1
|
Vinnikov V, Kochanova D, Vigašová K, Gulati S, Durdík M, Košík P, Marková E, Jakl L, Zastko L, Kontrišová K, Belyaev I. Dose-response curve for induction of unstable chromosome aberrations by 6 MV linear accelerator photons: Analysis of intra-experimental variations. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2025; 902:503849. [PMID: 40044372 DOI: 10.1016/j.mrgentox.2025.503849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 05/13/2025]
Abstract
Cytogenetic biodosimetry relies on dose-response curves (DRCs) for each type of radiation that can cause a radiation emergency. We have constructed a DRC based on the dicentric assay. Blood samples from four healthy volunteers were irradiated with acute 6 MV linac photons, 0.46-4.55 Gy; 0.68 and 1.37 Gy doses were used in the 'blind' validation study. Lymphocytes were cultured with variations in time delay in mitogenic stimulation after irradiation (2 vs. 16 h) and mitotic arrest by colchicine (3.5 vs. 16 h). Aberrations were scored in the first division metaphases, ensured by fluorescence-plus-Giemsa staining. DRCs for dicentrics and dicentrics plus centric rings were efficiently fitted using the linear-quadratic model. We show, for the first time, that neither prolonged mitotic arrest nor delayed mitogenic stimulation has any effect on DRC. However, the latter factor caused a significant increase in the yield of the second division metaphase in culture. Inter-donor differences in the DRC for aberrations were not large, but individual changes in the frequencies of second-division cells were highly variable. In the validation study, the DRC combined from all experimental series provided dose estimates that were as accurate as those, obtained using the donors' individual or culture-type specific DRCs. The DRC coefficients in present study were slightly higher than those reported previously for linac beams and close to values for orthovoltage X-rays. Further cytogenetic studies of megavoltage radiation beams require stringent standardization of experimental conditions.
Collapse
Affiliation(s)
- Volodymyr Vinnikov
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Centre of Slovak Academy of Science, Bratislava, Slovak Republic, BMC SAV, Dúbravská Cesta 9, Bratislava 84505, Slovak Republic.
| | - Dominika Kochanova
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Centre of Slovak Academy of Science, Bratislava, Slovak Republic, BMC SAV, Dúbravská Cesta 9, Bratislava 84505, Slovak Republic.
| | - Katarína Vigašová
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Centre of Slovak Academy of Science, Bratislava, Slovak Republic, BMC SAV, Dúbravská Cesta 9, Bratislava 84505, Slovak Republic.
| | - Sachin Gulati
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Centre of Slovak Academy of Science, Bratislava, Slovak Republic, BMC SAV, Dúbravská Cesta 9, Bratislava 84505, Slovak Republic.
| | - Matúš Durdík
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Centre of Slovak Academy of Science, Bratislava, Slovak Republic, BMC SAV, Dúbravská Cesta 9, Bratislava 84505, Slovak Republic.
| | - Pavol Košík
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Centre of Slovak Academy of Science, Bratislava, Slovak Republic, BMC SAV, Dúbravská Cesta 9, Bratislava 84505, Slovak Republic.
| | - Eva Marková
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Centre of Slovak Academy of Science, Bratislava, Slovak Republic, BMC SAV, Dúbravská Cesta 9, Bratislava 84505, Slovak Republic.
| | - Lukáš Jakl
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Centre of Slovak Academy of Science, Bratislava, Slovak Republic, BMC SAV, Dúbravská Cesta 9, Bratislava 84505, Slovak Republic.
| | - Lucián Zastko
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Centre of Slovak Academy of Science, Bratislava, Slovak Republic, BMC SAV, Dúbravská Cesta 9, Bratislava 84505, Slovak Republic; Department of Laboratory Medicine, Faculty of Health Sciences, Catholic University in Ruzomberok, Ružomberok, Slovak Republic, KUR, Nám. A. Hlinku 48, Ružomberok 03401, Slovak Republic.
| | - Kristína Kontrišová
- Department of Radiation Oncology, St. Elisabeth Cancer Institute, Bratislava, Slovak Republic, OUSA, Heydukova 48, Bratislava 81250, Slovak Republic.
| | - Igor Belyaev
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Centre of Slovak Academy of Science, Bratislava, Slovak Republic, BMC SAV, Dúbravská Cesta 9, Bratislava 84505, Slovak Republic.
| |
Collapse
|
2
|
Vijayalakshmi J, Chaurasia RK, Srinivas KS, Vijayalakshmi K, Paul SF, Bhat N, Sapra B. Establishment of ex vivo calibration curve for X-ray induced "dicentric + ring" and micronuclei in human peripheral lymphocytes for biodosimetry during radiological emergencies, and validation with dose blinded samples. Heliyon 2023; 9:e17068. [PMID: 37484390 PMCID: PMC10361230 DOI: 10.1016/j.heliyon.2023.e17068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 07/25/2023] Open
Abstract
In the modern developing society, application of radiation has increased extensively. With significant improvement in the radiation protection practices, exposure to human could be minimized substantially, but cannot be avoided completely. Assessment of exposure is essential for regulatory decision and medical management as applicable. Until now, cytogenetic changes have served as surrogate marker of radiation exposure and have been extensively employed for biological dose estimation of various planned and unplanned exposures. Dicentric Chromosomal Aberration (DCA) is radiation specific and is considered as gold standard, micronucleus is not very specific to radiation and is considered as an alternative method for biodosimetry. In this study dose response curves were generated for X-ray induced "dicentric + ring" and micronuclei, in lymphocytes of three healthy volunteers [2 females (age 22, 23 years) and 1 male (24 year)]. The blood samples were irradiated with X-ray using LINAC (energy 6 MV, dose rate 6 Gy/min), in the dose range of 0-5Gy. Irradiated blood samples were cultured and processed to harvest metaphases, as per standard procedures recommended by International Atomic Energy Agency. Pooled data obtained from all the three volunteers, were in agreement with Poisson distribution for "dicentric + ring", however over dispersion was observed for micronuclei. Data ("dicentric + ring" and micronuclei) were fitted by linear quadratic model of the expression Y[bond, double bond]C + αD + βD2 using Dose Estimate software, version 5.2. The data fit has resulted in linear coefficient α = 0.0006 (±0.0068) "dicentric + ring" cell-1 Gy-1 and quadratic coefficient β = 0.0619 (±0.0043) "dicentric + ring" cell-1 Gy-2 for "dicentric + ring" and linear coefficient α = 0.0459 ± (0.0038) micronuclei cell-1 Gy-1 and quadratic coefficient β = 0.0185 ± (0.0010) micronuclei cell-1 Gy-2 for micronuclei, respectively. Background frequencies for "dicentric + ring" and micronuclei were 0.0006 ± 0.0004 and 0.0077 ± 0.0012 cell-1, respectively. Established curves were validated, by reconstructing the doses of 8 dose blinded samples (4 by DCA and 4 by CBMN) using coefficients generated here. Estimated doses were within the variation of 0.9-16% for "dicentric + ring" and 21.7-31.2% for micronuclei respectively. These established curves have potential to be employed for biodosimetry of occupational, clinical and accidental exposures, for initial triage and medical management.
Collapse
Affiliation(s)
- J. Vijayalakshmi
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (DU), Chennai, India
| | - Rajesh Kumar Chaurasia
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre (BARC), Mumbai, India
- Homi Bhabha National Institute (HBNI), Mumbai, India
| | - K. Satish Srinivas
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (DU), Chennai, India
| | - K. Vijayalakshmi
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (DU), Chennai, India
| | - Solomon F.D. Paul
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (DU), Chennai, India
| | - N.N. Bhat
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre (BARC), Mumbai, India
- Homi Bhabha National Institute (HBNI), Mumbai, India
| | - B.K. Sapra
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre (BARC), Mumbai, India
- Homi Bhabha National Institute (HBNI), Mumbai, India
| |
Collapse
|
3
|
Pajic J, Rakic B. Re-evaluation of CBMN test reference values of persons continuously occupationally exposed to low doses of ionizing radiation in Serbia. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 886:503583. [PMID: 36868697 DOI: 10.1016/j.mrgentox.2023.503583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/01/2023] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
When established, cytokinesis-block micronucleus (CBMN) test reference values should be periodically evaluated according to the recommendations of reference documents. The biodosimetry cytogenetic laboratory of the Serbian Institute of Occupational Health established the CBMN test reference range for people occupationally exposed to ionizing radiation in 2016. Since then, new occupationally exposed persons have been subjected to micronucleus testing, resulting in the need for re-evaluation of existing CBMN test values. The examined population comprised 608 occupationally exposed subjects - 201 from the previous laboratory database and 407 newly examined. Comparison of groups based on gender, age and cigarette consumption did not show significant differences, although certain CBMN values differed significantly between the old and new groups. Duration of occupational exposure, gender, age and smoking habit influenced micronuclei frequency in all three analyzed groups, while no relation was found between type of work and micronucleus test parameters. Since the mean values of all tested parameters in the new group of examinees are within previously established reference ranges, existing values can be used in further research.
Collapse
Affiliation(s)
- J Pajic
- Serbian Institute of Occupational Health "Dr Dragomir Karajovic", Deligradska 29, Belgrade, Serbia.
| | - B Rakic
- Serbian Institute of Occupational Health "Dr Dragomir Karajovic", Deligradska 29, Belgrade, Serbia.
| |
Collapse
|
4
|
Meng QQ, Zhang RF, Zhang ZX, Yang Y, Chai DL, Yuan YY, Ren Y, Dong JC, Dang XH. ESTABLISHMENT OF THE IN VITRO DOSE-RESPONSE CALIBRATION CURVE FOR X-RAY-INDUCED MICRONUCLEI IN HUMAN LYMPHOCYTES. RADIATION PROTECTION DOSIMETRY 2022; 198:1338-1345. [PMID: 35961020 DOI: 10.1093/rpd/ncac170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/13/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
The cytokinesis-block micronucleus assay has proven to be a reliable technique for biological dosimetry. This study aimed to establish the dose-response curve for X-ray-induced micronucleus. Peripheral blood samples from three healthy donors were irradiated with various doses and scoring criteria by the micronuclei (MN) in binucleated cells. The results showed that the frequency of MN increased with the elevation of radiation dose. CABAS and Dose Estimate software were used to fit the MN and dose into a linear quadratic model, and the results were compared. The linear and quadratic coefficients obtained by the two software were basically the same and were comparable with published curves of similar radiation quality and dose rates by other studies. The dose-response curve established in this study can be used as an alternative method for in vitro dose reconstruction and provides a reliable tool for biological dosimetry in accidental or occupational radiation exposures.
Collapse
Affiliation(s)
- Qian-Qian Meng
- China Institute for Radiation Protection (CIRP), Taiyuan 030006, Shanxi, China
| | - Rui-Feng Zhang
- China Institute for Radiation Protection (CIRP), Taiyuan 030006, Shanxi, China
| | - Zhong-Xin Zhang
- China Institute for Radiation Protection (CIRP), Taiyuan 030006, Shanxi, China
| | - Yi Yang
- China Institute for Radiation Protection (CIRP), Taiyuan 030006, Shanxi, China
| | - Dong-Liang Chai
- China Institute for Radiation Protection (CIRP), Taiyuan 030006, Shanxi, China
| | - Ya-Yi Yuan
- China Institute for Radiation Protection (CIRP), Taiyuan 030006, Shanxi, China
| | - Yue Ren
- China Institute for Radiation Protection (CIRP), Taiyuan 030006, Shanxi, China
| | - Juan-Cong Dong
- China Institute for Radiation Protection (CIRP), Taiyuan 030006, Shanxi, China
| | - Xu-Hong Dang
- China Institute for Radiation Protection (CIRP), Taiyuan 030006, Shanxi, China
| |
Collapse
|
5
|
Pajic J, Rovcanin B. Ionizing radiation-induced genotoxic and oxidative damage in peripheral lymphocytes and plasma of healthy donors. Mutat Res 2021; 863-864:503313. [PMID: 33678245 DOI: 10.1016/j.mrgentox.2021.503313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/20/2022]
Abstract
Biological dosimetry of ionizing radiation (IR) exposure relies on validated cytogenetic tests measuring the frequencies of micronuclei (MN) and dicentric chromosomes (DC). IR also causes oxidative damage of biomolecules, including DNA. We evaluated IR-induced genotoxic and oxidative damage in a carefully defined cohort of healthy donors, reducing confounding factors as much as possible. Frequencies of MN and DC (peripheral blood lymphocyte cultures) and oxidative stress parameters (plasma) were quantified. We observed dose dependence of both cytogenetic and biochemical endpoints, independent of age, sex, and smoking habits. Oxidative stress parameters, especially oxidative stress index, malondialdehyde, advanced oxidation protein products, and catalase, may be used confidently to assess IR-induced damage, if cytogenetic results are unavailable.
Collapse
Affiliation(s)
- J Pajic
- Serbian Institute of Occupational Health "Dr Dragomir Karajovic", Deligradska 29, Belgrade, Serbia.
| | - B Rovcanin
- Branislav Rovcanin, Center for Endocrine Surgery, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Koste Todorovica 8, Belgrade, Serbia
| |
Collapse
|
6
|
Alsbeih GA, Al-Hadyan KS, Al-Harbi NM, Bin Judia SS, Moftah BA. Establishing a Reference Dose-Response Calibration Curve for Dicentric Chromosome Aberrations to Assess Accidental Radiation Exposure in Saudi Arabia. Front Public Health 2021; 8:599194. [PMID: 33425838 PMCID: PMC7793750 DOI: 10.3389/fpubh.2020.599194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/30/2020] [Indexed: 01/17/2023] Open
Abstract
In cases of nuclear and radiological accidents, public health and emergency response need to assess the magnitude of radiation exposure regardless of whether they arise from disaster, negligence, or deliberate act. Here we report the establishment of a national reference dose–response calibration curve (DRCC) for dicentric chromosome (DC), prerequisite to assess radiation doses received in accidental exposures. Peripheral blood samples were collected from 10 volunteers (aged 20–40 years, median = 29 years) of both sexes (three females and seven males). Blood samples, cytogenetic preparation, and analysis followed the International Atomic Energy Agency EPR-Biodosimetry 2011 report. Irradiations were performed using 320 kVp X-rays. Metafer system was used for automated and assisted (elimination of false-positives and inclusion of true-positives) metaphases findings and DC scoring. DC yields were fit to a linear–quadratic model. Results of the assisted DRCC showed some variations among individuals that were not statistically significant (homogeneity test, P = 0.66). There was no effect of age or sex (P > 0.05). To obtain representative national DRCC, data of all volunteers were pooled together and analyzed. The fitted parameters of the radiation-induced DC curve were as follows: Y = 0.0020 (±0.0002) + 0.0369 (±0.0019) *D + 0.0689 (±0.0009) *D2. The high significance of the fitted coefficients (z-test, P < 0.0001), along with the close to 1.0 p-value of the Poisson-based goodness of fit (χ2 = 3.51, degrees of freedom = 7, P = 0.83), indicated excellent fitting with no trend toward lack of fit. The curve was in the middle range of DRCCs published in other populations. The automated DRCC over and under estimated DCs at low (<1 Gy) and high (>2 Gy) doses, respectively, with a significant lack of goodness of fit (P < 0.0001). In conclusion, we have established the reference DRCC for DCs induced by 320 kVp X-rays. There was no effect of age or sex in this cohort of 10 young adults. Although the calibration curve obtained by the automated (unsupervised) scoring misrepresented dicentric yields at low and high doses, it can potentially be useful for triage mode to segregate between false-positive and near 2-Gy exposures from seriously irradiated individuals who require hospitalization.
Collapse
Affiliation(s)
- Ghazi A Alsbeih
- Radiation Biology Section, Biomedical Physics Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.,College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Khaled S Al-Hadyan
- Radiation Biology Section, Biomedical Physics Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Najla M Al-Harbi
- Radiation Biology Section, Biomedical Physics Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Sara S Bin Judia
- Radiation Biology Section, Biomedical Physics Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Belal A Moftah
- Radiation Biology Section, Biomedical Physics Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.,Medical Physics Unit, Department of Oncology, McGill University, Montreal, QC, Canada
| |
Collapse
|
7
|
Zhao F, Yang J, Lyu Y, Sun Q, Fu B. Follow-up of two victims of a 60Co-source radiation accident in 1986, Kaifeng, Henan Province, China. RADIATION MEDICINE AND PROTECTION 2020. [DOI: 10.1016/j.radmp.2020.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
8
|
F G, B H, A H, A N. Comparing Lymphocyte Radiosensitivity of Prostate Cancer Patients with Healthy Donors Using Micronuclei and Chemical Premature Chromosome Condensation Tests. J Biomed Phys Eng 2020; 10:411-420. [PMID: 32802789 PMCID: PMC7416091 DOI: 10.31661/jbpe.v0i0.657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 10/24/2016] [Indexed: 12/03/2022]
Abstract
Background: Cytogenetic tests are usually used for diagnosing predisposed individuals to cancer by determining their lymphocyte radiosensitivity. Objective: To determine the potential role of radiosensitivity in predisposition of prostate cancer by comparing lymphocyte radiosensitivity of prostate cancer patients with healthy donors. Materials and Methods: In this experimental study, the blood samples of 10 prostate cancer patients and 10 healthy donors were irradiated to 0.25, 0.5, 1, 2, 4 and 6 Gy ionizing radiation produced by a 6MV Linac. One sample of each group receiving no radiation was regarded as the background. The micronuclei (MN) and chemical premature chromosome condensation (PCC) cytogenetic tests were performed on all samples and the numbers of MN and PCC rings were scored. Dose-response curves were plotted for both healthy and cancerous groups with two tests. Results: There was a significant difference between the numbers of MN within each group due to different levels of radiation doses. There was also a significant difference between the two groups in all identical doses, with the exception of 6 Gy. The chemical PCC test indicated a significant difference between the scored PCC rings in each group at doses higher than 0.25 Gy. However, no differences were noted between the healthy donors and prostate cancer patients receiving the same level of doses. Conclusion: MN test can be considered as a reliable indicator of predisposition of prostate cancer. On the other hand, the chemical PCC test could not differentiate between healthy donors and prostate cancer patients at the dose range examined in this study.
Collapse
Affiliation(s)
- Golfam F
- PhD, MD, Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hashemi B
- PhD, Associate Professor, Department of Medical Physics, Tarbiat Modares University, Tehran, Iran
| | - Haeri A
- PhD, Assistant Professor, Nuclear Science and Technology Research Institute, Tehran, Iran
| | - Nikoofar A
- MD, Associate Professor, Department of Radiation Oncology, Firouzgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Rogan PK, Mucaki EJ, Lu R, Shirley BC, Waller E, Knoll JHM. Meeting radiation dosimetry capacity requirements of population-scale exposures by geostatistical sampling. PLoS One 2020; 15:e0232008. [PMID: 32330192 PMCID: PMC7182271 DOI: 10.1371/journal.pone.0232008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 04/06/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Accurate radiation dose estimates are critical for determining eligibility for therapies by timely triaging of exposed individuals after large-scale radiation events. However, the universal assessment of a large population subjected to a nuclear spill incident or detonation is not feasible. Even with high-throughput dosimetry analysis, test volumes far exceed the capacities of first responders to measure radiation exposures directly, or to acquire and process samples for follow-on biodosimetry testing. AIM To significantly reduce data acquisition and processing requirements for triaging of treatment-eligible exposures in population-scale radiation incidents. METHODS Physical radiation plumes modelled nuclear detonation scenarios of simulated exposures at 22 US locations. Models assumed only location of the epicenter and historical, prevailing wind directions/speeds. The spatial boundaries of graduated radiation exposures were determined by targeted, multistep geostatistical analysis of small population samples. Initially, locations proximate to these sites were randomly sampled (generally 0.1% of population). Empirical Bayesian kriging established radiation dose contour levels circumscribing these sites. Densification of each plume identified critical locations for additional sampling. After repeated kriging and densification, overlapping grids between each pair of contours of successive plumes were compared based on their diagonal Bray-Curtis distances and root-mean-square deviations, which provided criteria (<10% difference) to discontinue sampling. RESULTS/CONCLUSIONS We modeled 30 scenarios, including 22 urban/high-density and 2 rural/low-density scenarios under various weather conditions. Multiple (3-10) rounds of sampling and kriging were required for the dosimetry maps to converge, requiring between 58 and 347 samples for different scenarios. On average, 70±10% of locations where populations are expected to receive an exposure ≥2Gy were identified. Under sub-optimal sampling conditions, the number of iterations and samples were increased, and accuracy was reduced. Geostatistical mapping limits the number of required dose assessments, the time required, and radiation exposure to first responders. Geostatistical analysis will expedite triaging of acute radiation exposure in population-scale nuclear events.
Collapse
Affiliation(s)
- Peter K Rogan
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
- CytoGnomix Inc, London, ON, Canada
| | - Eliseos J Mucaki
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Ruipeng Lu
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | | | - Edward Waller
- Faculty of Energy Systems and Nuclear Science, OntarioTech University, Canada
| | - Joan H M Knoll
- CytoGnomix Inc, London, ON, Canada
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
10
|
Shafiee M, Borzoueisileh S, Rashidfar R, Dehghan M, Jaafarian Sisakht Z. Chromosomal aberrations in C-arm fluoroscopy, CT-scan, lithotripsy, and digital radiology staff. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2020; 849:503131. [PMID: 32087852 DOI: 10.1016/j.mrgentox.2020.503131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 01/03/2020] [Accepted: 01/04/2020] [Indexed: 11/16/2022]
Abstract
We have assessed chromosome-type aberrations and micronuclei in the peripheral lymphocytes of personnel working with C-arm fluoroscopy, multi-slice CT-scan, lithotripsy, and digital radiology medical procedures. The study population comprised of 46 exposed workers and 35 controls matched for age, gender, and other confounding factors. Chromosome-type aberrations and micronuclei were analyzed and compared with occupational dosimetry data. The highest frequency of both chromosome aberrations (1.62 CA/100 cells) and MN (MN = 7.47 ± 2.55) was observed in the operating room group. According to occupational dosimetry, surgeons and medical staff received 0-2.99 mSv over the previous year, well below the limit established by the International Committee on Radiation Protection. An increased level of chromosomal aberrations was observed among workers exposed in the operating rooms. We recommend that operating room radiation safety programs be improved and better supervised, in particular for orthopedic surgeons and personnel performing fluoroscopically guided procedures.
Collapse
Affiliation(s)
- Mohsen Shafiee
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Sajad Borzoueisileh
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Razieh Rashidfar
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Radiology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Dehghan
- Student Research Committee, Yasuj University of Medical Sciences, Yasuj, Iran
| | | |
Collapse
|
11
|
Lusiyanti Y, Syaifudin M, Budiantari T, Purnami S, Ramadhani D. Development of Dose-Response Calibration Curve for Dicentric Chromosome Induced by X-Rays. Genome Integr 2019; 10:2. [PMID: 31391915 PMCID: PMC6659407 DOI: 10.4103/genint.genint_1_19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Chromosome aberration is a biomarker that has been used as a standard tool in biological dosimetry (biodosimetry) of individuals after exposure to ionizing radiation. It is based mainly on the induction of dicentric chromosomes - one of the radiation-induced biological effects, in order to correlate them with radiation dose. In this study, a dose calibration curve for X-rays was generated by using the dicentric assay and by fitting the data to both Chromosomal Aberration Calculation Software and Dose Estimate programs to compare the output of each method. Peripheral blood samples from four nonsmoker healthy donors were irradiated with various doses ranging from 0 to 4 Gy with 250 kV or 122 keV X-rays at a dose rate of 0.17 Gy/min. The irradiated blood was cultured, harvested, and analyzed according to the standard procedure as described by the International Atomic Energy Agency with slight modifications. The dose-response calibration data for dicentrics were fitted with the linear-quadratic model (Ydic = 0.03987D2 + 0.00651D). The dose-response calibration curve obtained in this research was comparable to other estimations with similar radiation quality and dose rates. The results in this research convinced us in sustaining a biodosimetry using a dose-response calibration curve in our laboratory.
Collapse
Affiliation(s)
- Yanti Lusiyanti
- Center for Technology of Radiation Safety and Metrology, National Nuclear Energy Agency of Indonesia, Jakarta, Indonesia
| | - Mukh Syaifudin
- Center for Technology of Radiation Safety and Metrology, National Nuclear Energy Agency of Indonesia, Jakarta, Indonesia
| | - Tuti Budiantari
- Center for Technology of Radiation Safety and Metrology, National Nuclear Energy Agency of Indonesia, Jakarta, Indonesia
| | - Sofiati Purnami
- Center for Technology of Radiation Safety and Metrology, National Nuclear Energy Agency of Indonesia, Jakarta, Indonesia
| | - Dwi Ramadhani
- Center for Technology of Radiation Safety and Metrology, National Nuclear Energy Agency of Indonesia, Jakarta, Indonesia
| |
Collapse
|
12
|
Karthik K, Rajan V, Pandey BN, Sivasubramanian K, Paul SF, Venkatachalam P. Direct and bystander effects in human blood lymphocytes exposed to 241Am alpha particles and the relative biological effectiveness using chromosomal aberration and micronucleus assay. Int J Radiat Biol 2019; 95:725-736. [DOI: 10.1080/09553002.2019.1589018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- K. Karthik
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Vasumathy Rajan
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Badri N. Pandey
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
| | - K. Sivasubramanian
- Radiological Safety Division, Indira Gandhi Center for Atomic Research, Kalpakkam, India
| | - Solomon F.D. Paul
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - P. Venkatachalam
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| |
Collapse
|
13
|
Nairy RK, Bhat NN, Sanjeev G, Yerol N. DOSE-RESPONSE STUDY USING MICRONUCLEUS CYTOME ASSAY: A TOOL FOR BIODOSIMETRY APPLICATION. RADIATION PROTECTION DOSIMETRY 2017; 174:79-87. [PMID: 26994094 DOI: 10.1093/rpd/ncw045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 02/03/2016] [Indexed: 06/05/2023]
Abstract
The present study is aimed at obtaining in vitro dose-response data for the induction of micronucleus (MN) and nucleoplasmic bridges (NPBs) in human lymphocytes using 60Co-gamma rays and 8 MeV pulsed electron beam. An attempt was made to validate the possibility of applying NPBs as new biodosimetry endpoint in the dose range of 0-6 Gy. A total of 1000 binucleated cells (BNCs) per dose point were evaluated for the frequency of MN and NPBs. From the study, it is clear that the dose-response increase of MN and NPBs is linear quadratic in nature. The study provides linear and quadratic parameter for biodosimetry application. The relative biological effectiveness value of the 8 MeV electron beam was estimated using slope values and is found to be 1.18 ± 0.01 for MN/BNCs, 1.27 ± 0.02 for the fraction of BNCs with MN, 1.16 ± 0.13 for MN/(BNCs with MN) and 1.09±0.01 for NPBs.
Collapse
Affiliation(s)
- Rajesha K Nairy
- Depatment of Physics, P.A College of Engineering, Mangalore 574 153, Karnataka, India
| | - Nagesh N Bhat
- RP & AD, Bhabha Atomic Research Center, Mumbai 400 085, Maharashtra, India
| | - Ganesh Sanjeev
- Depatment of Studies in Physics, Mangalore University, Mangalagangotri 574 199, Karnataka, India
| | - Narayana Yerol
- Depatment of Studies in Physics, Mangalore University, Mangalagangotri 574 199, Karnataka, India
| |
Collapse
|