1
|
Dahl H, Olsen AK, Berg E, Duale N, Hofer T, Graupner A, Brede DA, Eide DM. Dose rate-driven responses to ionizing radiation in CBA/Ca and C57BL/6N evaluated using benchmark dose (BMD) modeling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 982:179589. [PMID: 40382965 DOI: 10.1016/j.scitotenv.2025.179589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 04/28/2025] [Accepted: 04/30/2025] [Indexed: 05/20/2025]
Abstract
Dose rate is an important factor influencing the biological outcomes of environmental ionizing radiation exposure. This study aimed to investigate genotoxic and phenotypic effects of dose rate while keeping the total dose constant (3 Gy). Using the Figaro facility, CBA/CaOla and C57BL/6N mice were exposed to gamma radiation (60Co) at low (2.5 mGy/h for 54d) and higher dose rates (10 mGy/h for 14d and 100 mGy/h for 30h). Cellular stress was assessed through micronuclei in reticulocytes, DNA damage (comet assay), mitochondrial DNA copy number variation and common deletions (digital droplet PCR), and protein carbonylation in plasma. Micronucleus formation in reticulocytes proved to be a highly sensitive and specific dose rate predictor, shown by a log-linear dose rate response (R2 = 0.98). Mitochondrial DNA copy number increased in a strain- and dose rate-dependent manner, while no significant effects on common deletions or protein carbonylation were detected. Chronic low dose rate exposure led to an approximate 60 % reduction in testis weights, other phenotypic results were not evident. Benchmark dose analysis of liver transcriptomic data revealed shared radiation responses across functional categories and transcriptional points of departure for DNA damage-related pathways. The BMD analysis of MN-RETs demonstrated a BMDL far below the lowest dose, indicating that the MN-RET-assay is suitable for lower dose rates and total doses. Integrating adverse effect analysis with BMDL estimations improves dose rate-response characterization and contributes to more refined risk assessment, reducing reliance on high dose rate extrapolation.
Collapse
Affiliation(s)
- Hildegunn Dahl
- Department of Chemical Toxicology, Norwegian Institute of Public Health, Oslo NO-0213, Norway; Centre for Environmental Radiation (CERAD), Norwegian University of Life Sciences (NMBU), Ås NO-1432, Norway
| | - Ann-K Olsen
- Department of Chemical Toxicology, Norwegian Institute of Public Health, Oslo NO-0213, Norway; Centre for Environmental Radiation (CERAD), Norwegian University of Life Sciences (NMBU), Ås NO-1432, Norway
| | - Einar Berg
- Department of Bacteriology, Norwegian Institute of Public Health, Oslo NO-0213, Norway
| | - Nur Duale
- Department of Chemical Toxicology, Norwegian Institute of Public Health, Oslo NO-0213, Norway; Centre for Environmental Radiation (CERAD), Norwegian University of Life Sciences (NMBU), Ås NO-1432, Norway
| | - Tim Hofer
- Department of Chemical Toxicology, Norwegian Institute of Public Health, Oslo NO-0213, Norway; Centre for Environmental Radiation (CERAD), Norwegian University of Life Sciences (NMBU), Ås NO-1432, Norway
| | - Anne Graupner
- Department of Chemical Toxicology, Norwegian Institute of Public Health, Oslo NO-0213, Norway; Centre for Environmental Radiation (CERAD), Norwegian University of Life Sciences (NMBU), Ås NO-1432, Norway
| | - Dag A Brede
- Centre for Environmental Radiation (CERAD), Norwegian University of Life Sciences (NMBU), Ås NO-1432, Norway; Faculty of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), Ås NO-1432, Norway.
| | - Dag M Eide
- Department of Chemical Toxicology, Norwegian Institute of Public Health, Oslo NO-0213, Norway; Centre for Environmental Radiation (CERAD), Norwegian University of Life Sciences (NMBU), Ås NO-1432, Norway
| |
Collapse
|
2
|
Dirven Y, Eide DM, Henriksson EW, Hjorth R, Sharma AK, Graupner A, Brunborg G, Ballangby J, Boisen AMZ, Swedmark S, Gützkow KB, Olsen AK. Assessing testicular germ cell DNA damage in the comet assay; introduction of a proof-of-concept. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2023; 64:88-104. [PMID: 36629742 DOI: 10.1002/em.22527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/30/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
The in vivo comet assay is widely used to measure genotoxicity; however, the current OECD test guideline (TG 489) does not recommend using the assay to assess testicular germ cells, due to the presence of testicular somatic cells. An adapted approach to specifically assess testicular germ cells within the comet assay is certainly warranted, considering regulatory needs for germ cell-specific genotoxicity data in relation to the increasing global production of and exposure to potentially hazardous chemicals. Here, we provide a proof-of-concept to selectively analyze round spermatids and primary spermatocytes, distinguishing them from other cells of the testicle. Utilizing the comet assay recordings of DNA content (total fluorescence intensity) and DNA damage (% tail intensity) of individual comets, we developed a framework to distinguish testicular cell populations based on differences in DNA content/ploidy and appearance. Haploid round spermatid comets are identified through (1) visual inspection of DNA content distributions, (2) setting DNA content thresholds, and (3) modeling DNA content distributions using a normal mixture distribution function. We also describe an approach to distinguish primary spermatocytes during comet scoring, based on their high DNA content and large physical size. Our concept allows both somatic and germ cells to be analyzed in the same animal, adding a versatile, sensitive, rapid, and resource-efficient assay to the limited genotoxicity assessment toolbox for germ cells. An adaptation of TG 489 facilitates accumulation of valuable information regarding distribution of substances to germ cells and their potential for inducing germ cell gene mutations and structural chromosomal aberrations.
Collapse
Affiliation(s)
- Yvette Dirven
- Norwegian Institute of Public Health, Division of Climate and Environmental Health, Oslo, Norway
- Centre for Environmental Radioactivity (CERAD, Centre of Excellence of the Norwegian Research Council), Oslo, Norway
| | - Dag Markus Eide
- Norwegian Institute of Public Health, Division of Climate and Environmental Health, Oslo, Norway
- Centre for Environmental Radioactivity (CERAD, Centre of Excellence of the Norwegian Research Council), Oslo, Norway
| | - Erika Witasp Henriksson
- Swedish Chemicals Agency, Department of Development of Legislation and Other Instruments, Unit of Proposals for Classification and Restriction, Sundbyberg, Sweden
- Swedish Chemicals Agency, Department of Development of Legislation and Other Instruments, Unit of Evaluation of Substances, Sundbyberg, Sweden
| | - Rune Hjorth
- The Danish Environmental Protection Agency, Odense, Denmark
| | - Anoop Kumar Sharma
- Technical University of Denmark, National Food Institute, Lyngby, Denmark
| | - Anne Graupner
- Norwegian Institute of Public Health, Division of Climate and Environmental Health, Oslo, Norway
- Centre for Environmental Radioactivity (CERAD, Centre of Excellence of the Norwegian Research Council), Oslo, Norway
| | - Gunnar Brunborg
- Norwegian Institute of Public Health, Division of Climate and Environmental Health, Oslo, Norway
- Centre for Environmental Radioactivity (CERAD, Centre of Excellence of the Norwegian Research Council), Oslo, Norway
| | - Jarle Ballangby
- Norwegian Institute of Public Health, Division of Climate and Environmental Health, Oslo, Norway
- Centre for Environmental Radioactivity (CERAD, Centre of Excellence of the Norwegian Research Council), Oslo, Norway
| | | | - Stellan Swedmark
- Swedish Chemicals Agency, Department of Development of Legislation and Other Instruments, Unit of Evaluation of Substances, Sundbyberg, Sweden
| | - Kristine Bjerve Gützkow
- Norwegian Institute of Public Health, Division of Climate and Environmental Health, Oslo, Norway
- Centre for Environmental Radioactivity (CERAD, Centre of Excellence of the Norwegian Research Council), Oslo, Norway
| | - Ann-Karin Olsen
- Norwegian Institute of Public Health, Division of Climate and Environmental Health, Oslo, Norway
- Centre for Environmental Radioactivity (CERAD, Centre of Excellence of the Norwegian Research Council), Oslo, Norway
| |
Collapse
|
3
|
Zeng Z, Huo J, Zhu X, Liu Y, Li R, Chen Y, Zhang L, Chen J. Characterization of benzo[ a]pyrene and colchicine based on an in vivo repeat-dosing multi-endpoint genotoxicity quantitative assessment platform. Mutagenesis 2022; 37:213-225. [PMID: 35869703 DOI: 10.1093/mutage/geac012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Two prototypical genotoxicants, benzo[a]pyrene (B[a]P) and colchicine (COL), were selected as model compounds to deduce their quantitative genotoxic dose–response relationship at low doses in a multi-endpoint genotoxicity assessment platform. Male Sprague-Dawley rats were treated with B[a]P (2.5–80 mg/kg bw/day) and COL (0.125–2 mg/kg bw/day) daily for 28 days. The parameters included were as follows: comet assay in the peripheral blood and liver, Pig-a gene mutation assay in the peripheral blood, and micronucleus test in the peripheral blood and bone marrow. A significant increase was observed in Pig-a mutant frequency in peripheral blood for B[a]P (started at 40 mg/kg bw/day on Day 14, started at 20 mg/kg bw/day on Day 28), whereas no statistical difference for COL was observed. Micronucleus frequency in reticulocytes of the peripheral blood and bone marrow increased significantly for B[a]P (80 mg/kg bw/day on Day 4, started at 20 mg/kg bw/day on Days 14 and 28 in the blood; started at 20 mg/kg bw/day on Day 28 in the bone marrow) and COL (started at 2 mg/kg bw/day on Day 14, 1 mg/kg bw/day on Day 28 in the blood; started at 1 mg/kg bw/day on Day 28 in the bone marrow). No statistical variation was found in indexes of comet assay at all time points for B[a]P and COL in the peripheral blood and liver. The dose–response relationships of Pig-a and micronucleus test data were analyzed for possible point of departures using three quantitative approaches, i.e., the benchmark dose, breakpoint dose, and no observed genotoxic effect level. The practical thresholds of the genotoxicity of B[a]P and COL estimated in this study were 0.122 and 0.0431 mg/kg bw/day, respectively, and our results also provided distinct genotoxic mode of action of the two chemicals.
Collapse
Affiliation(s)
- Zhu Zeng
- Department of Clinical Nutrition, Chengdu Fifth People’s Hospital , Chengdu, Sichuan , China
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University , Chengdu, Sichuan , China
| | - Jiao Huo
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University , Chengdu, Sichuan , China
- Department of Nutrition and Food Safety, Chongqing Center for Disease Control and Prevention , Chongqing , China
| | - Xuejiao Zhu
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University , Chengdu, Sichuan , China
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University , Chengdu, Sichuan , China
| | - Yunjie Liu
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University , Chengdu, Sichuan , China
- West China School of Public Health, Sichuan University , Chengdu, Sichuan , China
| | - Ruirui Li
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University , Chengdu, Sichuan , China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province , Chengdu, Sichuan , China
| | - Yiyi Chen
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University , Chengdu, Sichuan , China
- Infections Disease Prevention and Immunization Program Office, ChengHua Center for Disease Control and Prevention , Chengdu, Sichuan , China
| | - Lishi Zhang
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University , Chengdu, Sichuan , China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province , Chengdu, Sichuan , China
| | - Jinyao Chen
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University , Chengdu, Sichuan , China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province , Chengdu, Sichuan , China
| |
Collapse
|
4
|
NEIL1 and NEIL2 DNA glycosylases modulate anxiety and learning in a cooperative manner in mice. Commun Biol 2021; 4:1354. [PMID: 34857879 PMCID: PMC8639745 DOI: 10.1038/s42003-021-02864-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 11/02/2021] [Indexed: 12/30/2022] Open
Abstract
Oxidative DNA damage in the brain has been implicated in neurodegeneration and cognitive decline. DNA glycosylases initiate base excision repair (BER), the main pathway for oxidative DNA base lesion repair. NEIL1 and NEIL3 DNA glycosylases affect cognition in mice, while the role of NEIL2 remains unclear. Here, we investigate the impact of NEIL2 and its potential overlap with NEIL1 on behavior in knockout mouse models. Neil1-/-Neil2-/- mice display hyperactivity, reduced anxiety and improved learning. Hippocampal oxidative DNA base lesion levels are comparable between genotypes and no mutator phenotype is found. Thus, impaired canonical repair is not likely to explain the altered behavior. Electrophysiology suggests reduced axonal activation in the hippocampal CA1 region in Neil1-/-Neil2-/- mice and lack of NEIL1 and NEIL2 causes dysregulation of genes in CA1 relevant for synaptic function. We postulate a cooperative function of NEIL1 and NEIL2 in genome regulation, beyond canonical BER, modulating behavior in mice.
Collapse
|
5
|
Seo JE, Davis K, Malhi P, He X, Bryant M, Talpos J, Burks S, Mei N, Guo X. Genotoxicity evaluation using primary hepatocytes isolated from rhesus macaque (Macaca mulatta). Toxicology 2021; 462:152936. [PMID: 34509578 DOI: 10.1016/j.tox.2021.152936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 10/20/2022]
Abstract
Non-human primates (NHPs) have played a vital role in fundamental, pre-clinical, and translational studies because of their high physiological and genetic similarity to humans. Here, we report a method to isolate primary hepatocytes from the livers of rhesus macaques (Macaca mulatta) after in situ whole liver perfusion. Isolated primary macaque hepatocytes (PMHs) were treated with various compounds known to have different pathways of genotoxicity/carcinogenicity and the resulting DNA damage was evaluated using the high-throughput CometChip assay. The comet data were quantified using benchmark dose (BMD) modeling and the BMD50 values for treatments of PMHs were compared with those generated from primary human hepatocytes (PHHs) in our previous study (Seo et al. Arch Toxicol 2020, 2207-2224). The results showed that despite varying CYP450 enzyme activities, PMHs had the same sensitivity and specificity as PHHs in detecting four indirect-acting (i.e., requiring metabolic activation) and seven direct-acting genotoxicants/carcinogens, as well as five non-carcinogens that are negative or equivocal for genotoxicity in vivo. The BMD50 estimates and their confidence intervals revealed species differences for DNA damage potency, especially for direct-acting compounds. The present study provides a practical method for maximizing the use of animal tissues by isolating primary hepatocytes from NHPs. Our data support the use of PMHs as a reliable surrogate of PHHs for evaluating the genotoxic hazards of chemical substances for humans.
Collapse
Affiliation(s)
- Ji-Eun Seo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Kelly Davis
- Toxicologic Pathology Associates, Jefferson, AR 72079, USA
| | - Pritpal Malhi
- Toxicologic Pathology Associates, Jefferson, AR 72079, USA
| | - Xiaobo He
- Office of Scientific Coordination, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Matthew Bryant
- Office of Scientific Coordination, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - John Talpos
- Division of Neurotoxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Susan Burks
- Division of Neurotoxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Nan Mei
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Xiaoqing Guo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA.
| |
Collapse
|
6
|
Collins A, Vettorazzi A, Azqueta A. The role of the enzyme-modified comet assay in in vivo studies. Toxicol Lett 2020; 327:58-68. [PMID: 32247831 DOI: 10.1016/j.toxlet.2020.03.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/18/2020] [Accepted: 03/20/2020] [Indexed: 12/24/2022]
Abstract
The in vivo comet assay is an established genotoxicity test, with an OECD test guideline, but in its standard form it measures only DNA strand breaks. Including in the assay an additional step, in which the DNA is incubated with a lesion-specific enzyme, can provide important information about the nature of the DNA damage. Formamidopyrimidine DNA glycosylase, 8-oxoguanine DNA glycosylase or endonuclease III are commonly used in the in vitro genotoxicity test and in human biomonitoring to detect oxidised bases, but in vivo applications are rarer. A systematic literature search has identified a total of 60 papers that report such in vivo experiments, testing a variety of agents. In many cases, strand breaks were not seen, but significant levels of enzyme-sensitive sites were induced - indicating a mechanism of action involving oxidative stress. Compounds such as methyl methanesulfonate (MMS) or ethyl methanesulfonate (EMS) could be used as positive controls in both the standard and the enzyme-modified in vivo comet assays.
Collapse
Affiliation(s)
- Andrew Collins
- Department of Nutrition, Institute for Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, 0372, Oslo, Norway
| | - Ariane Vettorazzi
- Department of Pharmacology and Toxicology, University of Navarra, C/Irunlarrea 1, 31009, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Spain
| | - Amaya Azqueta
- Department of Pharmacology and Toxicology, University of Navarra, C/Irunlarrea 1, 31009, Pamplona, Spain.
| |
Collapse
|
7
|
You X, Ando T, Xi J, Cao Y, Liu W, Zhang X, Honma M, Masumura K, Luan Y. Gene mutation and micronucleus assays in gpt delta mice treated with 2,2′,4,4′-tetrabromodiphenyl ether. Mutagenesis 2018; 33:153-160. [PMID: 29462428 DOI: 10.1093/mutage/gey002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Xinyue You
- Hongqiao International Institute of Medicine, Shanghai Tong Ren Hospital and Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Tomoko Ando
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Kamiyoga, Setagaya-ku, Tokyo, Japan
- Hongqiao International Institute of Medicine, Shanghai Tong Ren Hospital and Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Jing Xi
- Hongqiao International Institute of Medicine, Shanghai Tong Ren Hospital and Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Yiyi Cao
- Hongqiao International Institute of Medicine, Shanghai Tong Ren Hospital and Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Weiying Liu
- Hongqiao International Institute of Medicine, Shanghai Tong Ren Hospital and Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Xinyu Zhang
- Hongqiao International Institute of Medicine, Shanghai Tong Ren Hospital and Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Masamitsu Honma
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Kamiyoga, Setagaya-ku, Tokyo, Japan
- Hongqiao International Institute of Medicine, Shanghai Tong Ren Hospital and Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Kenichi Masumura
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Kamiyoga, Setagaya-ku, Tokyo, Japan
- Hongqiao International Institute of Medicine, Shanghai Tong Ren Hospital and Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Yang Luan
- Hongqiao International Institute of Medicine, Shanghai Tong Ren Hospital and Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| |
Collapse
|
8
|
Hofer T, Duale N, Muusse M, Eide DM, Dahl H, Boix F, Andersen JM, Olsen AK, Myhre O. Restoration of Cognitive Performance in Mice Carrying a Deficient Allele of 8-Oxoguanine DNA Glycosylase by X-ray Irradiation. Neurotox Res 2017; 33:824-836. [DOI: 10.1007/s12640-017-9833-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/13/2017] [Accepted: 10/18/2017] [Indexed: 12/13/2022]
|
9
|
Graupner A, Eide DM, Brede DA, Ellender M, Lindbo Hansen E, Oughton DH, Bouffler SD, Brunborg G, Olsen AK. Genotoxic effects of high dose rate X-ray and low dose rate gamma radiation in Apc Min/+ mice. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2017; 58:560-569. [PMID: 28856770 PMCID: PMC5656900 DOI: 10.1002/em.22121] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 07/01/2017] [Accepted: 07/05/2017] [Indexed: 06/07/2023]
Abstract
Risk estimates for radiation-induced cancer in humans are based on epidemiological data largely drawn from the Japanese atomic bomb survivor studies, which received an acute high dose rate (HDR) ionising radiation. Limited knowledge exists about the effects of chronic low dose rate (LDR) exposure, particularly with respect to the application of the dose and dose rate effectiveness factor. As part of a study to investigate the development of colon cancer following chronic LDR vs. acute HDR radiation, this study presents the results of genotoxic effects in blood of exposed mice. CBAB6 F1 Apc+/+ (wild type) and ApcMin/+ mice were chronically exposed to estimated whole body absorbed doses of 1.7 or 3.2 Gy 60 Co-γ-rays at a LDR (2.2 mGy h-1 ) or acutely exposed to 2.6 Gy HDR X-rays (1.3 Gy min-1 ). Genotoxic endpoints assessed in blood included chromosomal damage (flow cytometry based micronuclei (MN) assay), mutation analyses (Pig-a gene mutation assay), and levels of DNA lesions (Comet assay, single-strand breaks (ssb), alkali labile sites (als), oxidized DNA bases). Ionising radiation (ca. 3 Gy) induced genotoxic effects dependent on the dose rate. Chromosomal aberrations (MN assay) increased 3- and 10-fold after chronic LDR and acute HDR, respectively. Phenotypic mutation frequencies as well as DNA lesions (ssb/als) were modulated after acute HDR but not after chronic LDR. The ApcMin/+ genotype did not influence the outcome in any of the investigated endpoints. The results herein will add to the scant data available on genotoxic effects following chronic LDR of ionising radiation. Environ. Mol. Mutagen. 58:560-569, 2017. © 2017 The Authors Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.
Collapse
Affiliation(s)
- Anne Graupner
- Department of Molecular BiologyNorwegian Institute of Public HealthOslo0403Norway
- Centre for Environmental Radioactivity (CoE CERAD)Ås 1432Norway
| | - Dag M. Eide
- Centre for Environmental Radioactivity (CoE CERAD)Ås 1432Norway
- Department of Toxicology and Risk AssessmentNorwegian Institute of Public HealthOslo0403Norway
| | - Dag A. Brede
- Centre for Environmental Radioactivity (CoE CERAD)Ås 1432Norway
- Department of Environmental SciencesNorwegian University of Life SciencesÅs 1432Norway
| | - Michele Ellender
- Radiation Effects DepartmentCentre for Radiation, Chemical and Environmental Hazards, Public Health EnglandChiltonDidcotOX11 0RQEngland
| | - Elisabeth Lindbo Hansen
- Centre for Environmental Radioactivity (CoE CERAD)Ås 1432Norway
- Department of ResearchNorwegian Radiation Protection AuthorityØsterås1361Norway
| | - Deborah H. Oughton
- Centre for Environmental Radioactivity (CoE CERAD)Ås 1432Norway
- Department of Environmental SciencesNorwegian University of Life SciencesÅs 1432Norway
| | - Simon D. Bouffler
- Radiation Effects DepartmentCentre for Radiation, Chemical and Environmental Hazards, Public Health EnglandChiltonDidcotOX11 0RQEngland
| | - Gunnar Brunborg
- Department of Molecular BiologyNorwegian Institute of Public HealthOslo0403Norway
- Centre for Environmental Radioactivity (CoE CERAD)Ås 1432Norway
| | - Ann Karin Olsen
- Department of Molecular BiologyNorwegian Institute of Public HealthOslo0403Norway
- Centre for Environmental Radioactivity (CoE CERAD)Ås 1432Norway
| |
Collapse
|
10
|
Holme JA, Froetschl R, Knudsen LE. The European Environmental Mutagenesis and Genomics Society Annual Meeting, 14-18 August 2016, Copenhagen, Denmark. Basic Clin Pharmacol Toxicol 2017. [DOI: 10.1111/bcpt.12750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jørn A. Holme
- Division of Environmental medicine; Norwegian Institute of Public Health; Oslo Norway
| | | | - Lisbeth E. Knudsen
- Department of Public Health; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
11
|
No cancer predisposition or increased spontaneous mutation frequencies in NEIL DNA glycosylases-deficient mice. Sci Rep 2017; 7:4384. [PMID: 28663564 PMCID: PMC5491499 DOI: 10.1038/s41598-017-04472-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 05/16/2017] [Indexed: 02/07/2023] Open
Abstract
Base excision repair (BER) is a major pathway for removal of DNA base lesions and maintenance of genomic stability, which is essential in cancer prevention. DNA glycosylases recognize and remove specific lesions in the first step of BER. The existence of a number of these enzymes with overlapping substrate specificities has been thought to be the reason why single knock-out models of individual DNA glycosylases are not cancer prone. In this work we have characterized DNA glycosylases NEIL1 and NEIL2 (Neil1−/−/Neil2−/−) double and NEIL1, NEIL2 and NEIL3 (Neil1−/−/Neil2−/−/Neil3−/−) triple knock-out mouse models. Unexpectedly, our results show that these mice are not prone to cancer and have no elevated mutation frequencies under normal physiological conditions. Moreover, telomere length is not affected and there was no accumulation of oxidative DNA damage compared to wild-type mice. These results strengthen the hypothesis that the NEIL enzymes are not simply back-up enzymes for each other but enzymes that have distinct functions beyond canonical repair.
Collapse
|
12
|
Olsen AK, Dertinger SD, Krüger CT, Eide DM, Instanes C, Brunborg G, Hartwig A, Graupner A. The Pig-a Gene Mutation Assay in Mice and Human Cells: A Review. Basic Clin Pharmacol Toxicol 2017; 121 Suppl 3:78-92. [PMID: 28481423 DOI: 10.1111/bcpt.12806] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 05/01/2017] [Indexed: 01/08/2023]
Abstract
This MiniReview describes the principle of mutation assays based on the endogenous Pig-a gene and summarizes results for two species of toxicological interest, mice and human beings. The work summarized here largely avoids rat-based studies, as are summarized elsewhere. The Pig-a gene mutation assay has emerged as a valuable tool for quantifying in vivo and in vitro mutational events. The Pig-a locus is located at the X-chromosome, giving the advantage that one inactivated allele can give rise to a mutated phenotype, detectable by multicolour flow cytometry. For in vivo studies, only minute blood volumes are required, making it easily incorporated into ongoing studies or experiments with limited biological materials. Low blood volumes also allow individuals to serve as their own controls, providing temporal information of the mutagenic process, and/or outcome of intervention. These characteristics make it a promising exposure marker. To date, the Pig-a gene mutation assay has been most commonly performed in rats, while reports regarding its usefulness in other species are accumulating. Besides its applicability to in vivo studies, it holds promise for genotoxicity testing using cultured cells, as shown in recent studies. In addition to safety assessment roles, it is becoming a valuable tool in basic research to identify mutagenic effects of different interventions or to understand implications of various gene defects by investigating modified mouse models or cell systems. Human blood-based assays are also being developed that may be able to identify genotoxic environmental exposures, treatment- and lifestyle-related factors or endogenous host factors that contribute to mutagenesis.
Collapse
Affiliation(s)
- Ann-Karin Olsen
- Department of Molecular Biology, The Norwegian Institute of Public Health, Oslo, Norway.,Centre for Environmental Radioactivity (CERAD CoE), Norway
| | | | - Christopher T Krüger
- Food Chemistry and Toxicology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Dag M Eide
- Centre for Environmental Radioactivity (CERAD CoE), Norway.,Department of Toxicology and Risk, The Norwegian Institute of Public Health, Oslo, Norway
| | - Christine Instanes
- Department of Molecular Biology, The Norwegian Institute of Public Health, Oslo, Norway.,Centre for Environmental Radioactivity (CERAD CoE), Norway
| | - Gunnar Brunborg
- Department of Molecular Biology, The Norwegian Institute of Public Health, Oslo, Norway.,Centre for Environmental Radioactivity (CERAD CoE), Norway
| | - Andrea Hartwig
- Food Chemistry and Toxicology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Anne Graupner
- Department of Molecular Biology, The Norwegian Institute of Public Health, Oslo, Norway.,Centre for Environmental Radioactivity (CERAD CoE), Norway
| |
Collapse
|
13
|
Wang L, Xu W, Ma L, Zhang S, Zhang K, Ye P, Xing G, Zhang X, Cao Y, Xi J, Gu J, Luan Y. Detoxification of benzo[a]pyrene primarily depends on cytochrome P450, while bioactivation involves additional oxidoreductases including 5-lipoxygenase, cyclooxygenase, and aldo-keto reductase in the liver. J Biochem Mol Toxicol 2017; 31. [PMID: 28111842 DOI: 10.1002/jbt.21902] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 12/26/2016] [Accepted: 01/03/2017] [Indexed: 02/02/2023]
Abstract
Cytochrome P450s are involved in detoxification and activation of benzo[a]pyrene (BaP) with unclear balance and unknown contribution of other oxidoreductases. Here, we investigated the BaP and BaP-induced mutagenicity in hepatic and extra-hepatic tissues using hepatic P450 reductase null (HRN) gpt mice. After 2-week treatment (50 mg/kg, i.p. 4 days), BaP in the liver and lung of HRN-gpt mice were increased. BaP promoted gpt mutant frequency (MF) in HRN-gpt mice liver. MF of gpt in the lung and Pig-a in hematopoietic cells induced by BaP in HRN-gpt mice were increased than in gpt mice. BaP-7,8-diol-9,10-epoxide (BPDE)-DNA adducts in vitro was analyzed for enzymes detection in BaP bioactivation. Specific inhibitors of 5-lipoxygenase, cyclooxygenase-1&2, and aldo-keto reductase resulted in more than 80% inhibition rate in the DNA adduct formation, further confirmed by Macaca fascicularis hepatic S9 system. Our results suggested the detoxification of BaP primarily depends on cytochrome P450, while the bioactivation involves additional oxidoreductases.
Collapse
Affiliation(s)
- Liupeng Wang
- Hongqiao International Institute of Medicine, Shanghai Tong Ren Hospital and Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Wenwei Xu
- Tong Ren Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, People's Republic of China
| | - Leilei Ma
- Hongqiao International Institute of Medicine, Shanghai Tong Ren Hospital and Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Suxing Zhang
- KG Pharma Limited, Foshan, 528000, People's Republic of China
| | - Kezhi Zhang
- KG Pharma Limited, Foshan, 528000, People's Republic of China
| | - Peizhen Ye
- KG Pharma Limited, Foshan, 528000, People's Republic of China
| | - Guozhen Xing
- Jiangsu Tripod Preclinical Research Laboratories, Pukou Economic Development Zone, Nanjing, People's Republic of China
| | - Xuefeng Zhang
- Jiangsu Tripod Preclinical Research Laboratories, Pukou Economic Development Zone, Nanjing, People's Republic of China
| | - Yiyi Cao
- Hongqiao International Institute of Medicine, Shanghai Tong Ren Hospital and Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Jing Xi
- Hongqiao International Institute of Medicine, Shanghai Tong Ren Hospital and Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Jun Gu
- Wadsworth Center, New York State Department of Health, Albany, NY, 12201-0509, USA
| | - Yang Luan
- Hongqiao International Institute of Medicine, Shanghai Tong Ren Hospital and Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| |
Collapse
|
14
|
Graupner A, Eide DM, Instanes C, Andersen JM, Brede DA, Dertinger SD, Lind OC, Brandt-Kjelsen A, Bjerke H, Salbu B, Oughton D, Brunborg G, Olsen AK. Gamma radiation at a human relevant low dose rate is genotoxic in mice. Sci Rep 2016; 6:32977. [PMID: 27596356 PMCID: PMC5011728 DOI: 10.1038/srep32977] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/10/2016] [Indexed: 12/16/2022] Open
Abstract
Even today, 70 years after Hiroshima and accidents like in Chernobyl and Fukushima, we still have limited knowledge about the health effects of low dose rate (LDR) radiation. Despite their human relevance after occupational and accidental exposure, only few animal studies on the genotoxic effects of chronic LDR radiation have been performed. Selenium (Se) is involved in oxidative stress defence, protecting DNA and other biomolecules from reactive oxygen species (ROS). It is hypothesised that Se deficiency, as it occurs in several parts of the world, may aggravate harmful effects of ROS-inducing stressors such as ionising radiation. We performed a study in the newly established LDR-facility Figaro on the combined effects of Se deprivation and LDR γ exposure in DNA repair knockout mice (Ogg1−/−) and control animals (Ogg1+/−). Genotoxic effects were seen after continuous radiation (1.4 mGy/h) for 45 days. Chromosomal damage (micronucleus), phenotypic mutations (Pig-a gene mutation of RBCCD24−) and DNA lesions (single strand breaks/alkali labile sites) were significantly increased in blood cells of irradiated animals, covering three types of genotoxic activity. This study demonstrates that chronic LDR γ radiation is genotoxic in an exposure scenario realistic for humans, supporting the hypothesis that even LDR γ radiation may induce cancer.
Collapse
Affiliation(s)
- Anne Graupner
- Department of Chemicals and Radiation, Norwegian Institute of Public Health, Oslo 0403, Norway.,Centre for Environmental Radioactivity (CoE CERAD), Ås 1432, Norway
| | - Dag M Eide
- Department of Chemicals and Radiation, Norwegian Institute of Public Health, Oslo 0403, Norway.,Centre for Environmental Radioactivity (CoE CERAD), Ås 1432, Norway
| | - Christine Instanes
- Department of Chemicals and Radiation, Norwegian Institute of Public Health, Oslo 0403, Norway.,Centre for Environmental Radioactivity (CoE CERAD), Ås 1432, Norway
| | - Jill M Andersen
- Department of Chemicals and Radiation, Norwegian Institute of Public Health, Oslo 0403, Norway.,Centre for Environmental Radioactivity (CoE CERAD), Ås 1432, Norway
| | - Dag A Brede
- Centre for Environmental Radioactivity (CoE CERAD), Ås 1432, Norway.,Department of Environmental Sciences (IMV), Norwegian University of Life Sciences (NMBU), Centre for Environmental Radioactivity (CoE CERAD), Ås 1432, Norway
| | | | - Ole C Lind
- Centre for Environmental Radioactivity (CoE CERAD), Ås 1432, Norway.,Department of Environmental Sciences (IMV), Norwegian University of Life Sciences (NMBU), Centre for Environmental Radioactivity (CoE CERAD), Ås 1432, Norway
| | - Anicke Brandt-Kjelsen
- Department of Environmental Sciences (IMV), Norwegian University of Life Sciences (NMBU), Centre for Environmental Radioactivity (CoE CERAD), Ås 1432, Norway
| | - Hans Bjerke
- Department of Monitoring and Research, Norwegian Radiation Protection Authority, Østerås 1332, Norway
| | - Brit Salbu
- Centre for Environmental Radioactivity (CoE CERAD), Ås 1432, Norway.,Department of Environmental Sciences (IMV), Norwegian University of Life Sciences (NMBU), Centre for Environmental Radioactivity (CoE CERAD), Ås 1432, Norway
| | - Deborah Oughton
- Centre for Environmental Radioactivity (CoE CERAD), Ås 1432, Norway.,Department of Environmental Sciences (IMV), Norwegian University of Life Sciences (NMBU), Centre for Environmental Radioactivity (CoE CERAD), Ås 1432, Norway
| | - Gunnar Brunborg
- Department of Chemicals and Radiation, Norwegian Institute of Public Health, Oslo 0403, Norway.,Centre for Environmental Radioactivity (CoE CERAD), Ås 1432, Norway
| | - Ann K Olsen
- Department of Chemicals and Radiation, Norwegian Institute of Public Health, Oslo 0403, Norway.,Centre for Environmental Radioactivity (CoE CERAD), Ås 1432, Norway
| |
Collapse
|
15
|
Gutzkow KB, Duale N, Danielsen T, von Stedingk H, Shahzadi S, Instanes C, Olsen AK, Steffensen IL, Hofer T, Törnqvist M, Brunborg G, Lindeman B. Enhanced susceptibility of obese mice to glycidamide-induced sperm chromatin damage without increased oxidative stress. Andrology 2016; 4:1102-1114. [DOI: 10.1111/andr.12233] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/26/2016] [Accepted: 05/11/2016] [Indexed: 11/29/2022]
Affiliation(s)
- K. B. Gutzkow
- Division of Environmental Medicine; Department of Chemicals and Radiation; Norwegian Institute of Public Health; Oslo Norway
| | - N. Duale
- Division of Environmental Medicine; Department of Chemicals and Radiation; Norwegian Institute of Public Health; Oslo Norway
| | - T. Danielsen
- Division of Environmental Medicine; Department of Chemicals and Radiation; Norwegian Institute of Public Health; Oslo Norway
| | - H. von Stedingk
- Department of Environmental Science and Analytical Chemistry; Stockholm University; Stockholm Sweden
| | - S. Shahzadi
- Division of Environmental Medicine; Department of Chemicals and Radiation; Norwegian Institute of Public Health; Oslo Norway
| | - C. Instanes
- Division of Environmental Medicine; Department of Chemicals and Radiation; Norwegian Institute of Public Health; Oslo Norway
| | - A.-K. Olsen
- Division of Environmental Medicine; Department of Chemicals and Radiation; Norwegian Institute of Public Health; Oslo Norway
| | - I.-L. Steffensen
- Division of Environmental Medicine; Department of Food, Water and Cosmetics; Norwegian Institute of Public Health; Oslo Norway
| | - T. Hofer
- Division of Environmental Medicine; Department of Chemicals and Radiation; Norwegian Institute of Public Health; Oslo Norway
| | - M. Törnqvist
- Department of Environmental Science and Analytical Chemistry; Stockholm University; Stockholm Sweden
| | - G. Brunborg
- Division of Environmental Medicine; Department of Chemicals and Radiation; Norwegian Institute of Public Health; Oslo Norway
| | - B. Lindeman
- Division of Environmental Medicine; Department of Chemicals and Radiation; Norwegian Institute of Public Health; Oslo Norway
| |
Collapse
|
16
|
Labash C, Avlasevich SL, Carlson K, Berg A, Torous DK, Bryce SM, Bemis JC, MacGregor JT, Dertinger SD. Mouse Pig-a and micronucleus assays respond to N-ethyl-N-nitrosourea, benzo[a]pyrene, and ethyl carbamate, but not pyrene or methyl carbamate. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2016; 57:28-40. [PMID: 26186091 DOI: 10.1002/em.21965] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 06/25/2015] [Indexed: 06/04/2023]
Abstract
This laboratory previously described a method for scoring the incidence of peripheral blood Pig-a mutant phenotype rat erythrocytes using immunomagnetic separation in conjunction with flow cytometric analysis (In Vivo MutaFlow®). The current work extends the method to mouse blood, using the frequency of CD24-negative reticulocytes (RET(CD24-)) and erythrocytes (RBC(CD24-)) as phenotypic reporters of Pig-a gene mutation. Following assay optimization, reconstruction experiments demonstrated the ability of the methodology to return expected values. Subsequently, the responsiveness of the assay to the genotoxic carcinogens N-ethyl-N-nitrosourea, benzo[a]pyrene, and ethyl carbamate was studied in male CD-1 mice exposed for 3 days to several dose levels via oral gavage. Blood samples were collected on Day 4 for micronucleated reticulocyte analyses, and on Days 15 and 30 for determination of RET(CD24-) and RBC(CD24-) frequencies. The same design was used to study pyrene, with benzo[a]pyrene as a concurrent positive control, and methyl carbamate, with ethyl carbamate as a concurrent positive control. The three genotoxicants produced marked dose-related increases in the frequencies of Pig-a mutant phenotype cells and micronucleated reticulocytes. Ethyl carbamate exposure resulted in moderately higher micronucleated reticulocyte frequencies relative to N-ethyl-N-nitrosourea or benzo[a]pyrene (mean ± SEM = 3.0 ± 0.36, 2.3 ± 0.17, and 2.3 ± 0.49%, respectively, vs. an aggregate vehicle control frequency of 0.18 ± 0.01%). However, it was considerably less effective at inducing Pig-a mutant cells (e.g., Day 15 mean no. RET(CD24-) per 1 million reticulocytes = 7.6 ± 3, 150 ± 9, and 152 ± 43 × 10(-6), respectively, vs. an aggregate vehicle control frequency of 0.6 ± 0.13 × 10(-6)). Pyrene and methyl carbamate, tested to maximum tolerated dose or limit dose levels, had no effect on mutant cell or micronucleated reticulocyte frequencies. Collectively, these results demonstrate the utility of the cross-species Pig-a and micronucleated reticulocyte assays, and add further support to the value of studying both endpoints in order to cover two distinct genotoxic modes of action.
Collapse
Affiliation(s)
| | | | | | - Ariel Berg
- Litron Laboratories, Rochester, New York
| | | | | | | | | | | |
Collapse
|