1
|
Brown N, Finnon R, Finnon P, McCarron R, Cruz-Garcia L, O’Brien G, Herbert E, Scudamore CL, Morel E, Badie C. Spi1 R235C point mutation confers hypersensitivity to radiation-induced acute myeloid leukemia in mice. iScience 2023; 26:107530. [PMID: 37664628 PMCID: PMC10469541 DOI: 10.1016/j.isci.2023.107530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/03/2023] [Accepted: 07/28/2023] [Indexed: 09/05/2023] Open
Abstract
Ionizing radiation (IR) is a risk factor for acute myeloid leukemia (rAML). Murine rAMLs feature both hemizygous chromosome 2 deletions (Del2) and point mutations (R235) within the hematopoietic regulatory gene Spi1. We generated a heterozygous CBA Spi1 R235 mouse (CBASpm/+) which develops de novo AML with 100% incidence by ∼12 months old and shows a dose-dependent reduction in latency following X-irradiation. These effects are reduced on an AML-resistant C57Bl6 genetic background. CBASpm/Gfp reporter mice show increased Gfp expression, indicating compensation for Spm-induced Spi1 haploinsufficiency. Del2 is always detected in both de novo and rAMLs, indicating that biallelic Spi1 mutation is required for AML. CBASpm/+ mice show that a single Spm modification is sufficient for initiating AML development with complete penetrance, via the "two-hit" mechanism and this is accelerated by IR exposure. Similar SPI1/PU.1 polymorphisms in humans could potentially lead to enhanced susceptibility to IR following medical or environmental exposure.
Collapse
Affiliation(s)
- Natalie Brown
- Cancer Mechanisms and Biomarkers Group Radiation Effects Department, Radiation, Chemical and Environmental Hazards, UK Health Security Agency (UKHSA), Didcot OX11 ORQ, UK
| | - Rosemary Finnon
- Cancer Mechanisms and Biomarkers Group Radiation Effects Department, Radiation, Chemical and Environmental Hazards, UK Health Security Agency (UKHSA), Didcot OX11 ORQ, UK
| | - Paul Finnon
- Cancer Mechanisms and Biomarkers Group Radiation Effects Department, Radiation, Chemical and Environmental Hazards, UK Health Security Agency (UKHSA), Didcot OX11 ORQ, UK
| | - Roisin McCarron
- Cancer Mechanisms and Biomarkers Group Radiation Effects Department, Radiation, Chemical and Environmental Hazards, UK Health Security Agency (UKHSA), Didcot OX11 ORQ, UK
| | - Lourdes Cruz-Garcia
- Cancer Mechanisms and Biomarkers Group Radiation Effects Department, Radiation, Chemical and Environmental Hazards, UK Health Security Agency (UKHSA), Didcot OX11 ORQ, UK
| | - Grainne O’Brien
- Cancer Mechanisms and Biomarkers Group Radiation Effects Department, Radiation, Chemical and Environmental Hazards, UK Health Security Agency (UKHSA), Didcot OX11 ORQ, UK
| | | | | | - Edouard Morel
- Cancer Mechanisms and Biomarkers Group Radiation Effects Department, Radiation, Chemical and Environmental Hazards, UK Health Security Agency (UKHSA), Didcot OX11 ORQ, UK
| | - Christophe Badie
- Cancer Mechanisms and Biomarkers Group Radiation Effects Department, Radiation, Chemical and Environmental Hazards, UK Health Security Agency (UKHSA), Didcot OX11 ORQ, UK
| |
Collapse
|
2
|
Klokov D, Applegate K, Badie C, Brede DA, Dekkers F, Karabulutoglu M, Le Y, Rutten EA, Lumniczky K, Gomolka M. International expert group collaboration for developing an adverse outcome pathway for radiation induced leukaemia. Int J Radiat Biol 2022; 98:1802-1815. [PMID: 36040845 DOI: 10.1080/09553002.2022.2117873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE The concept of the adverse outcome pathway (AOP) has recently gained significant attention as to its potential for incorporation of mechanistic biological information into the assessment of adverse health outcomes following ionizing radiation (IR) exposure. This work is an account of the activities of an international expert group formed specifically to develop an AOP for IR-induced leukaemia. Group discussions were held during dedicated sessions at the international AOP workshop jointly organized by the MELODI (Multidisciplinary European Low Dose Initiative) and the ALLIANCE (European Radioecology Alliance) associations to consolidate knowledge into a number of biological key events causally linked by key event relationships and connecting a molecular initiating event with the adverse outcome. Further knowledge review to generate a weight of evidence support for the Key Event Relationships (KERs) was undertaken using a systematic review approach. CONCLUSIONS An AOP for IR-induced acute myeloid leukaemia was proposed and submitted for review to the OECD-curated AOP-wiki (aopwiki.org). The systematic review identified over 500 studies that link IR, as a stressor, to leukaemia, as an adverse outcome. Knowledge gap identification, although requiring a substantial effort via systematic review of literature, appears to be one of the major added values of the AOP concept. Further work, both within this leukaemia AOP working group and other similar working groups, is warranted and is anticipated to produce highly demanded products for the radiation protection research community.
Collapse
Affiliation(s)
- Dmitry Klokov
- Laboratory of Experimental Radiotoxicology and Radiobiology, Institute for Radiological Protection and Nuclear Safety, Fontenay-aux-Roses, France.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | - Kimberly Applegate
- Department of Radiology, University of Kentucky College of Medicine (retired), Lexington, KY, USA
| | - Christophe Badie
- Cancer Mechanisms and Biomarkers group, Department of Radiation Effects, Radiation, Chemical and Environmental, UK Health Security Agency, Oxfordshire, United Kingdom
| | - Dag Anders Brede
- Centre for Environmental Radioactivity (CERAD), Faculty of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), Norway
| | - Fieke Dekkers
- Mathematical Institute, Utrecht University, Utrecht, The Netherlands.,Netherlands National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Melis Karabulutoglu
- Cancer Mechanisms and Biomarkers group, Department of Radiation Effects, Radiation, Chemical and Environmental, UK Health Security Agency, Oxfordshire, United Kingdom
| | | | - Eric Andreas Rutten
- Cancer Mechanisms and Biomarkers group, Department of Radiation Effects, Radiation, Chemical and Environmental, UK Health Security Agency, Oxfordshire, United Kingdom
| | - Katalin Lumniczky
- Radiation Biology, Federal Office for Radiation Protection BfS, Oberschleißheim, Germany
| | - Maria Gomolka
- Unit of Radiation Medicine, Department of Radiobiology and Radiohygiene, National Public Health Centre, Budapest, Hungary
| |
Collapse
|
3
|
Stouten S, Balkenende B, Roobol L, Lunel SV, Badie C, Dekkers F. Hyper-radiosensitivity affects low-dose acute myeloid leukemia incidence in a mathematical model. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2022; 61:361-373. [PMID: 35864346 PMCID: PMC9334435 DOI: 10.1007/s00411-022-00981-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
In vitro experiments show that the cells possibly responsible for radiation-induced acute myeloid leukemia (rAML) exhibit low-dose hyper-radiosensitivity (HRS). In these cells, HRS is responsible for excess cell killing at low doses. Besides the endpoint of cell killing, HRS has also been shown to stimulate the low-dose formation of chromosomal aberrations such as deletions. Although HRS has been investigated extensively, little is known about the possible effect of HRS on low-dose cancer risk. In CBA mice, rAML can largely be explained in terms of a radiation-induced Sfpi1 deletion and a point mutation in the remaining Sfpi1 gene copy. The aim of this paper is to present and quantify possible mechanisms through which HRS may influence low-dose rAML incidence in CBA mice. To accomplish this, a mechanistic rAML CBA mouse model was developed to study HRS-dependent AML onset after low-dose photon irradiation. The rAML incidence was computed under the assumptions that target cells: (1) do not exhibit HRS; (2) HRS only stimulates cell killing; or (3) HRS stimulates cell killing and the formation of the Sfpi1 deletion. In absence of HRS (control), the rAML dose-response curve can be approximated with a linear-quadratic function of the absorbed dose. Compared to the control, the assumption that HRS stimulates cell killing lowered the rAML incidence, whereas increased incidence was observed at low doses if HRS additionally stimulates the induction of the Sfpi1 deletion. In conclusion, cellular HRS affects the number of surviving pre-leukemic cells with an Sfpi1 deletion which, depending on the HRS assumption, directly translates to a lower/higher probability of developing rAML. Low-dose HRS may affect cancer risk in general by altering the probability that certain mutations occur/persist.
Collapse
Affiliation(s)
- Sjors Stouten
- Center for Environmental Safety and Security, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Department of Mathematics, Utrecht University, Utrecht, The Netherlands
| | - Ben Balkenende
- Department of Mathematics, Utrecht University, Utrecht, The Netherlands
| | - Lars Roobol
- Center for Environmental Safety and Security, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | | | - Christophe Badie
- Cancer Mechanisms and Biomarkers group, Radiation Effects Department, Radiation, Chemical and Environmental Hazards, UK Health Security Agency, Chilton, Didcot, Oxon, OX11 0RQ UK
| | - Fieke Dekkers
- Center for Environmental Safety and Security, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Department of Mathematics, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
4
|
Stouten S, Verduyn Lunel S, Finnon R, Badie C, Dekkers F. Modeling low-dose radiation-induced acute myeloid leukemia in male CBA/H mice. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2021; 60:49-60. [PMID: 33221961 PMCID: PMC7902600 DOI: 10.1007/s00411-020-00880-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 11/01/2020] [Indexed: 06/11/2023]
Abstract
The effect of low-dose ionizing radiation exposure on leukemia incidence remains poorly understood. Possible dose-response curves for various forms of leukemia are largely based on cohorts of atomic bomb survivors. Animal studies can contribute to an improved understanding of radiation-induced acute myeloid leukemia (rAML) in humans. In male CBA/H mice, incidence of rAML can be described by a two-hit model involving a radiation-induced deletion with Sfpi1 gene copy loss and a point mutation in the remaining Sfpi1 allele. In the present study (historical) mouse data were used and these processes were translated into a mathematical model to study photon-induced low-dose AML incidence in male CBA/H mice following acute exposure. Numerical model solutions for low-dose rAML incidence and diagnosis times could respectively be approximated with a model linear-quadratic in radiation dose and a normal cumulative distribution function. Interestingly, the low-dose incidence was found to be proportional to the modeled number of cells carrying the Sfpi1 deletion present per mouse following exposure. After making only model-derived high-dose rAML estimates available to extrapolate from, the linear-quadratic model could be used to approximate low-dose rAML incidence calculated with our mouse model. The accuracy in estimating low-dose rAML incidence when extrapolating from a linear model using a low-dose effectiveness factor was found to depend on whether a data transformation was used in the curve fitting procedure.
Collapse
Affiliation(s)
- Sjors Stouten
- Netherlands National Institute for Public Health and the Environment, Bilthoven, The Netherlands.
- Mathematical Institute, Utrecht University, Utrecht, 3508 TA, The Netherlands.
| | | | - Rosemary Finnon
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Didcot, OX11 ORQ, UK
| | - Christophe Badie
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Didcot, OX11 ORQ, UK
| | - Fieke Dekkers
- Netherlands National Institute for Public Health and the Environment, Bilthoven, The Netherlands
- Mathematical Institute, Utrecht University, Utrecht, 3508 TA, The Netherlands
| |
Collapse
|
5
|
Maleki P, Gourabi H, Tahmaseb M, Golkar-Narenji A, Bazrgar M. Lapatinib Decreases the Preimplantation Aneuploidy Rate of in vitro Fertilized Mouse Embryos without Affecting Completion of Preimplantation Development. Cytogenet Genome Res 2020; 160:680-687. [PMID: 33176309 DOI: 10.1159/000511371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 09/06/2020] [Indexed: 11/19/2022] Open
Abstract
One of the major reasons for implantation failure and spontaneous abortion is a high incidence of preimplantation chromosomal aneuploidy. Lapatinib simultaneously inhibits EGFR and HER2, leading to apoptosis. We hypothesized a higher sensitivity for aneuploid cells in preimplantation embryos to lapatinib based on reports of aneuploid cell lines being sensitive to some anticancer drugs. Late 2-cell mouse embryos were treated with lapatinib after determining a nontoxic dose. Morphologies were recorded 24, 48, and 60 hours later. The effect of lapatinib on the aneuploidy rate was evaluated by studying blastocyst cells using FISH. Although the rate of development to 8-cell and morula stage was higher in the control group (p < 0.05), there was no difference in development to the blastocyst stage at the same studied intervals between lapatinib-treated and control groups (p = 0.924). The mean number of cells in morula and blastocyst stages were not different between the groups (p = 0.331 and p = 0.175, respectively). The frequency of aneuploid cells and diploid embryos was, respectively, significantly lower and higher in lapatinib-treated embryos, (p < 0.001). Since lapatinib treatment reduced the aneuploidy rate without impact on the development of mouse preimplantation embryos to the blastocyst stage and number of total cells, lapatinib seems useful for prevention of preimplantation aneuploidy in in vitro fertilization.
Collapse
Affiliation(s)
- Parvaneh Maleki
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.,Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Hamid Gourabi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mohammad Tahmaseb
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Afsaneh Golkar-Narenji
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Masood Bazrgar
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran,
| |
Collapse
|
6
|
Sas V, Blag C, Zaharie G, Puscas E, Lisencu C, Andronic-Gorcea N, Pasca S, Petrushev B, Chis I, Marian M, Dima D, Teodorescu P, Iluta S, Zdrenghea M, Berindan-Neagoe I, Popa G, Man S, Colita A, Stefan C, Kojima S, Tomuleasa C. Transient leukemia of Down syndrome. Crit Rev Clin Lab Sci 2019; 56:247-259. [PMID: 31043105 DOI: 10.1080/10408363.2019.1613629] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Childhood leukemia is mostly a "developmental accident" during fetal hematopoiesis and may require multiple prenatal and postnatal "hits". The World Health Organization defines transient leukemia of Down syndrome (DS) as increased peripheral blood blasts in neonates with DS and classifies this type of leukemia as a separate entity. Although it was shown that DS predisposes children to myeloid leukemia, neither the nature of the predisposition nor the associated genetic lesions have been defined. Acute myeloid leukemia of DS is a unique disease characterized by a long pre-leukemic, myelodysplastic phase, unusual chromosomal findings and a high cure rate. In the present manuscript, we present a comprehensive review of the literature about clinical and biological findings of transient leukemia of DS (TL-DS) and link them with the genetic discoveries in the field. We address the manuscript to the pediatric generalist and especially to the next generation of pediatric hematologists.
Collapse
Affiliation(s)
- Valentina Sas
- a Department of Hematology , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania.,b Department of Pediatrics , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Cristina Blag
- b Department of Pediatrics , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Gabriela Zaharie
- c Department of Neonatology , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Emil Puscas
- d Department of Surgery , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Cosmin Lisencu
- d Department of Surgery , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Nicolae Andronic-Gorcea
- a Department of Hematology , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Sergiu Pasca
- a Department of Hematology , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Bobe Petrushev
- a Department of Hematology , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Irina Chis
- e Department of Physiology , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Mirela Marian
- f Department of Hematology , Ion Chiricuta Clinical Cancer Center , Cluj Napoca , Romania
| | - Delia Dima
- f Department of Hematology , Ion Chiricuta Clinical Cancer Center , Cluj Napoca , Romania
| | - Patric Teodorescu
- a Department of Hematology , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Sabina Iluta
- a Department of Hematology , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Mihnea Zdrenghea
- f Department of Hematology , Ion Chiricuta Clinical Cancer Center , Cluj Napoca , Romania
| | - Ioana Berindan-Neagoe
- g MedFuture Research Center for Advanced Medicine , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Gheorghe Popa
- b Department of Pediatrics , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Sorin Man
- b Department of Pediatrics , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Anca Colita
- h Department of Pediatrics , Carol Davila University of Medicine and Pharmacy , Bucharest , Romania.,i Department of Pediatrics , Fundeni Clinical Institute , Bucharest , Romania
| | - Cristina Stefan
- j African Organization for Research and Training in Cancer , Cape Town , South Africa
| | - Seiji Kojima
- k Department of Pediatrics , Nagoya University Graduate School of Medicine , Nagoya , Japan.,l Center for Advanced Medicine and Clinical Research , Nagoya University Hospital , Nagoya , Japan
| | - Ciprian Tomuleasa
- a Department of Hematology , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania.,f Department of Hematology , Ion Chiricuta Clinical Cancer Center , Cluj Napoca , Romania.,m Research Center for Functional Genomics and Translational Medicine , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| |
Collapse
|
7
|
Gault N, Verbiest T, Badie C, Romeo PH, Bouffler S. Hematopoietic stem and progenitor cell responses to low radiation doses - implications for leukemia risk. Int J Radiat Biol 2019; 95:892-899. [PMID: 30652952 DOI: 10.1080/09553002.2019.1569777] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Studies of the responses of hematopoietic stem and progenitor cells (HSPCs) to low doses of ionizing radiation formed an important aspect of the RISK-IR project ( www.risk-ir.eu ). A brief overview of these studies is presented here. The findings confirm the sensitivity of HSPCs to radiation even at low doses, and illustrate the substantial impact that differentiation state has upon cell sensitivity. The work provides mechanistic support for epidemiological findings of leukemia risk at dose levels used in diagnostic CT imaging, and further suggests that low-dose irradiation may facilitate bone marrow transplantation, a finding that could lead to refinements in clinical practice.
Collapse
Affiliation(s)
- Nathalie Gault
- a CEA/DRF/IBFJ/iRCM/LRTS , Fontenay-aux-Roses Cedex , France.,b Inserm U967 , Fontenay-aux-Roses Cedex , France.,c CEA/DRF/IBFJ/iRCM/LRTS-U1274 Inserm-Université Paris-Diderot , Paris , France.,d CEA/DRF/IBFJ/iRCM/LRTS-U1274 Inserm-Université Paris-Sud , Paris , France
| | - Tom Verbiest
- e Public Health England , Centre for Radiation, Chemical and Environmental Hazards , Oxfordshire , UK
| | - Christophe Badie
- e Public Health England , Centre for Radiation, Chemical and Environmental Hazards , Oxfordshire , UK
| | - Paul-Henri Romeo
- a CEA/DRF/IBFJ/iRCM/LRTS , Fontenay-aux-Roses Cedex , France.,b Inserm U967 , Fontenay-aux-Roses Cedex , France.,c CEA/DRF/IBFJ/iRCM/LRTS-U1274 Inserm-Université Paris-Diderot , Paris , France.,d CEA/DRF/IBFJ/iRCM/LRTS-U1274 Inserm-Université Paris-Sud , Paris , France
| | - Simon Bouffler
- e Public Health England , Centre for Radiation, Chemical and Environmental Hazards , Oxfordshire , UK
| |
Collapse
|
8
|
Averbeck D, Salomaa S, Bouffler S, Ottolenghi A, Smyth V, Sabatier L. Progress in low dose health risk research. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 776:46-69. [DOI: 10.1016/j.mrrev.2018.04.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 12/11/2022]
|
9
|
Tracking preleukemic cells in vivo to reveal the sequence of molecular events in radiation leukemogenesis. Leukemia 2018; 32:1435-1444. [PMID: 29556020 PMCID: PMC5990525 DOI: 10.1038/s41375-018-0085-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 02/05/2018] [Accepted: 02/06/2018] [Indexed: 12/16/2022]
Abstract
Epidemiological studies have demonstrated an increased leukemia incidence following ionizing radiation exposure, but to date, the target cells and underlying mechanisms of radiation leukemogenesis remain largely unidentified. We engineered a mouse model carrying a different fluorescent marker on each chromosome 2, located inside the minimum deleted region occurring after radiation exposure and recognized as the first leukemogenic event. Using this tailored model, we report that following radiation exposure, more than half of asymptomatic CBA Sfpi1GFP/mCh mice presented with expanding clones of preleukemic hematopoietic cells harboring a hemizygous interstitial deletion of chromosome 2. Moreover, following isolation of preleukemic hematopoietic stem and progenitor cells irradiated in their native microenvironment, we identified the presence of Sfpi1 point mutations within a subpopulation of these preleukemic cells expanding rapidly (increasing from 6% to 55% in 21 days in peripheral blood in one case), hence identifying for the first time the presence of such cells within a living animal. Importantly, we also report a previously undescribed gender difference in the phenotype of the preleukemic cells and leukemia, suggesting a gender imbalance in the radiation-induced leukemic target cell. In conclusion, we provide novel insights into the sequence of molecular events occurring during the (radiation-induced) leukemic clonal evolution.
Collapse
|
10
|
Badie C, Blachowicz A, Barjaktarovic Z, Finnon R, Michaux A, Sarioglu H, Brown N, Manning G, Benotmane MA, Tapio S, Polanska J, Bouffler SD. Transcriptomic and proteomic analysis of mouse radiation-induced acute myeloid leukaemia (AML). Oncotarget 2018; 7:40461-40480. [PMID: 27250028 PMCID: PMC5130020 DOI: 10.18632/oncotarget.9626] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 05/09/2016] [Indexed: 01/06/2023] Open
Abstract
A combined transcriptome and proteome analysis of mouse radiation-induced AMLs using two primary AMLs, cell lines from these primaries, another cell line and its in vivo passage is reported. Compared to haematopoietic progenitor and stem cells (HPSC), over 5000 transcriptome alterations were identified, 2600 present in all materials. 55 and 3 alterations were detected in the proteomes of the cell lines and primary/in vivo passage material respectively, with one common to all materials. In cell lines, approximately 50% of the transcriptome changes are related to adaptation to cell culture, and in the proteome this proportion was higher. An AML 'signature' of 17 genes/proteins commonly deregulated in primary AMLs and cell lines compared to HPSCs was identified and validated using human AML transcriptome data. This also distinguishes primary AMLs from cell lines and includes proteins such as Coronin 1, pontin/RUVBL1 and Myeloperoxidase commonly implicated in human AML. C-Myc was identified as having a key role in radiation leukaemogenesis. These data identify novel candidates relevant to mouse radiation AML pathogenesis, and confirm that pathways of leukaemogenesis in the mouse and human share substantial commonality.
Collapse
Affiliation(s)
- Christophe Badie
- Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, UK
| | - Agnieszka Blachowicz
- Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Techology, Gliwice, Poland
| | - Zarko Barjaktarovic
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Radiation Proteomics Group, Institute of Radiation Biology, Neuherberg, Germany
| | - Rosemary Finnon
- Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, UK
| | - Arlette Michaux
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•.CEN), Mol, Belgium
| | - Hakan Sarioglu
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Research Unit Protein Science, Neuherberg, Germany
| | - Natalie Brown
- Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, UK
| | - Grainne Manning
- Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, UK
| | - M Abderrafi Benotmane
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•.CEN), Mol, Belgium
| | - Soile Tapio
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Radiation Proteomics Group, Institute of Radiation Biology, Neuherberg, Germany
| | - Joanna Polanska
- Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Techology, Gliwice, Poland
| | - Simon D Bouffler
- Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, UK
| |
Collapse
|
11
|
Little MP, Hendry JH. Mathematical models of tissue stem and transit target cell divisions and the risk of radiation- or smoking-associated cancer. PLoS Comput Biol 2017; 13:e1005391. [PMID: 28196079 PMCID: PMC5347390 DOI: 10.1371/journal.pcbi.1005391] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 03/01/2017] [Accepted: 01/30/2017] [Indexed: 12/13/2022] Open
Abstract
There is compelling biological data to suggest that cancer arises from a series of mutations in single target cells, resulting in defects in cell renewal and differentiation processes which lead to malignancy. Because much mutagenic damage is expressed following cell division, more-rapidly renewing tissues could be at higher risk because of the larger number of cell replications. Cairns suggested that renewing tissues may reduce cancer risk by partitioning the dividing cell populations into lineages comprising infrequently-dividing long-lived stem cells and frequently-dividing short-lived daughter transit cells. We develop generalizations of three recent cancer-induction models that account for the joint maintenance and renewal of stem and transit cells, also competing processes of partially transformed cell proliferation and differentiation/apoptosis. We are particularly interested in using these models to separately assess the probabilities of mutation and development of cancer associated with "spontaneous" processes and with those linked to a specific environmental mutagen, specifically ionizing radiation or cigarette smoking. All three models demonstrate substantial variation in cancer risks, by at least 20 orders of magnitude, depending on the assumed number of critical mutations required for cancer, and the stem-cell and transition-cell mutation rates. However, in most cases the conditional probabilities of cancer being mutagen-induced range between 7-96%. The relative risks associated with mutagen exposure compared to background rates are also stable, ranging from 1.0-16.0. Very few cancers, generally <0.5%, arise from mutations occurring solely in stem cells rather than in a combination of stem and transit cells. However, for cancers with 2 or 3 critical mutations, a substantial proportion of cancers, in some cases 100%, have at least one mutation derived from a mutated stem cell. Little difference is made to relative risks if competing processes of proliferation and differentiation in the partially transformed stem and transit cell population are allowed for, nor is any difference made if one assumes that transit cells require an extra mutation to confer malignancy from the number required by stem cells. The probability of a cancer being mutagen-induced correlates across cancer sites with the estimated cumulative number of stem cell divisions in the associated tissue (p<0.05), although in some cases there is sensitivity of findings to removal of high-leverage outliers and in some cases only modest variation in probability, but these issues do not affect the validity of the findings. There are no significant correlations (p>0.3) between lifetime cancer-site specific radiation risk and the probability of that cancer being mutagen-induced. These results do not depend on the assumed critical number of mutations leading to cancer, or on the assumed mutagen-associated mutation rate, within the generally-accepted ranges tested. However, there are borderline significant negative correlations (p = 0.08) between the smoking-associated mortality rate difference (current vs former smokers) and the probability of cancer being mutagen-induced. This is only the case where values of the critical number of mutations leading to cancer, k, is 3 or 4 and not for smaller values (1 or 2), but does not strongly depend on the assumed mutagen-associated mutation rate.
Collapse
Affiliation(s)
- Mark P. Little
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and
Genetics, National Cancer Institute, NIH, DHHS, Rockville, MD, United States of
America
| | - Jolyon H. Hendry
- Christie Medical Physics and Engineering, Christie Hospital and
University of Manchester, Wilmslow Road, Manchester M20 4BX, United
Kingdom
| |
Collapse
|
12
|
Verbiest T, Finnon R, Brown N, Finnon P, Bouffler S, Badie C. NOD Scid Gamma Mice Are Permissive to Allogeneic HSC Transplantation without Prior Conditioning. Int J Mol Sci 2016; 17:E1850. [PMID: 27827995 PMCID: PMC5133850 DOI: 10.3390/ijms17111850] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/14/2016] [Accepted: 11/02/2016] [Indexed: 11/16/2022] Open
Abstract
Scid hematopoietic stem cells (HSCs) have an intrinsic defect in their maintenance within the bone marrow (BM) niche which facilitates HSC transplantation without the absolute requirement of prior conditioning. Nevertheless, NOD scid mice have a significantly altered life span due to early development of thymic lymphomas, which compromises the ability to study the long-term fate of exogenous HSCs and their progeny. Here, we present data on the transplantation of HSCs into NOD scid gamma (NSG) mice to achieve long-term engraftment without prior conditioning. We transplanted allogeneic HSCs constitutively expressing the mCherry fluorescent marker into age-matched NSG mice and assessed donor chimerism 6 months post-transplantation. All transplanted NSG mice showed long-term myeloid and lymphoid cell chimerism. Also, in vivo irradiated HSCs showed long-term engraftment, although overall white blood cell (WBC) donor chimerism was lower compared with non-irradiated HSCs. Using this novel NSG transplantation model, we will be able to study the effects of low dose in vivo X-ray exposure on the long-term fate of HSCs, without the requirement of prior radio-ablation of the recipient, and thus leaving the recipient's BM microenvironment uncompromised. In conclusion, we demonstrated for the first time that allogeneic HSCs from a different inbred strain can compete for niches in the BM compartment of NSG mice.
Collapse
Affiliation(s)
- Tom Verbiest
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Didcot OX11 ORQ, UK.
- CRUK & MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK.
| | - Rosemary Finnon
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Didcot OX11 ORQ, UK.
| | - Natalie Brown
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Didcot OX11 ORQ, UK.
| | - Paul Finnon
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Didcot OX11 ORQ, UK.
| | - Simon Bouffler
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Didcot OX11 ORQ, UK.
| | - Christophe Badie
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Didcot OX11 ORQ, UK.
| |
Collapse
|
13
|
Influence of radiation quality on mouse chromosome 2 deletions in radiation-induced acute myeloid leukaemia. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 793:48-54. [DOI: 10.1016/j.mrgentox.2015.07.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 07/23/2015] [Indexed: 01/21/2023]
|
14
|
Rithidech KN, Honikel LM, Reungpathanaphong P, Tungjai M, Jangiam W, Whorton EB. Late-occurring chromosome aberrations and global DNA methylation in hematopoietic stem/progenitor cells of CBA/CaJ mice exposed to silicon ((28)Si) ions. Mutat Res 2015; 781:22-31. [PMID: 26398320 DOI: 10.1016/j.mrfmmm.2015.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 07/18/2015] [Accepted: 09/07/2015] [Indexed: 06/05/2023]
Abstract
Although myeloid leukemia (ML) is one of the major health concerns from exposure to space radiation, the risk prediction for developing ML is unsatisfactory. To increase the reliability of predicting ML risk, a much improved understanding of space radiation-induced changes in the target cells, i.e. hematopoietic stem/progenitor cells (HSPCs), is important. We focused on the in vivo induction of late-occurring damage in HSPCs of mice exposed to (28)Si ions since such damage is associated with radiation-induced genomic instability (a key event of carcinogenesis). We gave adult male CBA/CaJ mice, known to be sensitive to radiation-induced ML, a whole-body exposure (2 fractionated exposures, 15 days apart, that totaled each selected dose, delivered at the dose-rate of 1 cGy/min) to various doses of 300 MeV/n (28)Si ions, i.e. 0 (sham controls), 0.1, 0.25, or 0.5 Gy. At 6 months post-irradiation, we collected bone marrow cells from each mouse (five mice per treatment-group) for obtaining the myeloid-lineage of HSPC-derived clones for analyses. We measured the frequencies of late-occurring chromosome aberrations (CAs), using the genome-wide multicolor fluorescence in situ hybridization method. The measurement of CAs was coupled with the characterization of the global DNA methylation patterns, i.e. 5-methylcytosine (5 mC) and 5-hydroxymethylcytosine (5 hmC). A dose-dependent increase in the frequencies of CAs was detected (Analysis of Variance or ANOVA, p<0.01), indicating the induction of genomic instability after exposure of mice to 300 MeV/n (28)Si ions. Slight increases in the levels of 5 mC were observed in all treatment groups, as compared to the sham-control level. In contrast, there was a significant reduction in levels of 5 hmC (ANOVA, p<0.01). Since these endpoints were evaluated in the same mouse, our data suggested for the first time a link between a reduction in 5 hmC and genomic instability in HSPC-derived myeloid colonies of CBA/CaJ mice exposed to 300 MeV/n (28)Si ions.
Collapse
Affiliation(s)
| | - Louise M Honikel
- Pathology Department, Stony Brook University, Stony Brook, NY 11794-8691, USA
| | - Paiboon Reungpathanaphong
- Pathology Department, Stony Brook University, Stony Brook, NY 11794-8691, USA; Department of Applied Radiation and Isotopes, Faculty of Sciences, Kasetsart University, Chatuchuck, Bangkok 10900, Thailand
| | - Montree Tungjai
- Pathology Department, Stony Brook University, Stony Brook, NY 11794-8691, USA; Department of Radiologic Technology, Faculty of Associated Medical Sciences, Center of Excellence for Molecular Imaging, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Witawat Jangiam
- Pathology Department, Stony Brook University, Stony Brook, NY 11794-8691, USA; Department of Chemical Engineering, Faculty of Engineering, Burapha University, Chonburi 20131, Thailand
| | | |
Collapse
|
15
|
Verbiest T, Bouffler S, Nutt SL, Badie C. PU.1 downregulation in murine radiation-induced acute myeloid leukaemia (AML): from molecular mechanism to human AML. Carcinogenesis 2015; 36:413-9. [PMID: 25750172 PMCID: PMC4392607 DOI: 10.1093/carcin/bgv016] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/24/2015] [Indexed: 01/06/2023] Open
Abstract
The transcription factor PU.1, encoded by the murine Sfpi1 gene (SPI1 in humans), is a member of the Ets transcription factor family and plays a vital role in commitment and maturation of the myeloid and lymphoid lineages. Murine studies directly link primary acute myeloid leukaemia (AML) and decreased PU.1 expression in specifically modified strains. Similarly, a radiation-induced chromosome 2 deletion and subsequent Sfpi1 point mutation in the remaining allele lead to murine radiation-induced AML. Consistent with murine data, heterozygous deletion of the SPI1 locus and mutation of the −14kb SPI1 upstream regulatory element were described previously in human primary AML, although they are rare events. Other mechanisms linked to PU.1 downregulation in human AML include TP53 deletion, FLT3-ITD mutation and the recurrent AML1-ETO [t(8;21)] and PML-RARA [t(15;17)] translocations. This review provides an up-to-date overview on our current understanding of the involvement of PU.1 in the initiation and development of radiation-induced AML, together with recommendations for future murine and human studies.
Collapse
Affiliation(s)
- Tom Verbiest
- Biological Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Didcot OX11 ORQ, UK, CRUK & MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Simon Bouffler
- Biological Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Didcot OX11 ORQ, UK
| | - Stephen L Nutt
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia and Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Christophe Badie
- Biological Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Didcot OX11 ORQ, UK,
| |
Collapse
|