1
|
Chen Y, Yang Z, Zhou Z, Liu EJ, Luo W, He Z, Han W, Liu Y. Metabolism-dependent mutagenicity of two structurally similar tobacco-specific nitrosamines (N-nitrosonornicotine and N-nitrosoanabasine) in human cells, partially different CYPs being activating enzymes. Toxicology 2024; 504:153774. [PMID: 38490321 DOI: 10.1016/j.tox.2024.153774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
N-nitrosonornicotine (NNN) and N-nitrosoanabasine (NAB) are both tobacco-specific nitrosamines bearing two heterocyclic amino groups, NAB bearing an extra -CH2- group (conferring a hexa- rather than penta-membered cycle) but with significantly decreased carcinogenicity. However, their activating enzymes and related mutagenicity remain unclear. In this study, the chemical-CYP interaction was analyzed by molecular docking, thus the binding energies and conformations of NNN for human CYP2A6, 2A13, 2B6, 2E1 and 3A4 appeared appropriate as a substrate, so did NAB for human CYP1B1, 2A6, 2A13 and 2E1. The micronucleus test in human hepatoma (HepG2) cells with each compound (62.5-1000 μM) exposing for 48 h (two-cell cycle) was negative, however, pretreatment with bisphenol AF (0.1-100 nM, CYPs inducer) and ethanol (0.2% v:v, CYP2E1 inducer) potentiated micronucleus formation by both compounds, while CITCO (1 μM, CYP2B6 inducer) selectively potentiated that by NNN. In C3A cells (endogenous CYPs enhanced over HepG2) both compounds induced micronucleus, which was abolished by 1-aminobenzotriazole (60 μM, CYPs inhibitor) while unaffected by 8-methoxypsoralen (1 μM, CYP2A inhibitor). Consistently, NNN and NAB induced micronucleus in V79-derived recombinant cell lines expressing human CYP2B6/2E1 and CYP1B1/2E1, respectively, while negative in those expressing other CYPs. By immunofluorescent assay both compounds selectively induced centromere-free micronucleus in C3A cells. In PIG-A assays in HepG2 cells NNN and NAB were weakly positive and simply negative, respectively; however, in C3A cells both compounds significantly induced gene mutations, NNN being slight more potent. Conclusively, both NNN and NAB are mutagenic and clastogenic, depending on metabolic activation by partially different CYP enzymes.
Collapse
Affiliation(s)
- Yijing Chen
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou 510515, China
| | - Zongying Yang
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou 510515, China; School of Clinical Technology, Sichuan Vocational College of Health and Rehabilitation, 3 Deming Road, Zigong, Sichuan Province 643000, China
| | - Zhao Zhou
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou 510515, China
| | - Ellery J Liu
- International High School Section, Guangzhou Experimental Foreign Language School, 599 Guanghuayi Road, Guangzhou 510440, China
| | - Wenwen Luo
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou 510515, China
| | - Zhini He
- Research Center of Food Safety and Health, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou 510515, China
| | - Weili Han
- Department of inspection and quarantine, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou 510515, China
| | - Yungang Liu
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou 510515, China.
| |
Collapse
|
2
|
Song M, Wang Y, Chen Z, Gao H, Yang Z, Yu H, Liu Y. Human CYP enzyme-activated genotoxicity of 2,2',4,4'-tetrabromobiphenyl ether in mammalian cells. CHEMOSPHERE 2022; 291:132784. [PMID: 34742755 DOI: 10.1016/j.chemosphere.2021.132784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
Polybrominated biphenyl ethers (PBDEs) are a group of persistent organic pollutants with endocrine-disrupting, neurotoxic, tumorigenic and DNA-damaging activities. They are hydroxylated by human liver microsomal CYP enzymes, however, their mutagenicity remains unknown. In this study, 2,2',4,4'-tetrabromobiphenyl ether (BDE-47, relatively abundant in human tissues) was investigated for micronuclei induction and DNA damage in mammalian cells. The results indicated that BDE-47 up to 80 μM under a 6 h/18 h (exposure/recovery, covering 2 cell cycles) regime did not induce micronuclei in V79-Mz and V79-derived cell lines expressing human CYP1A1 or 1A2, while it was moderately positive in human CYP2B6-, 2E1-and 3A4-expressing cell lines (V79-hCYP2B6, V79-hCYP2E1-hSULT1A1 and V79-hCYP3A4-hOR, respectively). Following 24 h exposure, BDE-47 induced micronuclei in V79-hCYP2E1-hSULT1A1 and V79-hCYP3A4 cells at increased potencies. In the human hepatoma (HepG2) cells BDE-47 (48 h exposure) was inactive up to 40 μM, however, pretreatment of the cells with ethanol (0.2%, v:v, inducer of CYP2E1) or rifampicin (10 μM, inducer of CYP3A4) led to significant micronuclei formation by BDE-47; pretreatment with bisphenol AF (100 nM) also potentiated BDE-47-induced micronuclei formation (which was blocked by a CYP2E1 inhibitor trans-1,2-dichloroethylene or a CYP3A inhibitor (ketoconazole). Immunofluorescent staining of centromere protein B with the micronuclei formed by BDE-47 in HepG2 cells pretreated with ethanol or rifampicin demonstrated selective formation of centromere-containing micronuclei. The increased phosphorylation of both histones H2AX and H3 in HepG2 by BDE-47 also indicated an aneugenic potential. Therefore, this study suggests that BDE-47 is an aneugen activated by several human CYP enzymes.
Collapse
Affiliation(s)
- Meiqi Song
- Department of Toxicology, School of Public Health, Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Yujian Wang
- Department of Toxicology, School of Public Health, Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Zhihong Chen
- Department of Toxicology, School of Public Health, Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Hongbin Gao
- Department of Toxicology, School of Public Health, Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China; Guangdong Laboratory Animals Monitoring Institute, Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510663, China
| | - Zongying Yang
- Department of Toxicology, School of Public Health, Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Hang Yu
- Department of Toxicology, School of Public Health, Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Yungang Liu
- Department of Toxicology, School of Public Health, Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China.
| |
Collapse
|
3
|
Chen Z, Xie J, Li Q, Hu K, Yang Z, Yu H, Liu Y. Human CYP enzyme-activated clastogenicity of 2-ethylhexyl diphenyl phosphate (a flame retardant) in mammalian cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117527. [PMID: 34380225 DOI: 10.1016/j.envpol.2021.117527] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 06/13/2023]
Abstract
2-Ethylhexyl diphenyl phosphate (EHDPP) is a common flame retardant and environmental pollutant, exposing humans with endocrinal disrupting potentials. Its mutagenicity, especially following metabolism, remains unclear. In this study, molecular docking analysis indicated that EHDPP was a potential substrate for several human CYP enzymes except for CYP1A1. Among V79-derived cell lines genetically engineered for the expression of each CYP, EHDPP (6 h exposure/18 h recovery) did not induce micronuclei in the V79 or V79-derived cells expressing human CYP1A1, however, it was positive in V79-derived cell lines expressing human CYP2E1, 3A4, and 2B6. In a human hepatoma (HepG2) cell line, EHDPP (48 h exposure) moderately induced micronuclei, which was blocked by 1-aminobenzotriazole (ABT, 60 μM, inhibitor of CYPs); pretreating HepG2 cells with bisphenol AF, another organic pollutant as inducer of CYPs (0.1 μM for 16 h), significantly potentiated micronuclei formation by EHDPP, threshold being decreased from 10 to 1.25 μM. This effect was blocked by ABT, drastically reduced by ketoconazole (inhibiting CYP3A expression/activity), and moderately inhibited by trans-1,2-dichloroethylene (selective CYP2E1 inhibitor). Immunofluorescent centromere protein B staining indicated that EHDPP-induced micronuclei in V79-derived cell lines expressing human CYP2E1 and 3A4 were predominantly centromere-negative, and that in HepG2 cells pretreated with bisphenol AF (for inducing multiple CYPs) were purely centromere-negative. In bisphenol AF-pretreated HepG2 cells EHDPP potently induced DNA breaks, as indicated by the comet assay and Western blot analysis of γ-H2AX. In conclusion, our study suggests that EHDPP is potently clastogenic, following activation by several human CYP enzymes, CYP3A4 being a major one.
Collapse
Affiliation(s)
- Zhihong Chen
- Department of Toxicology, School of Public Health, (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Jiayi Xie
- Department of Toxicology, School of Public Health, (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Qing Li
- Department of Dietetics, Nanfang Hospital, Southern Medical University, 1838 N. Guangzhou Avenue, Guangzhou, 510515, China
| | - Keqi Hu
- Department of Toxicology, School of Public Health, (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Zongying Yang
- Department of Toxicology, School of Public Health, (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Hang Yu
- Department of Toxicology, School of Public Health, (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Yungang Liu
- Department of Toxicology, School of Public Health, (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China.
| |
Collapse
|
4
|
da Silva Junior FC, Felipe MBMC, Castro DEFD, Araújo SCDS, Sisenando HCN, Batistuzzo de Medeiros SR. A look beyond the priority: A systematic review of the genotoxic, mutagenic, and carcinogenic endpoints of non-priority PAHs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 278:116838. [PMID: 33714059 DOI: 10.1016/j.envpol.2021.116838] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/06/2021] [Accepted: 02/21/2021] [Indexed: 06/12/2023]
Abstract
Knowledge of the toxic potential of polycyclic aromatic hydrocarbons (PAHs) has increased over time. Much of this knowledge is about the 16 United States - Environmental Protection Agency (US - EPA) priority PAHs; however, there are other US - EPA non-priority PAHs in the environment, whose toxic potential is underestimated. We conducted a systematic review of in vitro, in vivo, and in silico studies to assess the genotoxicity, mutagenicity, and carcinogenicity of 13 US - EPA non-priority parental PAHs present in the environment. Electronic databases, such as Science Direct, PubMed, Scopus, Google Scholar, and Web of Science, were used to search for research with selected terms without time restrictions. After analysis, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol, 249 articles, published between 1946 and 2020, were selected and the quality assessment of these studies was performed. The results showed that 5-methylchrysene (5-MC), 7,12-dimethylbenz[a]anthracene (7,12-DMBA), cyclopenta[cd]pyrene (CPP), and dibenzo[al]pyrene (Db[al]P) were the most studied PAHs. Moreover, 5-MC, 7,12-DMBA, benz[j]aceanthrylene (B[j]A), CPP, anthanthrene (ANT), dibenzo[ae]pyrene (Db[ae]P), and Db[al]P have been reported to cause mutagenic effects and have been being associated with a risk of carcinogenicity. Retene (RET) and benzo[c]fluorene (B[c]F), the least studied compounds, showed evidence of a strong influence on the mutagenicity and carcinogenicity endpoints. Overall, this systematic review provided evidence of the genotoxic, mutagenic, and carcinogenic endpoints of US - EPA non-priority PAHs. However, further studies are needed to improve the future protocols of environmental analysis and risk assessment in severely exposed populations.
Collapse
Affiliation(s)
- Francisco Carlos da Silva Junior
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande Do Norte, Natal, RN, Brazil; Graduate Program in Molecular Biology and Biochemistry, Biosciences Center, Federal University of Rio Grande Do Norte, Natal, RN, Brazil
| | | | - Denis Elvis Farias de Castro
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande Do Norte, Natal, RN, Brazil; Graduate Program in Molecular Biology and Biochemistry, Biosciences Center, Federal University of Rio Grande Do Norte, Natal, RN, Brazil
| | - Sinara Carla da Silva Araújo
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande Do Norte, Natal, RN, Brazil; Graduate Program in Molecular Biology and Biochemistry, Biosciences Center, Federal University of Rio Grande Do Norte, Natal, RN, Brazil
| | - Herbert Costa Nóbrega Sisenando
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande Do Norte, Natal, RN, Brazil; Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal, RN, Brazil
| | - Silvia Regina Batistuzzo de Medeiros
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande Do Norte, Natal, RN, Brazil; Graduate Program in Molecular Biology and Biochemistry, Biosciences Center, Federal University of Rio Grande Do Norte, Natal, RN, Brazil.
| |
Collapse
|
5
|
Yu H, Chen Z, Hu K, Yang Z, Song M, Li Z, Liu Y. Potent Clastogenicity of Bisphenol Compounds in Mammalian Cells-Human CYP1A1 Being a Major Activating Enzyme. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15267-15276. [PMID: 33201683 DOI: 10.1021/acs.est.0c04808] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Bisphenols (BPs) are environmental pollutants with relevant DNA damage in human population; however, they are generally inactive in standard mutagenicity assays, possibly due to insufficient metabolic activation. In this study, induction of micronuclei and double-strand DNA breaks by BPA, BPF, and BPS in Chinese hamster V79-derived cell lines expressing various human CYP enzymes and a human hepatoma (C3A) (metabolism-proficient) cell line were investigated. Molecular docking of BPs to human CYPs indicated some substrate-enzyme potentials, including CYP1A1 for each compound, which did not induce micronuclei in V79-derived cell lines expressing human CYP1A2, 2E1, or 3A4 but became positive in human CYP1A1-expressing (V79-hCYP1A1) cells. In V79-hCYP1A1 and C3A cells, all compounds induced double-strand DNA breaks and micronuclei formation, which were blocked/significantly attenuated by 1-aminobenzotriazole (CYP inhibitor) or 7-hydroxyflavone (selective CYP1A1 inhibitor). Coexposure of C3A cells to pentachlorophenol (sulfotransferase 1 inhibitor) or ketoconazole (UDP-glucuronosyltransferase 1A inhibitor) potentiated micronuclei induction by each compound, with thresholds lowered from 2.5-5.0 to 0.6-1.2 μM. Immunofluorescence staining of centromere protein B with micronuclei formed in C3A cells by each compound indicated pure clastogenic effects. In conclusion, BPs are potently clastogenic in mammalian cells, which require activation primarily by human CYP1A1 and are negatively modulated by phase II metabolism.
Collapse
Affiliation(s)
- Hang Yu
- Department of Toxicology, School of Public Health, Southern Medical University, 1023 S. Shatai Road, Guangzhou 510515, China
| | - Zhihong Chen
- Department of Toxicology, School of Public Health, Southern Medical University, 1023 S. Shatai Road, Guangzhou 510515, China
| | - Keqi Hu
- Department of Toxicology, School of Public Health, Southern Medical University, 1023 S. Shatai Road, Guangzhou 510515, China
| | - Zongying Yang
- Department of Toxicology, School of Public Health, Southern Medical University, 1023 S. Shatai Road, Guangzhou 510515, China
| | - Meiqi Song
- Department of Toxicology, School of Public Health, Southern Medical University, 1023 S. Shatai Road, Guangzhou 510515, China
| | - Zihuan Li
- Department of Toxicology, School of Public Health, Southern Medical University, 1023 S. Shatai Road, Guangzhou 510515, China
| | - Yungang Liu
- Department of Toxicology, School of Public Health, Southern Medical University, 1023 S. Shatai Road, Guangzhou 510515, China
| |
Collapse
|
6
|
Yu H, Li Z, Yang Z, Song M, Liu Y. 1-Methylpyrene induces chromosome loss and mitotic apparatus damage in a Chinese hamster V79-derived cell line expressing both human CYP1A2 and sulfotransferase 1A1. Chem Biol Interact 2020; 332:109283. [PMID: 33035519 DOI: 10.1016/j.cbi.2020.109283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 12/27/2022]
Abstract
1-Methylpyrene (1-MP) is a ubiquitous environmental pollutant and rodent carcinogen. Its mutagenic activity depends on sequential activation by various CYP and sulfotransferase (SULT) enzymes. Previously we have observed induction of micronuclei and mitotic arrest by 1-MP in a Chinese hamster (V79)-derived cell line expressing both human CYP1A2 and SULT1A1 (V79-hCYP1A2-hSULT1A1), however, the mode of chromosome damage and the involvement of mitotic tubulin structures have not been clarified. In this study, we used immunofluorescent staining of centromere protein B (CENP-B) with the formed micronuclei, and that of β- and γ-tubulin reflecting the structures of mitotic spindle and centrioles, respectively, in V79-hCYP1A2-hSULT1A1 cells. The results indicated that 1-MP induced micronuclei in V79-hCYP1A2-hSULT1A1 cells from 0.125 to 2 μM under a 24 h/0 h (exposure/recovery) regime, while in the parental V79-Mz cells micronuclei were induced by 1-MP only at concentrations ≥ 8 μM; in both cases, the micronuclei induced by 1-MP were predominantly CENP-B positive. Following 54 h of exposure, 1-MP induced mitotic spindle non-congression and centrosome amplification (multipolar mitosis) in V79-hCYP1A2-hSULT1A1 cells, and anaphase/telophase retardation, at concentrations ≥ 0.125 μM with concentration-dependence; while in V79-Mz cells it was inactive up to 8 μM. This study suggests that in mammalian cells proficient in activating enzymes 1-MP may induce chromosome loss and mitotic disturbance, probably by interfering with the mitotic spindle and centrioles.
Collapse
Affiliation(s)
- Hang Yu
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Zihuan Li
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Zongying Yang
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Meiqi Song
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Yungang Liu
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), 1023 S. Shatai Road, Guangzhou, 510515, China.
| |
Collapse
|
7
|
Li Z, Yu H, Song M, Glatt H, Liu J, Liu Y. Potent aneugenicity of 1-methylpyrene in human cells dependent on metabolic activation by endogenous enzymes. Arch Toxicol 2020; 95:703-713. [PMID: 33057863 DOI: 10.1007/s00204-020-02933-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/08/2020] [Indexed: 02/04/2023]
Abstract
1-Methylpyrene (1-MP) is a common environmental pollutant and animal carcinogen. After sequential activation by cytochromes P450 and sulfotransferases, it induced gene mutations and micronuclei in mammalian cells. The type of micronuclei formed, entire chromosomes or fragments, was not analysed. In this study, 1-MP and its primary metabolite, 1-hydroxymethylpyrene (1-HMP), were investigated for the induction of centromere-positive and -negative micronuclei in the human hepatoma cell line HepG2 and its derivative C3A, expressing relevant enzymes at higher levels. Under a short-exposure (9 h)/long-recovery regime (2 cell cycles in total), 1-MP and 1-HMP provided negative test results in HepG2 cells. However, they induced micronuclei in C3A cells, the effect being blocked by 1-aminobenzotriazole (inhibitor of cytochromes P450s) and reduced by pentachlorophenol (inhibitor of sulfotransferases). Immunofluorescence staining of centromere protein B in the micronuclei revealed purely clastogenic effects under this regime. Unexpectedly, 1-MP and 1-HMP at concentrations 1/5-1/4 of that required for micronuclei formation led to mitotic arrest and spindle aberrations, as detected by immunofluorescence staining of β- and γ-tubulin. Following extended exposure (72 h, 2 cell cycles, no recovery), damage to the spindle apparatus and centrosomes was detected at even lower concentrations, with concurrent formation of micronuclei. At low concentrations (1-8 µM 1-MP, 0.25-0.5 µM 1-HMP), the micronuclei induced were unexceptionally centromere-positive. Thus, the chromosome-damaging mechanism of 1-MP was regime and concentration dependent: potently aneugenic under persistent exposure, while clastogenic at higher concentrations following a short-exposure/long-recovery regime. This is a convincing evidence for the existence of metabolic activation-dependent aneugens.
Collapse
Affiliation(s)
- Zihuan Li
- Department of Toxicology, School of Public Health, Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Hang Yu
- Department of Toxicology, School of Public Health, Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Meiqi Song
- Department of Toxicology, School of Public Health, Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Hansruedi Glatt
- Department of Nutritional Toxicology, German Institute of Human Nutrition (DIfE), Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany.,Department of Food Safety, Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Jianjun Liu
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, 8 Longyuan Road, Shenzhen, 518055, China
| | - Yungang Liu
- Department of Toxicology, School of Public Health, Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China.
| |
Collapse
|
8
|
Hölzel BN, Pfannkuche K, Allner B, Allner HT, Hescheler J, Derichsweiler D, Hollert H, Schiwy A, Brendt J, Schaffeld M, Froschauer A, Stahlschmidt-Allner P. Following the adverse outcome pathway from micronucleus to cancer using H2B-eGFP transgenic healthy stem cells. Arch Toxicol 2020; 94:3265-3280. [PMID: 32700163 PMCID: PMC7415759 DOI: 10.1007/s00204-020-02821-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/18/2020] [Indexed: 11/26/2022]
Abstract
In vitro assessment of genotoxicity as an early warning tool for carcinogenicity mainly relies on recording cytogenetic damages (micronuclei, nucleoplasmic bridges) in tumour-derived mammalian cell lines like V79 or CHO. The forecasting power of the corresponding standardised test is based on epidemiological evidence between micronuclei frequencies and cancer incidence. As an alternative to destructive staining of nuclear structures a fish stem cell line transgenic for a fusion protein of histone 2B (H2B) and enhanced green fluorescent protein (eGFP) was established. The cells are derived from koi carp brain (KCB) and distinguish from mammalian culturable cells by non-tumour-driven self-renewal. This technology enables the analysis of genotoxic- and malign downstream effects in situ in a combined approach. In proof-of concept-experiments, we used known carcinogens (4-Nitroquinoline 1-oxide, colchicine, diethylstilbestrol, ethyl methanesulfonate) and observed a significant increase in micronuclei (MNi) frequencies in a dose-dependent manner. The concentration ranges for MNi induction were comparable to human/mammalian cells (i.e. VH-16, CHL and HepG2). Cannabidiol caused the same specific cytogenetic damage pattern as observed in human cells, in particular nucleoplasmic bridges. Metabolic activation of aflatoxin B1 and cyclophosphamide could be demonstrated by pre-incubation of the test compounds using either conventional rat derived S9 mix as well as an in vitro generated biotechnological alternative product ewoS9R. The presented high throughput live H2B-eGFP imaging technology using non-transformed stem cells opens new perspectives in the field of in vitro toxicology. The technology offers experimental access to investigate the effects of carcinogens on cell cycle control, gene expression pattern and motility in the course of malign transformation. The new technology enables the definition of Adverse Outcome Pathways leading to malign cell transformation and contributes to the replacement of animal testing. Summary: Complementation of genotoxicity testing by addressing initiating events leading to malign transformation is suggested. A vertebrate cell model showing "healthy" stemness is recommended, in contrast to malign transformed cells used in toxicology/oncocology.
Collapse
Affiliation(s)
- Bastian Niklas Hölzel
- GOBIO GmbH, Institute for Ecology of Waters and Applied Biology, Scheidertalstraße 69a, 65326 Aarbergen, Hesse Germany
- Institute for Molecular Physiology, Johannes Gutenberg-University Mainz, Johann-Joachim Becher-Weg 7, 55122 Mainz, Rhineland Palatinate Germany
| | - Kurt Pfannkuche
- Medical Faculty, Center for Physiology and Pathophysiology, University of Cologne, Robert Koch Str. 39, 50923 Cologne, North Rhine-Westphalia Germany
| | - Bernhard Allner
- GOBIO GmbH, Institute for Ecology of Waters and Applied Biology, Scheidertalstraße 69a, 65326 Aarbergen, Hesse Germany
| | - Hans Thomas Allner
- GOBIO GmbH, Institute for Ecology of Waters and Applied Biology, Scheidertalstraße 69a, 65326 Aarbergen, Hesse Germany
| | - Jürgen Hescheler
- Medical Faculty, Center for Physiology and Pathophysiology, University of Cologne, Robert Koch Str. 39, 50923 Cologne, North Rhine-Westphalia Germany
| | - Daniel Derichsweiler
- Medical Faculty, Center for Physiology and Pathophysiology, University of Cologne, Robert Koch Str. 39, 50923 Cologne, North Rhine-Westphalia Germany
| | - Henner Hollert
- Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt Biologicum, Max-von-Laue-Straße 13, 60323 Frankfurt am Main, Hesse Germany
- EWOMIS GmbH, Schießstraße 26c, 63486 Bruchköbel, Hesse Germany
| | - Andreas Schiwy
- Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt Biologicum, Max-von-Laue-Straße 13, 60323 Frankfurt am Main, Hesse Germany
- EWOMIS GmbH, Schießstraße 26c, 63486 Bruchköbel, Hesse Germany
| | - Julia Brendt
- Institute for Environmental Research (Bio V), RWTH Aachen University, Worringerweg 1, 52062 Aachen, North Rhine-Westphalia Germany
| | - Michael Schaffeld
- Institute for Molecular Physiology, Johannes Gutenberg-University Mainz, Johann-Joachim Becher-Weg 7, 55122 Mainz, Rhineland Palatinate Germany
| | - Alexander Froschauer
- Faculty of Biology, Applied Biology, Technische Universität Dresden, Zellescher Weg 20b, 01069 Dresden, Saxony Germany
| | - Petra Stahlschmidt-Allner
- GOBIO GmbH, Institute for Ecology of Waters and Applied Biology, Scheidertalstraße 69a, 65326 Aarbergen, Hesse Germany
| |
Collapse
|
9
|
Hu K, Cai L, Li Z, Glatt H, Shi M, Liu Y. Human CYP2E1-dependent mutagenicity of benzene and its hydroxylated metabolites in V79-derived cells: Suppression and enhancement by ethanol pretreatment. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:622-634. [PMID: 32285472 DOI: 10.1002/em.22375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/25/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
Benzene is a human carcinogen that requires metabolic activation. We previously observed that benzene and its hydroxylated metabolites induce micronuclei in mammalian cells expressing human CYP2E1. This study was initially aimed to study another endpoint, the induction of gene mutations by those compounds in the same cell models. A V79-derived cell line expressing human CYP2E1 and sulfotransferase (SULT) 1A1 (V79-hCYP2E1-hSULT1A1) pretreated with ethanol (a CYP2E1 stabilizer) was used in the hprt gene mutagenicity assay. Phenol, hydroquinone, catechol, and 1,2,4-trihydroxybenzene all induced gene mutations, while they were inactive, or only weakly positive (hydroquinone), in parental V79-Mz cells. Unexpectedly, benzene was non-mutagenic in both cell lines, but it became positive in V79-hCYP2E1-hSULT1A1 cells using regimes of short exposure/long recovery without ethanol pretreatment, for both gene mutations and micronuclei formation. In silico molecular simulation showed binding energies and positions favorable for each compound to be oxidized by human CYP2E1, benzene demonstrating the highest affinity. By tunnel analysis, ethanol binding did not limit benzene to pass tunnel S, which was specifically active for benzene. However, its end product, acetic acid, decreased the occurrence of tunnel S from 5.4 to 2.2% and extended the length of its bottleneck from 5.5 to 9.0 Å. With residual ethanol molecules still being present in CYP2E1 for a period of time after benzene exposure, the acetic acid formed could limit the entrance of benzene, thus inhibit its metabolic activation. In summary, ethanol may interfere with the activation of benzene to mutagenic metabolites, at least in cultured cells.
Collapse
Affiliation(s)
- Keqi Hu
- Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Lu Cai
- Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zihuan Li
- Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Hansruedi Glatt
- Department of Nutritional Toxicology, German Institute of Human Nutrition (DIfE), Nuthetal, Germany
- Department of Food Safety, Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Ming Shi
- Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Yungang Liu
- Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
10
|
Hu K, Yu H, Li Z, Jin G, Jia H, Song M, Liu Y. Human CYP2E1-activated mutagenicity of dioxin-like PCBs 105 and 118-Experimental data consistent with molecular docking results. Toxicology 2020; 437:152438. [PMID: 32199159 DOI: 10.1016/j.tox.2020.152438] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/05/2020] [Accepted: 03/12/2020] [Indexed: 02/07/2023]
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic pollutants with human carcinogenicity. Many lower chlorinated and non-dioxin-like PCBs have been observed to be mutagenic following activation by human CYP2E1, while activation of dioxin-like (DL-) PCBs by this enzyme has never been evidenced. In this study, each DL-PCB was analyzed by molecular docking to human CYP2E1 protein for predicting a substrate interaction. All compounds demonstrated high affinities with the active site of human CYP2E1, binding energy being -8.7 ∼ -9.7 kcal/mol. However, most compounds demonstrated ligand-heme distances as ≥ 6.8 Å, while the values for 2,3,3',4,4'- (PCB 105) and 2,3',4,4',5-pentachlorobiphenyl (PCB 118) were 5.3 and 5.4 Å, respectively (valid for electron transfer). Experimentally, both PCB 105 and 118 induced micronuclei in a V79-derived cell line engineered for expression of human CYP2E1 at low micromolar concentrations, while inactive or weakly positive in V79-Mz control cells; these effects were blocked or reduced by 1-aminobenzotriazole, a suicide CYP inhibitor. However, DL-PCBs 77, 81 and 126 were all negative in both cell lines. In a human hepatoma (C3A) cell line, PCB 105 and 118 induced micronuclei marginally, while with ethanol pretreatment (to stabilize CYP2E1) both compounds induced micronuclei efficiently, and co-exposure to trans-1,2-dichloroethylene (a selective CYP2E1 inhibitor) led to clearly negative results with both compounds. Finally, both PCB 105 and 118 induced PIG-A gene mutations in C3A cells, which was blocked by trans-1,2-dichloroethylene. In summary, in silico and experimental results consistently suggest that DL- PCBs 105 and 118 may be activated by human CYP2E1 for mutagenic activities.
Collapse
Affiliation(s)
- Keqi Hu
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, 510515, China
| | - Hang Yu
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, 510515, China
| | - Zihuan Li
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, 510515, China
| | - Guifang Jin
- Department of Pharmacology, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Hansi Jia
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518033, China
| | - Meiqi Song
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, 510515, China
| | - Yungang Liu
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
11
|
Zhu N, Hu K, Li Z, Chen Y, Liu Y. Micronuclei Formation by Promutagens in Metabolism-Incompetent V79 Cells Interacting With Activation-Proficient Cells in Various Experimental Settings. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:224-234. [PMID: 31112310 DOI: 10.1002/em.22309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/10/2019] [Accepted: 05/16/2019] [Indexed: 06/09/2023]
Abstract
The accessibility of reactive metabolites to test cells is critical for a genotoxic response. However, sulfo-conjugates formed outside may not readily enter cells, and some metabolites formed by cytochromes P450 (CYPs) may not endure transport. This topic was addressed in the present study, using V79 cells engineered for human CYPs and/or a sulfotransferase (SULT). First, 1-methylpyrene, 1-hydroxymethylpyrene, benzo[a]pyrene, and aflatoxin B1 significantly induced micronuclei in V79-hCYP1A2-hSULT1A1, V79-hSULT1A1, V79-hCYP1A1, and V79-hCYP1A2 cells, respectively. Subsequently, we used these cell lines as external activating systems in various experimental settings in combination with V79-derived target cells lacking critical enzymes. 1-Methylpyrene (activated by CYPs and SULTs sequentially) showed an activity similar to that in V79-hCYP1A2-hSULT1A1 cells, in each following model: a mixed V79-hCYP1A2:V79-hSULT1A1 (1:1) culture, exposure of V79-hCYP1A2 to 1-methylpyrene followed by transfer of medium to V79-hSULT1A1 target cells, and V79-hSULT1A1 communicating with V79-hCYP1A2 through 0.4-μm pores and over a 1-mm distance in a unique transwell system. These results suggest ready transfer of 1-hydroxymethylpyrene formed in V79-hCYP1A2 to V79-hSULT1A1 for further activation. In the last two models, with V79-hSULT1A1 for activation and V79-Mz as target, 1-hydroxymethylpyrene induced micronuclei mildly, suggesting limited intercellular transfer of the ultimate genotoxicant, 1-sulfooxymethylpyrene. Benzo[a]pyrene induced micronuclei in V79-Mz communicating with V79-hCYP1A1 via porous membranes, whereas aflatoxin B1 was inactive in V79-Mz communicating with V79-hCYP1A2. Our results suggest that the sulfo-conjugate tested may have difficulty entering cells for a genotoxic effect, and the reactive metabolite of aflatoxin B1, unlike that of benzo[a]pyrene, could not travel an adequate distance to enter cells. Environ. Mol. Mutagen. 61:224-234, 2020. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Na Zhu
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, China
| | - Keqi Hu
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, China
| | - Zihuan Li
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, China
| | - Yuting Chen
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, China
| | - Yungang Liu
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
Chen Y, Wu Y, Xiao W, Jia H, Glatt H, Shi M, Liu Y. Human CYP1B1-dependent genotoxicity of dioxin-like polychlorinated biphenyls in mammalian cells. Toxicology 2020; 429:152329. [DOI: 10.1016/j.tox.2019.152329] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/12/2019] [Accepted: 11/12/2019] [Indexed: 01/18/2023]
|
13
|
Jin G, Cai L, Hu K, Luo Y, Chen Y, Glatt H, Liu Y. Mutagenic Activity of N-Nitrosodiethylamine in Cell Lines Expressing Human CYP2E1-Adequacy of Dimethylsulfoxide as Solvent. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:214-226. [PMID: 30387191 DOI: 10.1002/em.22264] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/14/2018] [Accepted: 10/26/2018] [Indexed: 06/08/2023]
Abstract
Human CYP2E1 metabolizes many xenobiotics of low-molecular weight, thereby activating various promutagens/procarcinogens. In toxicological studies in vitro, dimethylsulfoxide (DMSO) is a common vehicle for organic compounds. However, it was observed to potently inhibit CYP2E1 activity. We were interested in whether it affects CYP2E1-dependent mutagenic responses. In this study, N-nitrosodiethylamine (NDEA), which is soluble in both water and DMSO, was used as a model promutagen. It induced Hprt gene mutations and micronuclei in a Chinese hamster V79-derived cell line expressing both human CYP2E1 and sulfotransferase (SULT) 1A1 (V79-hCYP2E1-hSULT1A1) even at low-micromolar concentrations, but was inactive in parental V79 cells. Mutagenicity of NDEA was also observed in a recombinant V79-hCYP2E1 cell line that expresses human CYP2E1 at a lower level. NDEA induced micronuclei in human L-02 hepatocytes which expressed CYP2E1 even more weakly. DMSO did not modify NDEA-induced gene mutations or micronuclei, up to 0.2% (v:v, the highest noncytotoxic concentration) in V79-hCYP2E1-hSULT1A1 cells. In parental V79-Mz cells, NDEA induced micronuclei with Aroclor 1254-induced rat liver S9 mix, and this effect was unaffected by DMSO up to 0.2%. However, it inhibited the effect of NDEA in L-02 (by 44%) and V79-hCYP2E1 cells (by 70%) at 0.2%, with the effects of NDEA remaining statistically significant. No effect of DMSO was observed on CYP2E1 protein expression in V79-hCYP2E1-hSULT1A1 or its mRNA transcripts in each cell line. We conclude that DMSO may not significantly affect CYP2E1-dependent mutagenic effects, at concentrations up to 0.2% in cells with relatively high CYP2E1 expression. Environ. Mol. Mutagen. 60:214-226, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Guifang Jin
- Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, People's Republic of China
| | - Lu Cai
- Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, People's Republic of China
| | - Keqi Hu
- Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, People's Republic of China
| | - Yuyi Luo
- Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, People's Republic of China
| | - Yuting Chen
- Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, People's Republic of China
| | - Hansruedi Glatt
- Department of Nutritional Toxicology, German Institute of Human Nutrition (DIfE), Nuthetal, Germany
- Department of Food Safety, Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Yungang Liu
- Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
14
|
Chen Y, Liu Y. Non-coplanar and coplanar polychlorinated biphenyls potentiate genotoxicity of aflatoxin B1 in a human hepatocyte line by enhancing CYP1A2 and CYP3A4 expression. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 246:945-954. [PMID: 31159144 DOI: 10.1016/j.envpol.2018.12.041] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/14/2018] [Accepted: 12/14/2018] [Indexed: 06/09/2023]
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic pollutants and hazardous to human health. Aflatoxin B1 (AFB1) is a strong carcinogen dependent on activation by cytochrome P450 (CYP) 1A2 and 3A4. Humans in some regions may be exposed to both PCBs and AFB1. Since PCBs are CYP inducers, we were interested in their combined genotoxicity. In this study, the effects of non-coplanar 2,3,3'-tri- (PCB 20), 2,2'5,5'-tetra- (PCB 52), 2,3,3',4'-tetrachlorobiphenyl (PCB 56), and coplanar 3,3',4,4',5-pentachlorobiphenyl (PCB 126) on protein levels of CYP1A1, 1A2, and 3A4, and nuclear receptors AhR, CAR and PXR in a human hepatocyte (L-02) line were investigated. Moreover, the combined effects of each PCB and AFB1 for induction of micronuclei and double-strand DNA breaks (indicated by an elevation of γ-H2AX) were analyzed. The results indicated that PCBs 20, 52 and 56 reduced the expression of AhR, while elevated that of CAR and PXR, with thresholds at low micromolar concentrations. However, they were less potent than PCB 126, which was active at sub-nanomolar levels. Overexpression of human splice variant CAR 3 in the cells increased CYP1A2 and 3A4 levels, which were further enhanced by each non-coplanar PCB, suggesting a role of CAR in modulating CYPs. Pretreatment of cells with each test PCB potentiated both micronuclei formation and DNA damage induced by AFB1. This study suggests that both non-coplanar and coplanar PCBs may enhance the genotoxicity of AFB1, through acting on various nuclear receptors; the potentiation of AFB1 genotoxicity by PCBs and the potential health implications may deserve concerns and further investigation.
Collapse
Affiliation(s)
- Yuting Chen
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Yungang Liu
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), 1023 S. Shatai Road, Guangzhou, 510515, China.
| |
Collapse
|
15
|
Chen Y, Zhu N, Luo Y, Hu K, Liu Y. Featured structure-activity relationships for some tri- and tetrachlorobiphenyls in human CYP2E1-activated mutagenicity - Impact of the extent of ortho-chlorination. CHEMOSPHERE 2018; 210:467-475. [PMID: 30025364 DOI: 10.1016/j.chemosphere.2018.06.169] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/05/2018] [Accepted: 06/27/2018] [Indexed: 06/08/2023]
Abstract
Polychlorinated biphenyls (PCBs) as a group of persistent organic pollutants are confirmed human carcinogens; however, their mutagenicity remains mostly unknown. We have reported the mutagenicity of some PCBs with one to four chlorines in mammalian cells expressing human CYP2E1. To further explore the structural requirements for the mutagenicity of PCBs, eight tri- and tetrachlorobiphenyls untested before were investigated for the induction of gene mutations and micronuclei in a V79-derived cell line expressing both human CYP2E1 and sulfotransferase (SULT) 1A1 (V79-hCYP2E1-hSULT1A1), with SULT1A1 activity inhibited by pentachlorophenol, a potent SULT1 inhibitor. 2,2',6-Tri-, 2,3',6-tri, 2,4',6-tri-, and 2,2',5-trichlorobiphenyls (PCBs 19, 27, 32, and 18, respectively) induced micronuclei and gene mutations in V79-hCYP2E1-hSULT1A1 cells, at potencies slightly higher than 2,6-dichlorobiphenyl, but one order of magnitude below that by 2,3,3'- and 2,3,4'-trichlorobiphenyls as reported recently; in the parental V79-Mz cells, they were nonmutagenic and weak in micronuclei induction. Among the four tetrachlorobiphenyls with varying number of ortho chlorines, 2,3,3',4'-tetrachlorobiphenyl (PCB 56) induced both micronuclei and gene mutations in V79-hCYP2E1-hSULT1A1 cells with a potency greater than the above compounds; however, 2,2',3,3'-tetrachlorobiphenyl was equivocal and 2,2',3,6'-tetra- and 2,2',6,6'-tetrachlorobiphenyls inactive in V79-hCYP2E1-hSULT1A1 cells. Immunofluorescent staining of micronuclei formed by PCBs 32 and 56 in V79-hCYP2E1-hSULT1A1 cells with centromere protein B antibodies indicated that they were predominantly whole chromosomes, implying aneugenic potentials. This study suggests that tri- and tetrachlorobiphenyls with a single ortho chlorine can be most mutagenic under activation by human CYP2E1, and greater numbers of ortho chlorines may cause a drastic decline in the activity, especially for tetrachlorobiphenyls.
Collapse
Affiliation(s)
- Yuting Chen
- Department of Toxicology, School of Public Health, Southern Medical University, 1023 S. Shatai Road, Guangzhou 510515, China
| | - Na Zhu
- Department of Toxicology, School of Public Health, Southern Medical University, 1023 S. Shatai Road, Guangzhou 510515, China
| | - Yuyi Luo
- Department of Toxicology, School of Public Health, Southern Medical University, 1023 S. Shatai Road, Guangzhou 510515, China
| | - Keqi Hu
- Department of Toxicology, School of Public Health, Southern Medical University, 1023 S. Shatai Road, Guangzhou 510515, China
| | - Yungang Liu
- Department of Toxicology, School of Public Health, Southern Medical University, 1023 S. Shatai Road, Guangzhou 510515, China.
| |
Collapse
|
16
|
Wang H, Wei L, Wu Y, Jia H, Jiang H, Liu Y. Induction of micronuclei and cell cycle arrest by some tri- and tetrachlorobiphenyls in mammalian cells deficient in xenobiotic-metabolizing enzymes. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2017; 58:199-208. [PMID: 28444994 DOI: 10.1002/em.22090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 03/31/2017] [Indexed: 06/07/2023]
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic pollutants with continued public health concerns. The lower chlorinated biphenyls are supposed to be mutagenic following metabolic activation. However, in a preliminary study, we recently observed induction of micronuclei by several PCBs in a subclone of Chinese hamster V79 cell line, V79-Mz, which is deficient in xenobiotic-metabolizing enzyme activities. In this study, metabolism-free genotoxicity of PCBs was investigated, using 10 tri- and tetrachlorobiphenyls, in V79, V79-Mz, and human hepatoma (HepG2) cell lines. Among the four tetrachlorobiphenyls, 2,4,4',5- and 2,3'4,4'-tetrachlorobiphenyl-both having a noncoplanar configuration-induced micronuclei in V79-Mz cells, while their coplanar analogs 3,4,4',5- and 3,3',4,4'-tetrachlorobiphenyl were inactive. Furthermore, 2,3,3'- (PCB 20) and 2,3,4'-trichlorobiphenyl (PCB 22) started to induce micronuclei in V79-Mz cells at 10 μM and higher concentrations, demonstrating more potent effects than observed with 2,2',3-, 2,2',4-, 2,2',5, and 2,4,4'-trichlorobiphenyl. As representative compounds, PCB 20 and 22 induced micronuclei in relatively high concentrations in HepG2 cells (p53-proficient), though they did not induce Hprt gene mutations in V79-Mz cells. PCB 20 and 22 increased mitotic index and induced cell cycle arrest at the G2/M phase, with effects more potent in V79-Mz than in V79 cells. This study suggests that 2,3,4'- and 2,3,3'-substituted PCBs are micronuclei inducers and G2/M arresters among a number of trichlorobiphenyls in mammalian cell lines, though with potency lower than that observed recently in V79-derived cells expressing human CYP2E1. Similarly, some noncoplanar tetrachlorobiphenyls possess metabolism-independent chromosome-damaging potentials. Environ. Mol. Mutagen. 58:199-208, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Haiyan Wang
- Department of Toxicology, School of Public Health, Southern Medical University, Guangdong Provincial Key Laboratory of Tropical Disease Research, Guangzhou, 510515, China
| | - Liwen Wei
- Department of Toxicology, School of Public Health, Southern Medical University, Guangdong Provincial Key Laboratory of Tropical Disease Research, Guangzhou, 510515, China
| | - Yifan Wu
- Department of Toxicology, School of Public Health, Southern Medical University, Guangdong Provincial Key Laboratory of Tropical Disease Research, Guangzhou, 510515, China
| | - Hansi Jia
- Department of Toxicology, School of Public Health, Southern Medical University, Guangdong Provincial Key Laboratory of Tropical Disease Research, Guangzhou, 510515, China
| | - Hao Jiang
- Department of Toxicology, School of Public Health, Southern Medical University, Guangdong Provincial Key Laboratory of Tropical Disease Research, Guangzhou, 510515, China
| | - Yungang Liu
- Department of Toxicology, School of Public Health, Southern Medical University, Guangdong Provincial Key Laboratory of Tropical Disease Research, Guangzhou, 510515, China
| |
Collapse
|