1
|
Wang B, Dong J, Yang F, Ju T, Li J, Wang J, Wang Y, Crabbe MJC, Tian Y, Wang Z. Use of Atomic Force Microscopy in UVB-Induced Chromosome Damage Provides Important Bioinformation for Cell Damage Assessment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13212-13221. [PMID: 37681704 DOI: 10.1021/acs.langmuir.3c01644] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
The chromosomal structure derived from UVB-stimulated HaCaT cells was detected by atomic force microscopy (AFM) to evaluate the effect of UVB irradiation. The results showed that the higher the UVB irradiation dose, the more the cells that had chromosome aberration. At the same time, different representative types of chromosome structural aberrations were investigated. We also revealed damage to both DNA and cells under the corresponding irradiation doses. It was found that the degree of DNA damage was directly proportional to the irradiation dose. The mechanical properties of cells were also changed after UVB irradiation, suggesting that cells experienced a series of chain reactions from inside to outside after irradiation. The high-resolution imaging of chromosome structures by AFM after UVB irradiation enables us to relate the damage between chromosomes, DNA, and cells caused by UVB irradiation and provides specific information on genetic effects.
Collapse
Affiliation(s)
- Bowei Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528437, China
| | - Jianjun Dong
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528437, China
| | - Fan Yang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528437, China
| | - Tuoyu Ju
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528437, China
| | - Jiani Li
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528437, China
| | - Junxi Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528437, China
| | - Ying Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528437, China
| | - M James C Crabbe
- Wolfson College, University of Oxford, Oxford OX2 6UD, U.K
- Institute of Biomedical and Environmental Science & Technology, and Institute for Research in Applicable Computing, University of Bedfordshire, Luton LU1 3JU, U.K
| | - Yanling Tian
- School of Engineering, University of Warwick, Coventry CV4 7AL, U.K
| | - Zuobin Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528437, China
- Institute of Biomedical and Environmental Science & Technology, and Institute for Research in Applicable Computing, University of Bedfordshire, Luton LU1 3JU, U.K
| |
Collapse
|
2
|
Wang B, Li J, Dong J, Yang F, Qu K, Wang Y, Zhang J, Song Z, Xu H, Wang Z, Wei H. Atomic force microscopy imaging of the G-banding process of chromosomes. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01584-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
3
|
Costa S, Carvalho S, Costa C, Coelho P, Silva S, Santos LS, Gaspar JF, Porto B, Laffon B, Teixeira JP. Increased levels of chromosomal aberrations and DNA damage in a group of workers exposed to formaldehyde. Mutagenesis 2015; 30:463-73. [PMID: 25711496 DOI: 10.1093/mutage/gev002] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Formaldehyde (FA) is a commonly used chemical in anatomy and pathology laboratories as a tissue preservative and fixative. Because of its sensitising properties, irritating effects and cancer implication, FA accounts probably for the most important chemical-exposure hazard concerning this professional group. Evidence for genotoxic effects and carcinogenic properties in humans is insufficient and conflicting, particularly in regard to the ability of inhaled FA to induce toxicity on other cells besides first contact tissues, such as buccal and nasal cells. To evaluate the effects of exposure to FA in human peripheral blood lymphocytes, a group of 84 anatomy pathology laboratory workers exposed occupationally to FA and 87 control subjects were tested for chromosomal aberrations (CAs) and DNA damage (comet assay). The level of exposure to FA in the workplace air was evaluated. The association between genotoxicity biomarkers and polymorphic genes of xenobiotic-metabolising and DNA repair enzymes were also assessed. The estimated mean level of FA exposure was 0.38±0.03 ppm. All cytogenetic endpoints assessed by CAs test and comet assay % tail DNA (%TDNA) were significantly higher in FA-exposed workers compared with controls. Regarding the effect of susceptibility biomarkers, results suggest that polymorphisms in CYP2E1 and GSTP1 metabolic genes, as well as, XRCC1 and PARP1 polymorphic genes involved in DNA repair pathways are associated with higher genetic damage in FA-exposed subjects. Data obtained in this study show a potential health risk situation of anatomy pathology laboratory workers exposed to FA (0.38 ppm). Implementation of security and hygiene measures may be crucial to decrease risk. The obtained information may also provide new important data to be used by health care programs and by governmental agencies responsible for occupational health and safety.
Collapse
Affiliation(s)
- Solange Costa
- Department of Environmental Health, National Institute of Health, Rua Alexandre Herculano nº 321, Porto 4000-055, Portugal Epidemiology Research Unit - Institute of Public Health (EPIUnit), University of Porto, Rua das Taipas nº135, Porto 4050-600, Portugal
| | - Sandra Carvalho
- Department of Environmental Health, National Institute of Health, Rua Alexandre Herculano nº 321, Porto 4000-055, Portugal
| | - Carla Costa
- Department of Environmental Health, National Institute of Health, Rua Alexandre Herculano nº 321, Porto 4000-055, Portugal Epidemiology Research Unit - Institute of Public Health (EPIUnit), University of Porto, Rua das Taipas nº135, Porto 4050-600, Portugal
| | - Patrícia Coelho
- Department of Environmental Health, National Institute of Health, Rua Alexandre Herculano nº 321, Porto 4000-055, Portugal
| | - Susana Silva
- Department of Environmental Health, National Institute of Health, Rua Alexandre Herculano nº 321, Porto 4000-055, Portugal
| | - Luís S Santos
- Toxomics, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Edifício CEDOC II, Rua Câmara Pestana nº 6, Lisboa 1150-082, Portugal Department of Health Sciences, Portuguese Catholic University, Estrada da Circunvalação, Viseu 3504-505, Portugal
| | - Jorge F Gaspar
- Toxomics, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Edifício CEDOC II, Rua Câmara Pestana nº 6, Lisboa 1150-082, Portugal
| | - Beatriz Porto
- Laboratory of Cytogenetics, Abel Salazar Institute for Biomedical Sciences (ICBAS), Rua de Jorge Viterbo Ferreira n.º 228, Porto 4050-313, Portugal
| | - Blanca Laffon
- DICOMOSA Group, Department of Psychology, Area of Psychobiology, Universidade da Coruña, Campus Elviña s/n, A Coruña 15071, Spain
| | - João P Teixeira
- Department of Environmental Health, National Institute of Health, Rua Alexandre Herculano nº 321, Porto 4000-055, Portugal Epidemiology Research Unit - Institute of Public Health (EPIUnit), University of Porto, Rua das Taipas nº135, Porto 4050-600, Portugal
| |
Collapse
|