1
|
Effects of dietary whole grain buckwheat and oat on benzo[a]pyrene-induced genotoxicity, oxidative and pyroptotic injury in liver of mice. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
2
|
Li M, Liu J, Zhou J, Liu A, Chen E, Yang Q. DNA adduct formation and reduced EIF4A3expression contributes to benzo[a]pyrene-induced DNA damage in human bronchial epithelial BEAS-2B cells. Toxicol Lett 2021; 351:53-64. [PMID: 34454013 DOI: 10.1016/j.toxlet.2021.08.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 07/26/2021] [Accepted: 08/23/2021] [Indexed: 10/20/2022]
Abstract
Benzo[a]pyrene(B[a]P) is a known human carcinogen. The ability of B[a]P to form stable DNA adducts has been repeatedly demonstrated. However, the relationship between DNA adduct formation and cell damage and its underlying molecular mechanisms are less well understood. In this study, we determined the cytotoxicity of benzo[a]pyrenediolepoxide, a metabolite of B[a]P, in human bronchial epithelial cells (BEAS-2B). The formation of BPDE-DNA adducts was quantified using a dot blot. DNA damage resulting from the formation of BPDE-DNA adducts was detected by chromatin immuneprecipitation sequencing (ChIP-Seq), with minor modifications, using specific antibodies against BPDE. In total, 1846 differentially expressed gene loci were detected between the treatment and control groups. The distribution of the BPDE-bound regions indicated that BPDE could covalently bind with both coding and non-coding regions to cause DNA damage. However, the majority of binding occurred at protein-coding genes. Furthermore, among the BPDE-bound genes, we found 16 protein-coding genes related to DNA damage repair. We explored the response to BPDE exposure at the transcriptional level using qRT-PCR and observed a strong inhibition of EIF4A3. We then established an EIF4A3 overexpression cell model and performed comet assays, which revealed that the levels of DNA damage in EIF4A3-overexpressing cells were lower than those in normal cells following BPDE exposure. This suggests that the BPDE-DNA adduct-induced reduction in EIF4A3 expression contributed to the DNA damage induced by BPDE exposure in BEAS-2B cells. These novel findings indicate that ChIP-Seq combined with BPDE specific antibody may be used for exploring the underlying mechanism of DNA adduct-induced genomic damage.
Collapse
Affiliation(s)
- Mengcheng Li
- The Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436, China
| | - Jiayu Liu
- The Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436, China
| | - Jiazhen Zhou
- The Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436, China
| | - Anfei Liu
- The Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436, China
| | - Enzhao Chen
- The Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436, China
| | - Qiaoyuan Yang
- The Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436, China; The State Key Lab of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, No. 151 Yanjiang Road, Yuexiu District, Guangzhou, 510120, China.
| |
Collapse
|
3
|
Genetic polymorphisms of base excision repair gene XRCC1 and susceptibility to benzene among employees of chemical industries. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
4
|
Yan Y, Xu J, Xu B, Wen Q, Zhou J, Zhang L, Zuo L, Lv G, Shi Y. Effects of Xeroderma pigmentosum group C polymorphism on the likelihood of prostate cancer. J Clin Lab Anal 2020; 34:e23403. [PMID: 32488882 PMCID: PMC7521337 DOI: 10.1002/jcla.23403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/28/2020] [Accepted: 05/06/2020] [Indexed: 11/09/2022] Open
Abstract
Background Numerous studies have assessed the association between xeroderma pigmentosum complementation group C (XPC) polymorphisms and susceptibility of prostate cancer (PCa); however, the findings remain inconsistent. Methods We performed an updated analysis utilizing data from electronic databases to obtain a more accurate estimation of the relationship between XPC rs2228001 A/C polymorphism and PCa risk. We further used in silico tools to investigate this correlation. Results Totally, 5,305 PCa cases and 6,499 control subjects were evaluated. When all studies pooled together, we detected no positive result (recessive genetic model: OR = 1.14, 95% CI = 0.93‐1.40, Pheterogeneity = 0.001, P = .212); nevertheless, the XPC rs2228001 A/C variant was associated with PCa risk in Asian descendants in the subgroup analysis (OR = 1.21, 95% CI = 1.01‐1.43, Pheterogeneity = 0.008, P = .034). In silico tools showed that more than 20 proteins can participate in the protein crosstalk with XPC. The expression of XPC was down‐regulated in all Gleason scores of prostate cancer. Conclusions The present study indicated that the XPC rs2228001 A/C variant may be associated with elevated PCa risk in Asian patients.
Collapse
Affiliation(s)
- Yidan Yan
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Jianmin Xu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Bin Xu
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Qiaxian Wen
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Jing Zhou
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Lifeng Zhang
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Li Zuo
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Guoqiang Lv
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yunfeng Shi
- Department of Urology, Wujin Hospital Affiliated Jiangsu University, Changzhou, China
| |
Collapse
|
5
|
Zhang C, Yu R, Li Z, Song H, Zang D, Deng M, Fan Y, Liu Y, Zhang Y, Qu X. Comprehensive analysis of genes based on chr1p/19q co-deletion reveals a robust 4-gene prognostic signature for lower grade glioma. Cancer Manag Res 2019; 11:4971-4984. [PMID: 31213913 PMCID: PMC6551448 DOI: 10.2147/cmar.s199396] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 04/24/2019] [Indexed: 12/13/2022] Open
Abstract
Purpose: The chr1p/19q co-deletion is a favorable prognostic factor in patients with lower grade glioma. The aim of this study was to reveal key genes for prognosis and establish prognostic gene signatures based on genes encoded by chr1p/19q. Materials and methods: The data was downloaded from The Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA) and Gene Expression Omnibus (GEO). Differentially expressed genes (DEGs) between lower grade glioma tissue and normal brain were identified. The univariate COX regression, robust likelihood-base survival analysis (rbsurv) and multivariate COX regression analysis were used to establish the 4-gene-signature based on the DEGs. The receiver operating characteristic (ROC) curve and the Kaplan-Mere curve were used to verify the prediction accuracy of the signature. Gene Set Enrichment Analysis (GSEA) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were also performed to explore the reasons for good prognosis in patients with chr1p/19q deletion. Results: A total of 1346 DEGs were identified between lower grade glioma samples and normal brain samples in GSE16011, including 56 up-regulated mRNAs located on chr1p and 20 up-regulated mRNAs located on chr19q. We established a 4-gene-signature that was significantly associated with survival based on the 76 gene. The AUC of the 4-gene-signature for 5-year OS in TCGA and CGGA was 0.837 and 0.876, respectively, which was superior compared to other parameters such as chr1p/19q co-deletion, IDH mutant, WHO grade and histology type, especially in chr1p/19q non-co-deletion patients. GSEA and KEGG analysis suggested that the prolongation of chr1p/19q in patients could be associated with cell cycle and DNA mismatch repairing. Conclusions: We established a robust 4-gene-signature based on the chr1p/19q and we explored the potential function of these newly identified survival-associated genes by bioinformatics analysis. The 4-gene from the signature are promising molecular targets to be used in the future.
Collapse
Affiliation(s)
- Chuang Zhang
- Key Laboratory of Anticancer Drugs and Biotherapy, the First Hospital of China Medical University, Shenyang, Liaoning, 110001, People's Republic of China.,Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, Liaoning, People's Republic of China
| | - Ruoxi Yu
- Key Laboratory of Anticancer Drugs and Biotherapy, the First Hospital of China Medical University, Shenyang, Liaoning, 110001, People's Republic of China.,Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, Liaoning, People's Republic of China
| | - Zhi Li
- Key Laboratory of Anticancer Drugs and Biotherapy, the First Hospital of China Medical University, Shenyang, Liaoning, 110001, People's Republic of China.,Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, Liaoning, People's Republic of China
| | - Huicong Song
- Key Laboratory of Anticancer Drugs and Biotherapy, the First Hospital of China Medical University, Shenyang, Liaoning, 110001, People's Republic of China.,Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, Liaoning, People's Republic of China
| | - Dan Zang
- Key Laboratory of Anticancer Drugs and Biotherapy, the First Hospital of China Medical University, Shenyang, Liaoning, 110001, People's Republic of China.,Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, Liaoning, People's Republic of China
| | - Mingming Deng
- Key Laboratory of Anticancer Drugs and Biotherapy, the First Hospital of China Medical University, Shenyang, Liaoning, 110001, People's Republic of China
| | - Yibo Fan
- Key Laboratory of Anticancer Drugs and Biotherapy, the First Hospital of China Medical University, Shenyang, Liaoning, 110001, People's Republic of China.,Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, Liaoning, People's Republic of China
| | - Yunpeng Liu
- Key Laboratory of Anticancer Drugs and Biotherapy, the First Hospital of China Medical University, Shenyang, Liaoning, 110001, People's Republic of China.,Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, Liaoning, People's Republic of China
| | - Ye Zhang
- Key Laboratory of Anticancer Drugs and Biotherapy, the First Hospital of China Medical University, Shenyang, Liaoning, 110001, People's Republic of China.,Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, Liaoning, People's Republic of China
| | - Xiujuan Qu
- Key Laboratory of Anticancer Drugs and Biotherapy, the First Hospital of China Medical University, Shenyang, Liaoning, 110001, People's Republic of China.,Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, Liaoning, People's Republic of China
| |
Collapse
|
6
|
Yu T, Xue P, Cui S, Zhang L, Zhang G, Xiao M, Zheng X, Zhang Q, Cai Y, Jin C, Yang J, Wu S, Lu X. Rs3212986 polymorphism, a possible biomarker to predict smoking-related lung cancer, alters DNA repair capacity via regulating ERCC1 expression. Cancer Med 2018; 7:6317-6330. [PMID: 30453383 PMCID: PMC6308093 DOI: 10.1002/cam4.1842] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/28/2018] [Accepted: 09/30/2018] [Indexed: 12/18/2022] Open
Abstract
Single nucleotide polymorphisms (SNPs) in 3'UTR of key DNA repair enzyme genes are associated with inter-individual differences of DNA repair capacity (DRC) and susceptibility to a variety of human malignancies such as lung cancer. In this study, seven candidate SNPs in 3'UTR of DRC-related genes including ERCC1 (rs3212986, rs2336219, and rs735482), OGG1 (rs1052133), MLH3 (rs108621), CD3EAP (rs1007616), and PPP1R13L (rs6966) were analyzed in 300 lung cancer patients and controls from the northeast of China. Furthermore, we introduced ERCC1 (CDS+3'UTR) or CD3EAP (CDS) cDNA clone to transfect HEK293T and 16HBE cells. Cell viability between different genotypes of transfected cells exposed to BPDE was detected by CCK-8 assay, while DNA damage was visualized using γH2AX immunofluorescence and the modified comet assay. We found that minor A-allele of rs3212986 could reflect a linkage with increasing risk of NSCLC. Compared with CC genotype, AA genotype of ERCC1 rs3212986 was a high-risk factor for NSCLC (OR = 3.246; 95%CI: 1.375-7.663). Particularly stratified by smoking status in cases and controls, A allele of ERCC1 rs3212986 also exhibited an enhanced risk to develop lung cancer in smokers only (P < 0.05). Interestingly, reduced repair efficiency of DNA damage was observed in 293T ERCC1(AA) and 16HBE ERCC1(AA), while no significant difference was appeared in two genotypes of CD3EAP (3' adjacent gene of ERCC1) overexpressed cells. Our findings suggest that rs3212986 polymorphism in 3'UTR of ERCC1 overlapped with CD3EAP may affect the repair of the damage induced by BPDE mainly via regulating ERCC1 expression and become a potential biomarker to predict smoking-related lung cancer.
Collapse
Affiliation(s)
- Tao Yu
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Ping Xue
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Su Cui
- Department of Thoracic Surgery Ward 2, The First Hospital of China Medical University, Shenyang, China
| | - Liang Zhang
- Department of Thoracic Surgery, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Guopei Zhang
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Mingyang Xiao
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Xiao Zheng
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Qianye Zhang
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Yuan Cai
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Cuihong Jin
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Jinghua Yang
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Shengwen Wu
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Xiaobo Lu
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, China
| |
Collapse
|
7
|
Feng X, Fang X, Xia L, Ren Y, Li X, Quan X, Zhou B. Association of PPP1R13L and CD3EAP polymorphisms with risk and survival of non-small cell lung cancer in Chinese non-smoking females. Oncotarget 2017; 8:78749-78756. [PMID: 29108262 PMCID: PMC5667995 DOI: 10.18632/oncotarget.20224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/19/2017] [Indexed: 11/25/2022] Open
Abstract
PPP1R13L and CD3EAP were confirmed to play important roles in transcription and apoptosis. SNPs in PPP1R13L and CD3EAP may be associated with lung cancer risk and survival. This study investigated the association of PPP1R13L rs1005165 and CD3EAP rs967591 with non-small cell lung cancer (NSCLC) risk and survival in Chinese non-smoking females. 442 NSCLC cases and 480 cancer-free controls were conducted in the case-control study, and 283 cases were in cohort study. Genotype was determined by Taqman real-time PCR. The statistical analyses were performed by SPSS 22.0 software. We found that rs1005165 and rs967591 were significantly associated with NSCLC risk in Chinese non-smoking females. For rs1005165, compared with homozygous wild CC genotype, carriers of CT or TT genotype had lower risk of NSCLC (adjusted ORs were 0.675 and 0.713, 95% CI were 0.461-0.988 and 0.525-0.968, respectively), adjusted OR for dominant model was 0.702, 95% CI was 0.526-0.937. For rs967591, AA genotype (adjusted OR = 0.721, 95% CI = 0.532-0.978) and at least one A allele (GA+AA) (adjusted OR = 0.716, 95% CI = 0.536-0.956) were significantly correlated with lower risk of NSCLC, compared with GG genotype. But we didn't find correlation between the two SNPs and survival time in Chinese non-smoking NSCLC females. In general, we found PPP1R13L rs1005165 and CD3EAP rs967591 might be associated with lower NSCLC risk in Chinese non-smoking females, but no significant relationship was found with NSCLC survival.
Collapse
Affiliation(s)
- Xu Feng
- Department of Epidemiology, School of Public Health, China Medical University, Liaoning, China.,Department of Health Statistics, School of Public Health, Shenyang Medical College, Liaoning, China
| | - Xue Fang
- Department of Epidemiology, School of Public Health, China Medical University, Liaoning, China.,Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Department of Education, Liaoning, China
| | - Lingzi Xia
- Department of Epidemiology, School of Public Health, China Medical University, Liaoning, China.,Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Department of Education, Liaoning, China
| | - Yangwu Ren
- Department of Epidemiology, School of Public Health, China Medical University, Liaoning, China.,Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Department of Education, Liaoning, China
| | - Xuelian Li
- Department of Epidemiology, School of Public Health, China Medical University, Liaoning, China.,Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Department of Education, Liaoning, China
| | - Xiaowei Quan
- Department of Epidemiology, School of Public Health, China Medical University, Liaoning, China.,Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Department of Education, Liaoning, China
| | - Baosen Zhou
- Department of Epidemiology, School of Public Health, China Medical University, Liaoning, China.,Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Department of Education, Liaoning, China
| |
Collapse
|