1
|
Cao X, Liu Q, Shi W, Liu K, Deng T, Weng X, Pan S, Yu Q, Deng W, Yu J, Wang Q, Xiao G, Xu X. Microfluidic fabricated bisdemethoxycurcumin thermosensitive liposome with enhanced antitumor effect. Int J Pharm 2023; 641:123039. [PMID: 37225026 DOI: 10.1016/j.ijpharm.2023.123039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/17/2023] [Accepted: 05/05/2023] [Indexed: 05/26/2023]
Abstract
Bisdemethoxycurcumin (BDMC) is the main active ingredient that is isolated from Zingiberaceae plants, wherein it has excellent anti-tumor effects. However, insolubility in water limits its clinical application. Herein, we reported a microfluidic chip device that can load BDMC into the lipid bilayer to form BDMC thermosensitive liposome (BDMC TSL). The natural active ingredient glycyrrhizin was selected as the surfactant to improve solubility of BDMC. Particles of BDMC TSL had small size, homogenous size distribution, and enhanced cultimulative release in vitro. The anti-tumor effect of BDMC TSL on human hepatocellular carcinomas was investigated via 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method, live/dead staining, and flowcytometry. These results showed that the formulated liposome had a strong cancer cell inhibitory, and presented a dose-dependent inhibitory effect on migration. Further mechanistic studies showed that BDMC TSL combined with mild local hyperthermia could significantly upregulate B cell lymphoma 2 associated X protein levels and decrease B cell lymphoma 2 protein levels, thereby inducing cell apoptosis. The BDMC TSL that was fabricated via microfluidic device were decomposed under mild local hyperthermia, which could beneficially enhance the anti-tumor effect of raw insoluble materials and promote translation of liposome.
Collapse
Affiliation(s)
- Xia Cao
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China; Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China
| | - Qi Liu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China; Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China
| | - Wenwan Shi
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China; Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China
| | - Kai Liu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China; Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China
| | - Tianwen Deng
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China; Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China
| | - Xuedi Weng
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Siting Pan
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Qingtong Yu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China; Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China
| | - Wenwen Deng
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China; Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China
| | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China; Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China
| | - Qilong Wang
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China; Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China.
| | - Gao Xiao
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350108, Fujian, P. R. China.
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China; Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China.
| |
Collapse
|
2
|
Wan H, Yang Y, Li Z, Cheng L, Ding Z, Wan H, Yang J, Zhou H. Compatibility of ingredients of Danshen (Radix Salviae Miltiorrhizae) and Honghua ( Flos Carthami) and their protective effects on cerebral ischemia-reperfusion injury in rats. Exp Ther Med 2021; 22:849. [PMID: 34149895 PMCID: PMC8210257 DOI: 10.3892/etm.2021.10281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 04/23/2021] [Indexed: 12/17/2022] Open
Abstract
Danshen (Radix Salviae Miltiorrhizae) and Honghua (Flos Carthami) (Danhong) are two drugs commonly prescribed together, which are often used in the treatment of cerebrovascular diseases in China. Due to the complexity of the ingredients of Danhong, the present study focused on performing the orthogonal compatibility method on the primary effective molecules of this drug: Tanshinol, salvianolic acid A, salvianolic acid B and hydroxysafflor yellow A. These four molecules were studied to determine their protective effects and to screen for the most compatible ingredients to improve cerebral ischemia-reperfusion injury (IR) in rats. Focal middle cerebral artery occlusion was performed to establish the cerebral IR model in rats. Male Sprague-Dawley rats were randomly divided into sham operation group, IR group and nine orthogonal administration groups with different ratios of Danhong effective ingredients and Danhong injection group. Neurological deficit score and cerebral infarction volume were measured postoperatively. Morphological pathological alterations were observed via H&E staining. Bcl-2 and Bax were quantified using ELISA. Immunohistochemistry was conducted to analyze the expression of caspase-3 in the hippocampus. The expression levels of cytochrome c, apoptotic peptidase activating factor 1 (apaf-1), caspase-9, caspase-3 and p53 mRNA in the hippocampus were assessed via reverse transcription-quantitative PCR. The results demonstrated that different compatibility groups significantly reduced the neurological function score and decreased the volume of cerebral infarct compared with the IR group. These groups were also indicated to improve the pathological damage to the brain tissue. In addition, certain compatibility groups significantly decreased the number of caspase-3 positive cells in the hippocampus and the expression levels of cytochrome c, apaf-1, caspase-9, caspase-3 and p53 mRNA in the brain tissue. Orthogonal group 4 (30 mg/kg tanshinol; 2.5 mg/kg salvianolic acid A; 16 mg/kg salvianolic acid B; 8 mg/kg hydroxysafflor yellow A) was indicated to be the most effective. The four effective ingredients of Danhong exhibited a protective effect on rats with cerebral IR injury, potentially through the inhibition of apoptosis via the downregulation of key targets upstream of the caspase-3 pathway. In addition, the present study provided novel insights for the continued study of the drug compatibility rules of TCM.
Collapse
Affiliation(s)
- Haoyu Wan
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Yuting Yang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Zhiwei Li
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Lan Cheng
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Zhishan Ding
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Haitong Wan
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Jiehong Yang
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Huifen Zhou
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| |
Collapse
|
3
|
Abdraboh ME, Essa ZS, Abdelrazzak AB, El-Far YM, Elsherbini Y, El-Zayat MM, Ali DA. Radio-sensitizing effect of a cocktail of phytochemicals on HepG2 cell proliferation, motility and survival. Biomed Pharmacother 2020; 131:110620. [PMID: 32892028 DOI: 10.1016/j.biopha.2020.110620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/28/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023] Open
Abstract
Radio-resistance is a major hurdle challenging oncologist worldwide. Despite their anti-cancer characteristics, the implication of phytochemicals in clinical trials is still limited. This study is designed to evaluate the anticancer characteristics and radio-sensitizing effect of a cocktail of seven phytochemicals on HepG2 cells. Characterization of phytochemicals combination phenolic and flavonoids content as well as their scavenging activity were tested. The effective concentration of BSG that will be used as a radio-sensitizing dose was calculated using AlamarBlue assay. Treatment of HepG2 cells with BSG and/or ionizing radiations led to significant downregulation at cell proliferation as indicated by the decrease of colony formation ratio, proliferation marker (Ki67) expression as well as G2/M cell cycle arrest. The combined treatment stimulated P53-dependent apoptosis which was indicated by the significant increase of early apoptosis marker (Annexin V) expression, DNA fragmentation, expression of P53 & Bax and downregulation of Bcl2 expression. Combined treatment significantly attenuated HepG2 cell motility which was validated using wound healing migration assay and the significant reduction at CD95 expression. This study demonstrates the anti-cancer effect of BSG and its fundamental role in provoking cell responsiveness to IR leading to a significant inhibition at HepG2 cell proliferation, survival and migration.
Collapse
Affiliation(s)
- Mohamed E Abdraboh
- Associate Professor of Molecular Cell Biology, Department of Zoology, Faculty of Science, Mansoura University, Egypt.
| | - Zaidoon Shaker Essa
- MSc of Molecular Cell Biology, Department of Zoology, Faculty of Science, Mansoura University, Egypt
| | - Abdelrazek B Abdelrazzak
- Associate Professor of Biophysics, Spectroscopy Department, Physics Research Division, National Research Center, Egypt
| | - Yousra M El-Far
- Lecturer of Biochemistry, Faculty of Pharmacy, Mansoura University, Egypt
| | | | - Mustafa M El-Zayat
- Unit of Genetic Engineering and Biotechnology, Mansoura University, Mansoura, Egypt
| | - Doaa A Ali
- Associate Professor of Histology and Cell Biology, Department of Zoology, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
4
|
Huang TY, Peng SF, Huang YP, Tsai CH, Tsai FJ, Huang CY, Tang CH, Yang JS, Hsu YM, Yin MC, Huang WW, Chung JG. Combinational treatment of all-trans retinoic acid (ATRA) and bisdemethoxycurcumin (BDMC)-induced apoptosis in liver cancer Hep3B cells. J Food Biochem 2019; 44:e13122. [PMID: 31837044 DOI: 10.1111/jfbc.13122] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 11/01/2019] [Accepted: 11/26/2019] [Indexed: 12/19/2022]
Abstract
The effects of two-drug combination, all-trans retinoic acid (ATRA) and bisdemethoxycurcumin (BDMC), on apoptosis induction of liver cancer cells were investigated in human liver Hep 3B cells. Two-drug combination caused a more effective decrease in cell viability and in induction of S phase arrest, DNA damage, and cell apoptosis than that of ATRA or BDMC only. Also, the two-drug combination caused more cells to undergo significantly increased ROS productions when compared to that of ATRA or BDMC only. Results of Western blotting demonstrated that two-drug combination increased expressions of Fas, pro-apoptotic proteins, and active form of caspase-3 and -9, but decreased that of anti-apoptotic proteins and XIAP than that of ATRA or BDMC only in Hep 3B cells. In conclusion, ATRA combined with BDMC enhance cell apoptosis and associated protein expression in Hep 3B cells. PRACTICAL APPLICATIONS: Bisdemethoxycurcumin (BDMC) derived from natural plants, turmeric (Curcuma longa), which had been used for Asia food for thousands of years. All-trans retinoid acid (ATRA) is currently used as a primary treatment for patients with acute promyelocytic leukemia. In previous study, ATRA and BDMC were reported to have anti-inflammatory and anticancer effects. Our results showed that treatment of ATRA combined with BDMC showed more effectively apoptosis than that of ATRA or BDMC only in Hep 3B cells. The findings also provided possible pathways concerning the induction of liver cancer cell apoptosis. We conclude that ATRA combined with BDMC may be potent anticancer agents or adjuvants for liver cancer therapy in the future.
Collapse
Affiliation(s)
- Ting-Yi Huang
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Shu-Fen Peng
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan.,Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Yi-Ping Huang
- Department of Physiology, College of Medicine, China Medical University, Taichung, Taiwan
| | - Chang-Hai Tsai
- China Medical University Children's Hospital, China Medical University, Taichung, Taiwan.,Department of Healthcare Administration, Asia University, Taichung, Taiwan
| | - Fuu-Jen Tsai
- China Medical University Children's Hospital, China Medical University, Taichung, Taiwan.,School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan.,Department of Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Chih-Hsin Tang
- Department of Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan.,Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Yuan-Man Hsu
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Mei-Chin Yin
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan
| | - Wen-Wen Huang
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan.,Department of Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| |
Collapse
|
5
|
Yang J, Zhu D, Liu S, Shao M, Liu Y, Li A, Lv Y, Huang M, Lou D, Fan Q. Curcumin enhances radiosensitization of nasopharyngeal carcinoma by regulating circRNA network. Mol Carcinog 2019; 59:202-214. [PMID: 31793078 DOI: 10.1002/mc.23143] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 10/30/2019] [Accepted: 11/22/2019] [Indexed: 01/02/2023]
Abstract
Circular RNAs (circRNAs) are involved in the regulation of gene expression in different physiological and pathological processes. These macromolecules can act as microRNA (miRNA) sponges and play an important role as gene regulators throughout the circRNA-miRNA pathway. In this study, we established a radioresistance model with the nasopharyngeal carcinoma cell line CNE-2, and then analyzed the differences in the circRNAs between radioresistant and normal nasopharyngeal carcinoma cell lines using a high-throughput microarray. Tested circRNAs included 1042 upregulated and 1558 downregulated circRNAs. Relevant signaling pathways associated with the circRNAs and their target miRNAs were analyzed using bioinformatics analysis to determine the radioresistance of the differentially expressed circRNAs. Curcumin was used to treat irradiated cell lines, and changes in the circRNA before and after curcumin treatment were analyzed to investigate the radiosensitization effects of curcumin. The results showed that curcumin could regulate the circRNA-miRNA-messenger RNA network and inhibit the epidermal growth factor receptor (EGFR), signal transducers and activators of transcription 3 (STAT3), and growth factor receptor-bound protein 2 (GRB2) to achieve radiosensitization. Thus, circRNA acted as a miRNA sponge and regulated the expression of miRNA, thereby affecting EGFR, STAT3, and GRB2 expression and radiosensitization.
Collapse
Affiliation(s)
- Jiabin Yang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Daoqi Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Shiya Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Meng Shao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Ying Liu
- NanFang Hospital, Guangzhou, Guangdong, China
| | - Aiwu Li
- NanFang Hospital, Guangzhou, Guangdong, China
| | - Ying Lv
- NanFang Hospital, Guangzhou, Guangdong, China
| | - Mu Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Dandan Lou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Qin Fan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Xu RY, Xu XW, Deng YZ, Ma ZX, Li XR, Zhao L, Qiu LJ, Liu HY, Chen HP. Resveratrol attenuates myocardial hypoxia/reoxygenation-induced cell apoptosis through DJ-1-mediated SIRT1-p53 pathway. Biochem Biophys Res Commun 2019; 514:401-406. [PMID: 31053297 DOI: 10.1016/j.bbrc.2019.04.165] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 04/24/2019] [Indexed: 02/04/2023]
Abstract
Resveratrol, a multi-functional phytoalexin, has been well indicated to exert cardioprotective effects by weakening ischemia/reperfusion (I/R) injury, and cell apoptosis is a vital way in I/R injury. SIRT1-p53 pathway has strong significance in regulating cell apoptosis. DJ-1 can directly bind to SIRT1 and stimulate the activity of SIRT1-p53. Therefore, the current study was determined whether Resveratrol attenuates hypoxia/reoxygenation (H/R)-induced cell apoptosis, and whether DJ-1-mediated SIRT1 activation involves in the cardioprotective effects of Resveratrol. The results showed that remarkable decrease in the number of apoptotic cells along with reduction of lactate dehydrogenase release and restoration of cell viability emerged when Resveratrol was applied in the H9c2 cells exposed to H/R. Moreover, Resveratrol increased DJ-1 expression and promoted the interaction of DJ-1 with SIRT1, which further contributed to subsequent restoration of SIRT1 activity and decrease of acetylation level of p53. However, above cardioprotective effects of Resveratrol were abrogated by DJ-1 siRNA and SIRT1 specific inhibitor Sirtinol. In conclusion, the current study demonstrated that Resveratrol suppressed H/R-induced cell apoptosis, which may be conducted by up-regulating DJ-1, and later activating SIRT1 activity and subsequently inhibiting p53 acetylation level in the H9c2 cells.
Collapse
Affiliation(s)
- Rui-Yuan Xu
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, PR China
| | - Xing-Wang Xu
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, PR China
| | - Yi-Zhang Deng
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, PR China
| | - Zhao-Xia Ma
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, PR China
| | - Xiao-Ran Li
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, PR China
| | - Le Zhao
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, PR China
| | - Le-Jia Qiu
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, PR China
| | - Hao-Yue Liu
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, PR China
| | - He-Ping Chen
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, PR China.
| |
Collapse
|
7
|
Cold-Inducible Protein RBM3 Protects UV Irradiation-Induced Apoptosis in Neuroblastoma Cells by Affecting p38 and JNK Pathways and Bcl2 Family Proteins. J Mol Neurosci 2017; 63:142-151. [DOI: 10.1007/s12031-017-0964-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/10/2017] [Indexed: 12/24/2022]
|