribution of abnormality and mortality rates from low to high doses fits well with a Weibull function model or a power function model. The offspring generated by morphologically normal individuals that consumed contaminated leaves exhibited high mortality rates when fed contaminated leaves; importantly, low mortality rates were restored when they were fed non-contaminated leaves. Our field monitoring over 3 years (2011-2013) indicated that abnormality and mortality rates peaked primarily in the fall of 2011 and decreased afterwards to normal levels. These findings indicate high impacts of early exposure and transgenerationally accumulated radiation effects over a specific period; however, the population regained normality relatively quickly after ∼15 generations within 3 years.
Collapse
Affiliation(s)
- Wataru Taira
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| | - Atsuki Hiyama
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| | - Chiyo Nohara
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| | - Ko Sakauchi
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| | - Joji M Otaki
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| |
Collapse
|
8
|
Huumonen K, Korkalainen M, Viluksela M, Lahtinen T, Naarala J, Juutilainen J. Role of microRNAs and DNA Methyltransferases in Transmitting Induced Genomic Instability between Cell Generations. Front Public Health 2014; 2:139. [PMID: 25309892 PMCID: PMC4163984 DOI: 10.3389/fpubh.2014.00139] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 08/26/2014] [Indexed: 12/17/2022] Open
Abstract
There is limited understanding of how radiation or chemicals induce genomic instability, and how the instability is epigenetically transmitted to the progeny of exposed cells or organisms. Here, we measured the expression of microRNAs (miRNAs) and DNA methyltransferases (DNMTs) in murine embryonal fibroblasts exposed to ionizing radiation or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), which were previously shown to induce genomic instability in this cell line. Cadmium was used as a reference agent that does not induce genomic instability in our experimental model. Measurements at 8 and 15 days after exposure did not identify any such persistent changes that could be considered as signals transmitting genomic instability to the progeny of exposed cells. However, measurements at 2 days after exposure revealed findings that may reflect initial stages of genomic instability. Changes that were common to TCDD and two doses of radiation (but not to cadmium) included five candidate signature miRNAs and general up-regulation of miRNA expression. Expression of DNMT3a, DNMT3b, and DNMT2 was suppressed by cadmium but not by TCDD or radiation, consistently with the hypothesis that sufficient expression of DNMTs is necessary in the initial phase of induced genomic instability.
Collapse
Affiliation(s)
- Katriina Huumonen
- Department of Environmental Science, University of Eastern Finland , Kuopio , Finland
| | - Merja Korkalainen
- Department of Environmental Health, National Institute for Health and Welfare , Kuopio , Finland
| | - Matti Viluksela
- Department of Environmental Science, University of Eastern Finland , Kuopio , Finland ; Department of Environmental Health, National Institute for Health and Welfare , Kuopio , Finland
| | - Tapani Lahtinen
- Cancer Center, Kuopio University Hospital , Kuopio , Finland
| | - Jonne Naarala
- Department of Environmental Science, University of Eastern Finland , Kuopio , Finland
| | - Jukka Juutilainen
- Department of Environmental Science, University of Eastern Finland , Kuopio , Finland
| |
Collapse
|
9
|
Huumonen K, Korkalainen M, Boman E, Heikkilä J, Höytö A, Lahtinen T, Luukkonen J, Viluksela M, Naarala J, Juutilainen J. Dose- and time-dependent changes of micronucleus frequency and gene expression in the progeny of irradiated cells: two components in radiation-induced genomic instability? Mutat Res 2014; 765:32-39. [PMID: 24797401 DOI: 10.1016/j.mrfmmm.2014.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 04/11/2014] [Accepted: 04/12/2014] [Indexed: 06/03/2023]
Abstract
Murine embryonic C3H/10T½ fibroblasts were exposed to X-rays at doses of 0.2, 0.5, 1, 2 or 5 Gy. To follow the development of radiation-induced genomic instability (RIGI), the frequency of micronuclei was measured with flow cytometry at 2 days after exposure and in the progeny of the irradiated cells at 8 and 15 days after exposure. Gene expression was measured at the same points in time by PCR arrays profiling the expression of 84 cancer-relevant genes. The micronucleus results showed a gradual decrease in the slope of the dose-response curve between days 2 and 15. The data were consistent with a model assuming two components in RIGI. The first component is characterized by dose-dependent increase in micronuclei. It may persist more than ten cell generations depending on dose, but eventually disappears. The second component is more persistent and independent of dose above a threshold higher than 0.2 Gy. Gene expression analysis 2 days after irradiation at 5 Gy showed consistent changes in genes that typically respond to DNA damage. However, the consistency of changes decreased with time, suggesting that non-specificity and increased heterogeneity of gene expression are characteristic to the second, more persistent component of RIGI.
Collapse
Affiliation(s)
- Katriina Huumonen
- University of Eastern Finland, Department of Environmental Science, P.O. Box 1627, 70211 Kuopio, Finland
| | - Merja Korkalainen
- National Institute for Health and Welfare, Department of Environmental Health, P.O. Box 95, 70701 Kuopio, Finland
| | - Eeva Boman
- Kuopio University Hospital, Cancer Center, P.O. Box 1777, 70211 Kuopio, Finland
| | - Janne Heikkilä
- Kuopio University Hospital, Cancer Center, P.O. Box 1777, 70211 Kuopio, Finland
| | - Anne Höytö
- University of Eastern Finland, Department of Environmental Science, P.O. Box 1627, 70211 Kuopio, Finland
| | - Tapani Lahtinen
- Kuopio University Hospital, Cancer Center, P.O. Box 1777, 70211 Kuopio, Finland
| | - Jukka Luukkonen
- University of Eastern Finland, Department of Environmental Science, P.O. Box 1627, 70211 Kuopio, Finland
| | - Matti Viluksela
- National Institute for Health and Welfare, Department of Environmental Health, P.O. Box 95, 70701 Kuopio, Finland
| | - Jonne Naarala
- University of Eastern Finland, Department of Environmental Science, P.O. Box 1627, 70211 Kuopio, Finland
| | - Jukka Juutilainen
- University of Eastern Finland, Department of Environmental Science, P.O. Box 1627, 70211 Kuopio, Finland.
| |
Collapse
|
10
|
Choi VWY, Yu KN. Embryos of the zebrafish Danio rerio in studies of non-targeted effects of ionizing radiation. Cancer Lett 2013; 356:91-104. [PMID: 24176822 DOI: 10.1016/j.canlet.2013.10.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 10/16/2013] [Accepted: 10/22/2013] [Indexed: 01/17/2023]
Abstract
The use of embryos of the zebrafish Danio rerio as an in vivo tumor model for studying non-targeted effects of ionizing radiation was reviewed. The zebrafish embryo is an animal model, which enables convenient studies on non-targeted effects of both high-linear-energy-transfer (LET) and low-LET radiation by making use of both broad-beam and microbeam radiation. Zebrafish is also a convenient embryo model for studying radiobiological effects of ionizing radiation on tumors. The embryonic origin of tumors has been gaining ground in the past decades, and efforts to fight cancer from the perspective of developmental biology are underway. Evidence for the involvement of radiation-induced genomic instability (RIGI) and the radiation-induced bystander effect (RIBE) in zebrafish embryos were subsequently given. The results of RIGI were obtained for the irradiation of all two-cell stage cells, as well as 1.5 hpf zebrafish embryos by microbeam protons and broad-beam alpha particles, respectively. In contrast, the RIBE was observed through the radioadaptive response (RAR), which was developed against a subsequent challenging dose that was applied at 10 hpf when <0.2% and <0.3% of the cells of 5 hpf zebrafish embryos were exposed to a priming dose, which was provided by microbeam protons and broad-beam alpha particles, respectively. Finally, a perspective on the field, the need for future studies and the significance of such studies were discussed.
Collapse
Affiliation(s)
- V W Y Choi
- Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong
| | - K N Yu
- Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong; State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong.
| |
Collapse
|
11
|
Lack of genomic instability in bone marrow cells of SCID mice exposed whole-body to low-dose radiation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:1356-77. [PMID: 23549227 PMCID: PMC3709322 DOI: 10.3390/ijerph10041356] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Revised: 03/05/2013] [Accepted: 03/12/2013] [Indexed: 11/17/2022]
Abstract
It is clear that high-dose radiation is harmful. However, despite extensive research, assessment of potential health-risks associated with exposure to low-dose radiation (at doses below or equal to 0.1 Gy) is still challenging. Recently, we reported that 0.05 Gy of 137Cs gamma rays (the existing limit for radiation-exposure in the workplace) was incapable of inducing significant in vivo genomic instability (measured by the presence of late-occurring chromosomal damage at 6 months post-irradiation) in bone marrow (BM) cells of two mouse strains, one with constitutively high and one with intermediate levels of the repair enzyme DNA-dependent protein-kinase catalytic-subunit (DNA-PKcs). In this study, we present evidence for a lack of genomic instability in BM cells of the severely combined-immunodeficiency (SCID/J) mouse (which has an extremely low-level of DNA-PKcs activity) exposed whole-body to low-dose radiation (0.05 Gy). Together with our previous report, the data indicate that low-dose radiation (0.05 Gy) is incapable of inducing genomic instability in vivo (regardless of the levels of DNA-PKcs activity of the exposed mice), yet higher doses of radiation (0.1 and 1 Gy) do induce genomic instability in mice with intermediate and extremely low-levels of DNA-PKcs activity (indicating an important role of DNA-PKcs in DNA repair).
Collapse
|
12
|
Karotki AV, Baverstock K. What mechanisms/processes underlie radiation-induced genomic instability? Cell Mol Life Sci 2012; 69:3351-60. [PMID: 22955377 PMCID: PMC11115179 DOI: 10.1007/s00018-012-1148-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 08/22/2012] [Accepted: 08/23/2012] [Indexed: 01/11/2023]
Abstract
Radiation-induced genomic instability is a modification of the cell genome found in the progeny of irradiated somatic and germ cells but that is not confined on the initial radiation-induced damage and may occur de novo many generations after irradiation. Genomic instability in the germ line does not follow Mendelian segregation and may have unpredictable outcomes in every succeeding generation. This phenomenon, for which there is extensive experimental data and some evidence in human populations exposed to ionising radiation, is not taken into account in health risk assessments. It poses an unknown morbidity/mortality burden. Based on experimental data derived over the last 20 years (up to January 2012) six mechanistic explanations for the phenomenon have been proposed in the peer-reviewed literature. This article compares these hypotheses with the empirical data to test their fitness to explain the phenomenon. As a conclusion, the most convincing explanation of radiation-induced genomic instability attributes it to an irreversible regulatory change in the dynamic interaction network of the cellular gene products, as a response to non-specific molecular damage, thus entailing the rejection of the machine metaphor for the cell in favour of one appropriate to a complex dissipative dynamic system, such as a whirlpool. It is concluded that in order to evaluate the likely morbidity/mortality associated with radiation-induced genomic instability, it will be necessary to study the damage to processes by radiation rather than damage to molecules.
Collapse
Affiliation(s)
- Andrei V. Karotki
- Radiation Group, International Agency for Research on Cancer, International Agency for Research on Cancer, 150 Cours A. Thomas, 69372 Lyon, France
| | - Keith Baverstock
- Department of Environmental Science, University of Eastern Finland, Kuopio Campus, PL 1627, 70211 Kuopio, Finland
| |
Collapse
|