1
|
Abdalbari FH, Martinez-Jaramillo E, Forgie BN, Tran E, Zorychta E, Goyeneche AA, Sabri S, Telleria CM. Auranofin Induces Lethality Driven by Reactive Oxygen Species in High-Grade Serous Ovarian Cancer Cells. Cancers (Basel) 2023; 15:5136. [PMID: 37958311 PMCID: PMC10650616 DOI: 10.3390/cancers15215136] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
High-grade serous ovarian cancer (HGSOC) accounts for 70% of ovarian cancer cases, and the survival rate remains remarkably low due to the lack of effective long-term consolidation therapies. Clinical remission can be temporarily induced by platinum-based chemotherapy, but death subsequently results from the extensive growth of a platinum-resistant component of the tumor. This work explores a novel treatment against HGSOC using the gold complex auranofin (AF). AF primarily functions as a pro-oxidant by inhibiting thioredoxin reductase (TrxR), an antioxidant enzyme overexpressed in ovarian cancer. We investigated the effect of AF on TrxR activity and the various mechanisms of cytotoxicity using HGSOC cells that are clinically sensitive or resistant to platinum. In addition, we studied the interaction between AF and another pro-oxidant, L-buthionine sulfoximine (L-BSO), an anti-glutathione (GSH) compound. We demonstrated that AF potently inhibited TrxR activity and reduced the vitality and viability of HGSOC cells regardless of their sensitivities to platinum. We showed that AF induces the accumulation of reactive oxygen species (ROS), triggers the depolarization of the mitochondrial membrane, and kills HGSOC cells by inducing apoptosis. Notably, AF-induced cell death was abrogated by the ROS-scavenger N-acetyl cysteine (NAC). In addition, the lethality of AF was associated with the activation of caspases-3/7 and the generation of DNA damage, effects that were also prevented by the presence of NAC. Finally, when AF and L-BSO were combined, we observed synergistic lethality against HGSOC cells, which was mediated by a further increase in ROS and a decrease in the levels of the antioxidant GSH. In summary, our results support the concept that AF can be used alone or in combination with L-BSO to kill HGSOC cells regardless of their sensitivity to platinum, suggesting that the depletion of antioxidants is an efficient strategy to mitigate the course of this disease.
Collapse
Affiliation(s)
- Farah H. Abdalbari
- Experimental Pathology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 2B4, Canada; (F.H.A.); (E.M.-J.); (B.N.F.); (E.T.); (E.Z.); (A.A.G.)
| | - Elvis Martinez-Jaramillo
- Experimental Pathology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 2B4, Canada; (F.H.A.); (E.M.-J.); (B.N.F.); (E.T.); (E.Z.); (A.A.G.)
| | - Benjamin N. Forgie
- Experimental Pathology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 2B4, Canada; (F.H.A.); (E.M.-J.); (B.N.F.); (E.T.); (E.Z.); (A.A.G.)
| | - Estelle Tran
- Experimental Pathology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 2B4, Canada; (F.H.A.); (E.M.-J.); (B.N.F.); (E.T.); (E.Z.); (A.A.G.)
| | - Edith Zorychta
- Experimental Pathology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 2B4, Canada; (F.H.A.); (E.M.-J.); (B.N.F.); (E.T.); (E.Z.); (A.A.G.)
| | - Alicia A. Goyeneche
- Experimental Pathology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 2B4, Canada; (F.H.A.); (E.M.-J.); (B.N.F.); (E.T.); (E.Z.); (A.A.G.)
- Cancer Research Program, Research Institute, McGill University Health Centre, Montreal, QC H4A 3J1, Canada;
| | - Siham Sabri
- Cancer Research Program, Research Institute, McGill University Health Centre, Montreal, QC H4A 3J1, Canada;
| | - Carlos M. Telleria
- Experimental Pathology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 2B4, Canada; (F.H.A.); (E.M.-J.); (B.N.F.); (E.T.); (E.Z.); (A.A.G.)
- Cancer Research Program, Research Institute, McGill University Health Centre, Montreal, QC H4A 3J1, Canada;
| |
Collapse
|
2
|
Chang Y, Zhang D, Cui J, Malhotra A. Tinospora Cordifolia and Arabinogalactan in combination modulates benzo(a)pyrene-induced genotoxicity during lung carcinogenesis. Drug Chem Toxicol 2022; 45:1427-1431. [PMID: 34711124 DOI: 10.1080/01480545.2021.1995406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/07/2021] [Accepted: 10/13/2021] [Indexed: 10/20/2022]
Abstract
The present study explored the effects of combination of Tinospora cordifolia and Arabinogalactan on surface membrane dynamics and programmed cell deaths in rat model of lung cancer. The rats were divided into different groups namely normal control, benzo(a)pyrene (BP) treated, BP + Tinospora cordifolia (TC)-treated, BP + Arabinogalactan (A)-treated and BP + TC + A-treated groups. Significant changes were observed in the membrane dynamics of rats treated with BP. The carcinogen treatment demonstrated a marked decrease in membrane microviscosity. Also, excimer/monomer ratio and fluidity parameters of BP treated rats showed significant rise. On the other hand, combination of Tinospora cordifolia and Arabinogalactan improvised surface membrane dynamics. Moreover, micronuclei formation along with protein expression of bcl-2 showed significant increase in the lungs of BP treated rats. The combined treatment of Tinospora cordifolia and Arabinogalactan moderated the micronuclei formation in BP treated rats. Also, the combined treatment regulated the protein expressions of bcl-2 in BP-treated rats. As a result, marked improvement was noticed in apoptosis of BP treated cells treated with combination treatment. This study concludes that the Tinospora cordifolia and Arabinogalactan in combination improve the surface membrane dynamics and apoptosis in BP-treated rats.
Collapse
Affiliation(s)
- Yongli Chang
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Shaanxi University of Chinese medicine, Xianyang, China
| | - Diancui Zhang
- Health management (preventive treatment) center, Binzhou Hospital of Traditional Chinese Medicine, Binzhou, China
| | - Junxia Cui
- Department of Gastroenterology, Binzhou People's Hospital, Binzhou, China
| | | |
Collapse
|
3
|
Agarwala PK, Aneja R, Kapoor S. Lipidomic landscape in cancer: Actionable insights for membrane-based therapy and diagnoses. Med Res Rev 2021; 42:983-1018. [PMID: 34719798 DOI: 10.1002/med.21868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 08/18/2021] [Accepted: 10/24/2021] [Indexed: 01/17/2023]
Abstract
Cancer cells display altered cellular lipid metabolism, including disruption in endogenous lipid synthesis, storage, and exogenous uptake for membrane biogenesis and functions. Altered lipid metabolism and, consequently, lipid composition impacts cellular function by affecting membrane structure and properties, such as fluidity, rigidity, membrane dynamics, and lateral organization. Herein, we provide an overview of lipid membranes and how their properties affect cellular functions. We also detail how the rewiring of lipid metabolism impacts the lipidomic landscape of cancer cell membranes and influences the characteristics of cancer cells. Furthermore, we discuss how the altered cancer lipidome provides cues for developing lipid-inspired innovative therapeutic and diagnostic strategies while improving our limited understanding of the role of lipids in cancer initiation and progression. We also present the arcade of membrane characterization techniques to cement their relevance in cancer diagnosis and monitoring of treatment response.
Collapse
Affiliation(s)
- Prema K Agarwala
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | - Ritu Aneja
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Shobhna Kapoor
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India.,Depertment of Biofunctional Science and Technology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
4
|
Abdalbari FH, Telleria CM. The gold complex auranofin: new perspectives for cancer therapy. Discov Oncol 2021; 12:42. [PMID: 35201489 PMCID: PMC8777575 DOI: 10.1007/s12672-021-00439-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/12/2021] [Indexed: 12/14/2022] Open
Abstract
Advanced stages of cancer are highly associated with short overall survival in patients due to the lack of long-term treatment options following the standard form of care. New options for cancer therapy are needed to improve the survival of cancer patients without disease recurrence. Auranofin is a clinically approved agent against rheumatoid arthritis that is currently enrolled in clinical trials for potential repurposing against cancer. Auranofin mainly targets the anti-oxidative system catalyzed by thioredoxin reductase (TrxR), which protects the cell from oxidative stress and death in the cytoplasm and the mitochondria. TrxR is over-expressed in many cancers as an adaptive mechanism for cancer cell proliferation, rendering it an attractive target for cancer therapy, and auranofin as a potential therapeutic agent for cancer. Inhibiting TrxR dysregulates the intracellular redox state causing increased intracellular reactive oxygen species levels, and stimulates cellular demise. An alternate mechanism of action of auranofin is to mimic proteasomal inhibition by blocking the ubiquitin-proteasome system (UPS), which is critically important in cancer cells to prevent cell death when compared to non-cancer cells, because of its role on cell cycle regulation, protein degradation, gene expression, and DNA repair. This article provides new perspectives on the potential mechanisms used by auranofin alone, in combination with diverse other compounds, or in combination with platinating agents and/or immune checkpoint inhibitors to combat cancer cells, while assessing the feasibility for its repurposing in the clinical setting.
Collapse
Affiliation(s)
- Farah H Abdalbari
- Experimental Pathology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Carlos M Telleria
- Experimental Pathology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada.
- Cancer Research Program, Research Institute, McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|
5
|
Vernon EL, Bean TP, Jha AN. Assessing relative biomarker responses in marine and freshwater bivalve molluscs following exposure to phosphorus 32 ( 32P): Application of genotoxicological and molecular biomarkers. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2020; 213:106120. [PMID: 31783294 DOI: 10.1016/j.jenvrad.2019.106120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/12/2019] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
Anthropogenic radionuclides can enter water bodies through accidental or controlled discharges. In order to assess their potential impact, understanding the link between exposure, tissue specific bioaccumulation and radiation dose rate, to biological or biomarker responses in aquatic biota is required. Adopting an integrated, multi-biomarker, multi-species approach, we have investigated potential biological responses induced by short-lived radionuclide, phosphorus-32 (32P, radiophosphorus) in two ecologically important mussel species, the freshwater Dreissena polymorpha (DP) and marine Mytilus galloprovincialis (MG). Adult individuals were exposed to 32P for 10 days, to acquire nominal whole-body average dose rates of 0.10, 1 and 10 mGy d-1, which encompass a screening value of 10 μGy h-1 (0.24 mGy d-1), in accordance with the ERICA tool. Following exposure, a suite of genotoxic biomarkers (DNA damage, γ-H2AX induction and micronucleus [MN] formation) were measured in gill and digestive gland tissues, along with transcriptional expression of selected stress-related genes in both the species (i.e. hsp70/90, sod, cat and gst). Our results demonstrate the relationship between tissue specific dosimetry, where 32P induced a dose-dependent increase, and biological responses independent of species. Gene expression analysis revealed little significant variation across species or tissues. Overall, MG appeared to be more sensitive to short-term damage (i.e. high DNA damage and γ-H2AX induction), particularly in digestive gland. This study contributes to limited knowledge on the transfer and biological impact of radionuclides within differing aquatic systems on a tissue specific level, aiding the development of adequate management and protective strategies.
Collapse
Affiliation(s)
- Emily L Vernon
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Tim P Bean
- Cefas Weymouth Laboratory, Barrack Road, The Nothe, Weymouth, Dorset, DT4 8UB, UK
| | - Awadhesh N Jha
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK.
| |
Collapse
|
6
|
Vernon EL, Jha AN. Assessing relative sensitivity of marine and freshwater bivalves following exposure to copper: Application of classical and novel genotoxicological biomarkers. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 842:60-71. [DOI: 10.1016/j.mrgentox.2019.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 01/15/2019] [Accepted: 01/17/2019] [Indexed: 12/20/2022]
|
7
|
Yan Q, Cai M, Zhou L, Xu H, Shi Y, Sun J, Jiang J, Gao J, Wang H. Using an RNA aptamer probe for super-resolution imaging of native EGFR. NANOSCALE ADVANCES 2019; 1:291-298. [PMID: 36132464 PMCID: PMC9473275 DOI: 10.1039/c8na00143j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 01/08/2019] [Accepted: 08/16/2018] [Indexed: 05/06/2023]
Abstract
Aptamers, referred to as "chemical antibodies", are short single-stranded oligonucleotides that bind to targets with high affinity and specificity. Compared with antibodies, aptamers can be designed, developed and modified easily. Since their discovery, aptamers have been widely used in in vitro diagnostics and molecular imaging. However, they are relatively less studied and applied in advanced microscopy. Here we used an RNA aptamer in dSTORM imaging and obtained a high-quality image of EGFR nanoscale clusters on live cell membranes. The results showed that the cluster number and size with aptamer labeling were almost the same as those with labeling with the natural ligand EGF, but the morphology of the clusters was smaller and more regular than that with cetuximab labeling. Meanwhile, dual-color imaging demonstrated sufficient fluorophore labeling, highly specific recognition and greatly accurate clustering information provided by aptamers. Furthermore, the aptamer labeling method indicated that active EGFR formed larger clusters containing more molecules than resting EGFR, which was hidden under the antibody labeling. Our work suggested that aptamers can be used as versatile probes in super-resolution imaging with small steric hindrance, opening a new avenue for detailed and precise morphological analysis of membrane proteins.
Collapse
Affiliation(s)
- Qiuyan Yan
- State Key Laboratory of Electroanalytical Chemistry, Research Center of Biomembranomics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Mingjun Cai
- State Key Laboratory of Electroanalytical Chemistry, Research Center of Biomembranomics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| | - Lulu Zhou
- State Key Laboratory of Electroanalytical Chemistry, Research Center of Biomembranomics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Haijiao Xu
- State Key Laboratory of Electroanalytical Chemistry, Research Center of Biomembranomics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yan Shi
- State Key Laboratory of Electroanalytical Chemistry, Research Center of Biomembranomics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| | - Jiayin Sun
- State Key Laboratory of Electroanalytical Chemistry, Research Center of Biomembranomics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| | - Junguang Jiang
- State Key Laboratory of Electroanalytical Chemistry, Research Center of Biomembranomics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| | - Jing Gao
- State Key Laboratory of Electroanalytical Chemistry, Research Center of Biomembranomics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| | - Hongda Wang
- State Key Laboratory of Electroanalytical Chemistry, Research Center of Biomembranomics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology Wenhai Road, Aoshanwei, Jimo, Qingdao Shandong 266237 P. R. China
| |
Collapse
|
8
|
Del Favero G, Zaharescu R, Marko D. Functional impairment triggered by altertoxin II (ATXII) in intestinal cells in vitro: cross-talk between cytotoxicity and mechanotransduction. Arch Toxicol 2018; 92:3535-3547. [PMID: 30276433 PMCID: PMC6290659 DOI: 10.1007/s00204-018-2317-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 09/19/2018] [Indexed: 12/22/2022]
Abstract
Intestinal cells are able to continuously integrate response to multiple stimuli/stressors; these include the concomitant activation of “chemically driven” pathways, of paramount importance in the response to toxicants, as well as physical stimulation derived from motility. Altertoxin II (ATXII, 0.1, 1 and 10 µM), a mycotoxin produced by the food contaminant fungus Alternaria alternata was studied in HT-29 intestinal adenocarcinoma cells and in non-transformed intestinal epithelial cells, HCEC. One-hour incubation with ATXII was sufficient to trigger irreversible cytotoxicity in both cell types, as well as to modify cellular responses to concomitant pro-oxidant challenge (H2O2, 100–500 µM, DCF-DA assay) suggesting that even relatively short-time exposure of the intestinal cells could be sufficient to alter their functionality. Combination of ATXII (1 µM) with physical stimulation typical of the intestinal compartment (shear stress) revealed differential response of tumor-derived epithelial cells HT-29 in comparison to HCEC, in particular in the localization of the transcription factor Nrf2 (NF-E2-related factor 2). Moreover, ATXII reduced the migratory potential of HCEC as well as their membrane fluidity, but had no respective impact on HT-29 cells. Taken together, ATXII appeared to alter predominantly membrane functionality in HCEC thus hampering crucial functions for cellular motility/turnover, as well as barrier function of healthy intestinal cells and had very limited activity on the tumor counterparts.
Collapse
Affiliation(s)
- Giorgia Del Favero
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstr. 38-40, 1090, Vienna, Austria.
| | - Ronita Zaharescu
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstr. 38-40, 1090, Vienna, Austria
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstr. 38-40, 1090, Vienna, Austria
| |
Collapse
|