1
|
Kazemi M, Noorizadeh H, Jadeja Y, Saraswat SK, M M R, Shankhyan A, S S, Joshi KK. Advancing CdSe quantum dots for batteries and supercapacitors: electrochemical frontiers. RSC Adv 2025; 15:16134-16163. [PMID: 40370847 PMCID: PMC12077318 DOI: 10.1039/d5ra02414e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Accepted: 05/05/2025] [Indexed: 05/16/2025] Open
Abstract
Cadmium selenide (CdSe) quantum dots (QDs) have emerged as transformative nanomaterials in energy storage, leveraging their size-tunable electronic properties and high surface area to push the boundaries of batteries and supercapacitors. This review marks the first dedicated investigation of CdSe QDs specifically tailored for batteries and supercapacitors unraveling their potential to enhance charge storage, cycling stability, and electrochemical efficiency. We highlight cutting-edge advancements in integrating CdSe QDs into lithium-ion batteries, lithium-oxygen batteries, and supercapacitors, driven by innovative synthesis strategies and hybrid nanostructures. Key mechanisms, including pseudocapacitance and ion diffusion, are dissected to reveal how CdSe QDs elevate device performance. Despite cadmium toxicity challenges, breakthroughs in core-shell designs and surface passivation offer pathways to safer, high-performance systems. This work underscores CdSe QDs as pivotal players in next-generation electrochemical energy storage, bridging synthesis innovation with practical application.
Collapse
Affiliation(s)
- Mosstafa Kazemi
- Young Researchers and Elite Club, Tehran Branch, Islamic Azad University Tehran Iran
| | - Hadi Noorizadeh
- Young Researchers and Elite Club, Tehran Branch, Islamic Azad University Tehran Iran
| | - Yashwantsinh Jadeja
- Marwadi University Research Center, Department of Chemistry, Faculty of Science, Marwadi University Rajkot-360003 Gujarat India
| | | | - Rekha M M
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University) Bangalore Karnataka India
| | - Aman Shankhyan
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University Rajpura 140401 Punjab India
| | - Supriya S
- Department of Chemistry, Sathyabama Institute of Science and Technology Chennai Tamil Nadu India
| | - Kamal Kant Joshi
- Department of Allied Science, Graphic Era Hill University Dehradun India
- Graphic Era Deemed to be University Dehradun Uttarakhand India
| |
Collapse
|
2
|
Singh A, Ahmed E, Rather MD, Sundararajan A, Sharma A, Choudhary FS, Sundramoorthy AK, Dixit S, Vatin NI, Arya S. Marketing Strategies in Nanomaterials for Sensor Applications: Bridging Lab to Market. GLOBAL CHALLENGES (HOBOKEN, NJ) 2025; 9:2400294. [PMID: 40352637 PMCID: PMC12065100 DOI: 10.1002/gch2.202400294] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/19/2025] [Indexed: 05/14/2025]
Abstract
Nanomaterials have revolutionized sensor technology by offering enhanced sensitivity, selectivity, and miniaturization capabilities. However, the commercialization of nanomaterial-based sensors remains challenging due to the complexities involved in bridging laboratory innovations to market-ready products. This review article explores the various marketing strategies that can facilitate the successful commercialization of nanomaterials for sensor applications. It emphasizes the importance of understanding market needs, regulatory landscapes, and the value proposition of nanomaterials over traditional materials. The study also highlights the role of strategic partnerships, intellectual property management, and customer education in overcoming market entry barriers. Through a comprehensive analysis of case studies and industry practices, this review provides a framework for companies and researchers to effectively transition from lab-scale innovations to commercially viable sensor products. The findings suggest that a well-rounded marketing strategy, combined with robust product development and stakeholder engagement, is crucial for capitalizing on the unique benefits of nanomaterials in sensor applications.
Collapse
Affiliation(s)
- Anoop Singh
- Department of PhysicsGovt. Women Degree College GandhinagarHigher Education DepartmentJammuJammu & Kashmir180004India
| | - Eliyash Ahmed
- Department of Physics (H&S)Guru Nanak Institutions Technical CampusHyderabad501506India
| | - Mehrajud Din Rather
- Department of PhysicsUniversity Institute of Engineering and TechnologyGuru Nanak UniversityIbrahimpatnamTelangana501506India
| | - Atchaya Sundararajan
- Department of PhysicsSchool of Electrical and Electronics Engineering (SEEE) SASTRA Deemed UniversityThanjavur613401India
| | - Alka Sharma
- The Business SchoolUniversity of JammuJammuJammu and Kashmir180006India
| | | | - Ashok K. Sundramoorthy
- Centre for Nano‐BiosensorsDepartment of ProsthodonticsSaveetha Institute of Medical and Technical SciencesSaveetha Dental College and HospitalsPoonamallee High Road, VelappanchavadiChennaiTamil Nadu600077India
| | - Saurav Dixit
- Centre of Research Impact and OutcomeChitkara UniversityRajpuraPunjab140417India
- Peter the Great St Petersburg Polytechnic UniversityRussian FederationSt. Petersburg195251Russia
- Division of Research & InnovationUttaranchal UniversityDehradunUttarakhand248007India
| | - Nikolai Ivanovich Vatin
- Peter the Great St Petersburg Polytechnic UniversityRussian FederationSt. Petersburg195251Russia
- Division of Research and DevelopmentLovely Professional UniversityPhagwaraPunjab144001India
- Chitkara Centre for Research and DevelopmentChitkara UniversityHimachal Pradesh174103India
| | - Sandeep Arya
- Department of PhysicsUniversity of JammuJammuJammu and Kashmir180006India
| |
Collapse
|
3
|
Rajpal VR, Nongthongbam B, Bhatia M, Singh A, Raina SN, Minkina T, Rajput VD, Zahra N, Husen A. The nano-paradox: addressing nanotoxicity for sustainable agriculture, circular economy and SDGs. J Nanobiotechnology 2025; 23:314. [PMID: 40275357 PMCID: PMC12023416 DOI: 10.1186/s12951-025-03371-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 04/04/2025] [Indexed: 04/26/2025] Open
Abstract
Engineered nanomaterials (ENMs) have aroused extensive interest in agricultural, industrial, and medical applications. The integration of ENMs into the agricultural systems aligns with the principles of United Nations' sustainable development goals (SDGs), circular economy (CE) and bio-economy (BE) principles. This approach offers excellent opportunities to enhance productivity and address global climate change challenges. The revelation of the adverse effects of nanomaterials (NMs) on various organisms and ecosystems, however, has fueled the debate on 'Nano-paradox' leading to emergence of a new research domain 'Nanotoxicology'. ENMs have shown different interactions with biological and environmental systems as compared to their bulk counterparts. They bioaccumulate in organisms, soils, and other environmental matrices, move through food chains and reach higher trophic levels including humans ultimately resulting in oxidative stress and cellular damage. Understanding nano-bio interactions, the mechanism of gene- and cytotoxicity, and associated potential hazards, is therefore, essential to mitigate their toxicological outputs. This review comprehensively examines the cyto- and genotoxicity mechanisms of ENMs in biological systems, covering aspects such as their entry, uptake, cellular responses, dynamic interactions in biological environments their long-term effects and environmental risk assessment (ERA). It also discusses toxicological assessment methods, regulatory policies, strategies for toxicity management/mitigation and future research directions in nanotechnology, all within the context of SDGs, CE, promoting resource efficiency and sustainability. Navigating the nano-paradox involves balancing the benefits of nanomaterials with concerns about nanotoxicity. Prioritizing thorough research on above facets can ensure sustainability and safety, enabling responsible harnessing of nanotechnology's transformative potential in various applications including mitigating global climate change and enhancing agricultural productivity.
Collapse
Affiliation(s)
| | | | - Manika Bhatia
- TERI School of Advanced Studies, Vasant Kunj Institutional Area, New Delhi, Delhi, 110070, India
| | - Apekshita Singh
- Department of Biotechnology, Amity University of Biotechnology, Noida, Uttar Pradesh, India
| | - Soom Nath Raina
- Department of Biotechnology, Amity University of Biotechnology, Noida, Uttar Pradesh, India
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Noreen Zahra
- Department of Botany, Government College Women University, Faisalabad, 38000, Pakistan
- Postgraduate Office, Amin Campus, The University of Faisalabad, Faisalabad, 38000, Pakistan
| | - Azamal Husen
- Wolaita Sodo University, PO Box 138, Wolaita, Ethiopia.
- Department of Biotechnology, Graphic Era (Deemed to Be University), Dehradun, Uttarakhand, 248002, India.
| |
Collapse
|
4
|
Zhang YY, Lin MY, Tsai YT, Leung MK, Fang MH. Sustainable Quantum Dot-Vitrimer Composites: A Synergy of Quantum Dots and Dynamic Covalent Bonds. CHEMSUSCHEM 2025:e2500464. [PMID: 40100643 DOI: 10.1002/cssc.202500464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Accepted: 03/18/2025] [Indexed: 03/20/2025]
Abstract
Functional nanocomposites combining quantum dots (QDs) and polymers have garnered significant attention due to their unique optical properties. However, the presence of toxic heavy metal ions remains a significant challenge for eco-friendly material development. Herein, the design and fabrication of a quantum-dot-in-vitrimer (QD@vitrimer) nanocomposite is introduced, which leverages dynamic covalent bonds, providing chemical extractability of the embedded QDs from crosslinked polymers. Unlike commercially available UV-cured resins, the QD@vitrimer nanocomposite demonstrates uniform QD dispersion with minimal aggregation, as confirmed by synchrotron transmission small-angle X-ray scattering and high-resolution scanning transmission electron microscopy. The composites can be degraded via an alcoholysis process driven by built-in catalysts, enabling rapid breakdown and efficient QD extraction under neutral conditions. 99.9% QD extraction efficiency is achieved while preserving the crystal structure and photoluminescence quantum yield of the QDs, significantly enhancing the reusability of these valuable nanomaterials, as verified by inductively coupled plasma optical emission spectrometry and synchrotron X-ray absorption spectroscopy. Finally, the QD@vitrimer nanocomposite is refabricated using the recycled QDs, establishing a closed-loop system that extends the material's lifecycle. This work highlights the pioneering strategy for developing chemically recyclable, eco-friendly luminescent nanocomposite, offering a new direction for advancing green materials in advanced applications.
Collapse
Affiliation(s)
- Yong-Yun Zhang
- Research Center for Applied Sciences, Academia Sinica, Taipei, 115, Taiwan
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Meng-Yu Lin
- Research Center for Applied Sciences, Academia Sinica, Taipei, 115, Taiwan
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Yi-Ting Tsai
- Research Center for Applied Sciences, Academia Sinica, Taipei, 115, Taiwan
| | - Man-Kit Leung
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Mu-Huai Fang
- Research Center for Applied Sciences, Academia Sinica, Taipei, 115, Taiwan
| |
Collapse
|
5
|
Alam MW, Junaid PM, Gulzar Y, Abebe B, Awad M, Quazi SA. Advancing agriculture with functional NM: "pathways to sustainable and smart farming technologies". DISCOVER NANO 2024; 19:197. [PMID: 39636344 PMCID: PMC11621287 DOI: 10.1186/s11671-024-04144-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024]
Abstract
The integration of nanotechnology in agriculture offers a transformative approach to improving crop yields, resource efficiency, and ecological sustainability. This review highlights the application of functional NM, such as nano-formulated agrochemicals, nanosensors, and slow-release fertilizers, which enhance the effectiveness of fertilizers and pesticides while minimizing environmental impacts. By leveraging the unique properties of NM, agricultural practices can achieve better nutrient absorption, reduced chemical runoff, and improved water conservation. Innovations like nano-priming can enhance seed germination and drought resilience, while nanosensors enable precise monitoring of soil and crop health. Despite the promising commercial potential, significant challenges persist regarding the safety, ecological impact, and regulatory frameworks for nanomaterial use. This review emphasizes the need for comprehensive safety assessments and standardized risk evaluation protocols to ensure the responsible implementation of nanotechnology in agriculture.
Collapse
Affiliation(s)
- Mir Waqas Alam
- Department of Physics, College of Science, King Faisal University, 31982, Al-Ahsa, Saudi Arabia.
| | - Pir Mohammad Junaid
- Department of Post Harvest Engineering and Technology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, India
| | - Yonis Gulzar
- Department of Management Information Systems, College of Business Administration, King Faisal University, 31982, Al-Ahsa, Saudi Arabia
| | - Buzuayehu Abebe
- Department of Applied Chemistry, School of Applied Natural Sciences, Adama Science and Technology University, P.O. Box: 1888, Adama, Ethiopia.
| | - Mohammed Awad
- Department of Chemical Engineering, Toronto Metropolitan University, Toronto, ON, Canada
| | - S A Quazi
- Bapumiya Sirajoddin Patel Arts, Commerce and Science College, Pimpalgaon Kale, Jalgaon Jamod Dist, Buldhana, Maharashtra, India
| |
Collapse
|
6
|
Giri S, Debroy A, Nag A, Mukherjee A. Evaluating the role of soil EPS in modifying the toxicity potential of the mixture of polystyrene nanoplastics and xenoestrogen, Bisphenol A (BPA) in Allium cepa L. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135252. [PMID: 39047567 DOI: 10.1016/j.jhazmat.2024.135252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
The coexistence of emerging pollutants like nanoplastics and xenoestrogen chemicals such as Bisphenol A (BPA) raises significant environmental concerns. While the individual impacts of BPA and polystyrene nanoplastics (PSNPs) on plants have been studied, their combined effects are not well understood. This study examines the interactions between eco-corona formation, physicochemical properties, and cyto-genotoxic effects of PSNPs and BPA on onion (Allium cepa) root tip cells. Eco-corona formation was induced by exposing BPA-PSNP mixtures to soil extracellular polymeric substances (EPS), and changes were analyzed using 3D-EEM, TEM, FTIR, hydrodynamic diameter, and contact angle measurements. Onion roots were treated with BPA (2.5, 5, and 10 mgL-1) combined with plain, aminated, and carboxylated PSNPs (100 mgL-1), with and without EPS interaction. Toxicity was assessed via cell viability, oxidative stress markers (superoxide radical, total ROS, hydroxyl radical), lipid peroxidation, SOD and catalase activity, mitotic index, and chromosomal abnormalities. BPA alone increased cytotoxic and genotoxic parameters in a dose-dependent manner. BPA with aminated PSNPs exhibited the highest toxicity among the pristine mixtures, revealing increased chromosomal abnormalities, oxidative stress, and cell mortality with rising BPA concentrations. In-silico experiments demonstrated the relationship between superoxide dismutase (SOD), catalase enzymes, PSNPs, BPA, and their mixtures. EPS adsorption notably reduced cyto-genotoxic effects, lipid peroxidation, and ROS levels, mitigating the toxicity of BPA-PSNP mixtures.
Collapse
Affiliation(s)
- Sayani Giri
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Abhrajit Debroy
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Anish Nag
- Department of Life Sciences, Bangalore Central campus, CHRIST (Deemed to be University), Bangalore, India
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
7
|
Vasanthkumar R, Baskar V, Vinoth S, Roshna K, Mary TN, Alagupandi R, Saravanan K, Radhakrishnan R, Arun M, Gurusaravanan P. Biogenic carbon quantum dots from marine endophytic fungi (Aspergillus flavus) to enhance the curcumin production and growth in Curcuma longa L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108644. [PMID: 38710114 DOI: 10.1016/j.plaphy.2024.108644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/03/2024] [Accepted: 04/17/2024] [Indexed: 05/08/2024]
Abstract
In this study, we have investigated the effect of carbon quantum dots (FM-CQDs) synthesized from marine fungal extract on Curcuma longa to improve the plant growth and curcumin production. The isolated fungus, Aspergillus flavus has produced a high amount of indole-3-acetic acid (IAA) (0.025 mg g-1), when treated with tryptophan. CQDs were synthesized from the A. flavus extract and it was characterized using ultraviolet visible spectrophotometer (UV-Vis) and high-resolution transmission electron microscopy (HR-TEM). The synthesized CQDs were excited at 365 nm in an UV-Vis and the HR-TEM analysis showed approximately 7.4 nm in size with a spherical shape. Both fungal crude extract (FCE) at 0-100 mg L-1 and FM-CQDs 0-5 mg L-1 concentrations were tested on C. longa. About 80 mg L-1 concentration FCE treated plants has shown a maximum height of 21 cm and FM-CQDs at 4 mg L-1 exhibited a maximum height of 25 cm compared to control. The FM-CQDs significantly increased the photosynthetic pigments such as total chlorophyll (1.08 mg g-1 FW) and carotenoids (17.32 mg g-1 FW) in C. longa. Further, antioxidant enzyme analysis confirmed that the optimum concentrations of both extracts did not have any toxic effects on the plants. FM-CQDs treated plants increased the curcumin content up to 0.060 mg g-1 by HPLC analysis. Semi quantitative analysis revealed that FCE and FM-CQDs significantly upregulated ClCURS1 gene expression in curcumin production.
Collapse
Affiliation(s)
- Rajkumar Vasanthkumar
- Plant Biotechnology Laboratory, Department of Botany, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Venkidasamy Baskar
- Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, India
| | - Sathasivam Vinoth
- Department of Biotechnology, Sona College of Arts and Science, Salem, 636 005, Tamil Nadu, India
| | - Kattilaparambil Roshna
- Plant Biotechnology Laboratory, Department of Botany, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Thomas Nancy Mary
- Plant Biotechnology Laboratory, Department of Botany, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Raman Alagupandi
- Plant Biotechnology Laboratory, Department of Botany, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Krishnagowdu Saravanan
- Department of Biotechnology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | | | - Muthukrishnan Arun
- Department of Biotechnology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Packiaraj Gurusaravanan
- Plant Biotechnology Laboratory, Department of Botany, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India.
| |
Collapse
|
8
|
Pavlicevic M, Pagano L, Villani M, Zappettini A, Paesano L, Bonas U, Marmiroli N, Marmiroli M. Comparison of effect of CdS QD and ZnS QD and their corresponding salts on growth, chlorophyll content and antioxidative capacity of tomato. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 26:850-861. [PMID: 37886884 DOI: 10.1080/15226514.2023.2270692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
When applied in the same concentration to tomato plants, cadmium sulfate (CdSO4) and zinc sulfate (ZnSO4) were transported from soil to roots and from roots to shoots more readily than their nano counterparts: cadmium sulfide quantum dots (CdS QD) and zinc sulfide quantum dots (ZnS QD). Compared to the CdS QD, he higher rate of transport of CdSO4 resulted in a greater negative effect on growth, chlorophyll content, antioxidant properties, lipid peroxidation and activation of antioxidant defence systems. Although ZnSO4 was transported more rapidly than ZnS QD, the overall effect of Zn addition was positive (increase in total plant mass, stem length, antioxidant content and decrease in lipid peroxidation). However, these effects were more pronounced in the case of ZnS QD, suggesting that the mechanisms underpinning the activity of ZnS QD and ZnSO4 were different. Thus, the risk of phytotoxicity and food chain transfer of the two elements depended on their form (salt or nanoform), and consequently their effects on plants' growth and physiology were different.
Collapse
Affiliation(s)
- Milica Pavlicevic
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Italy
| | - Luca Pagano
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Italy
| | | | | | - Laura Paesano
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Italy
| | - Urbana Bonas
- National Interuniversity Consortium for Environmental Sciences (CINSA), Parma, Italy
| | - Nelson Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Italy
- National Interuniversity Consortium for Environmental Sciences (CINSA), Parma, Italy
- Interdepartmental Center SITEIA.PARMA, University of Parma, Parma, Italy
| | - Marta Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Italy
| |
Collapse
|
9
|
Zafar H, Javed R, Zia M. Nanotoxicity assessment in plants: an updated overview. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:93323-93344. [PMID: 37544947 DOI: 10.1007/s11356-023-29150-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 07/30/2023] [Indexed: 08/08/2023]
Abstract
Nanotechnology is rapidly emerging and innovative interdisciplinary field of science. The application of nanomaterials in agricultural biotechnology has been exponentially increased over the years that could be attributed to their uniqueness, versatility, and flexibility. The overuse of nanomaterials makes it crucial to determine their fate and distribution in the in vitro (in cell and tissue cultures) and in vivo (in living species) biological environments by investigating the nano-biointerface. The literature states that the beneficial effects of nanoparticles come along with their adverse effects, subsequently leading to an array of short-term and long-term toxicities. It has been evident that the interplay of nanoparticles with abiotic and biotic communities produces several eco-toxicological effects, and the physiology and biochemistry of crops are greatly influenced by the metabolic alterations taking place at cellular, sub-cellular, and molecular levels. Numerous risk factors affect nanoparticle's accumulation, translocation, and associated cytogenotoxicity. This review article summarizes the contributing factors, possible mechanisms, and risk assessment of hazardous effects of various types of nanoparticles to plant health. The methods for evaluating the plant nanotoxicity parameters have been elaborated. Conclusively, few recommendations are put forward for designing safer, high-quality nanomaterials to protect and maintain environmental safety for smarter agriculture demanded by researchers and industrialists.
Collapse
Affiliation(s)
- Hira Zafar
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Rabia Javed
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland and Labrador, Corner Brook, Newfoundland, A2H 5G4, Canada.
| | - Muhammad Zia
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| |
Collapse
|
10
|
Le N, Kim K. Current Advances in the Biomedical Applications of Quantum Dots: Promises and Challenges. Int J Mol Sci 2023; 24:12682. [PMID: 37628860 PMCID: PMC10454335 DOI: 10.3390/ijms241612682] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Quantum dots (QDs) are a type of nanoparticle with exceptional photobleaching-resistant fluorescence. They are highly sought after for their potential use in various optical-based biomedical applications. However, there are still concerns regarding the use of quantum dots. As such, much effort has been invested into understanding the mechanisms behind the behaviors of QDs, so as to develop safer and more biocompatible quantum dots. In this mini-review, we provide an update on the recent advancements regarding the use of QDs in various biomedical applications. In addition, we also discuss# the current challenges and limitations in the use of QDs and propose a few areas of interest for future research.
Collapse
Affiliation(s)
| | - Kyoungtae Kim
- Department of Biology, Missouri State University, 901 S National, Springfield, MO 65897, USA;
| |
Collapse
|
11
|
Wang X, Wu T. An update on the biological effects of quantum dots: From environmental fate to risk assessment based on multiple biological models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163166. [PMID: 37011691 DOI: 10.1016/j.scitotenv.2023.163166] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/12/2023] [Accepted: 03/26/2023] [Indexed: 05/17/2023]
Abstract
Quantum dots (QDs) are zero-dimension nanomaterials with excellent physical and chemical properties, which have been widely used in environmental science and biomedicine. Therefore, QDs are potential to cause toxicity to the environment and enter organisms through migration and bioenrichment effects. This review aims to provide a comprehensive and systematic analysis on the adverse effects of QDs in different organisms based on recently available data. Following PRISMA guidelines, this study searched PubMed database according to the pre-set keywords, and included 206 studies according to the inclusion and elimination criteria. CiteSpace software was firstly used to analyze the keywords of included literatures, search for breaking points of former studies, and summarize the classification, characterization and dosage of QDs. The environment fate of QDs in the ecosystems were then analyzed, followed with comprehensively summarized toxicity outcomes at individual, system, cell, subcellular and molecular levels. After migration and degradation in the environment, aquatic plants, bacteria, fungi as well as invertebrates and vertebrates have been found to be suffered from toxic effects caused by QDs. Aside from systemic effects, toxicity of intrinsic QDs targeting to specific organs, including respiratory system, cardiovascular system, hepatorenal system, nervous system and immune system were confirmed in multiple animal models. Moreover, QDs could be taken up by cells and disturb the organelles, which resulted in cellular inflammation and cell death, including autophagy, apoptosis, necrosis, pyroptosis and ferroptosis. Recently, several innovative technologies, like organoids have been applied in the risk assessment of QDs to promote the surgical interventions of preventing QDs' toxicity. This review not only aimed at updating the research progress on the biological effects of QDs from environmental fate to risk assessment, but also overcame the limitations of available reviews on basic toxicity of nanomaterials by interdisciplinarity and provided new insights for better applications of QDs.
Collapse
Affiliation(s)
- Xinyu Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, Nanjing 210009, PR China; School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, Nanjing 210009, PR China; School of Public Health, Southeast University, Nanjing 210009, PR China.
| |
Collapse
|
12
|
Alias C, Zerbini I, Feretti D. A scoping review of recent advances in the application of comet assay to Allium cepa roots. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2023; 64:264-281. [PMID: 37235708 DOI: 10.1002/em.22553] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
The comet assay is a sensitive method for the evaluation of DNA damages and DNA repair capacity at single-cell level. Allium cepa is a well-established plant model for toxicological studies. The aim of this scoping review was to investigate the recent application of the comet assay in Allium cepa root cells to assess the genotoxicity. To explore the literature a search was performed selecting articles published between January 2015 and February 2023 from Web of Science, PubMed, and Scopus databases using the combined search terms "Comet assay" and "Allium cepa". All the original articles that applied the comet assay to Allium cepa root cells were included. Of the 334 records initially found, 79 articles were identified as meeting the inclusion criteria. Some studies reported results for two or more toxicants. In these cases, the data for each toxicant were treated separately. Thus, the number of analyzed toxicants (such as chemicals, new materials, and environmental matrices) was higher than the number of selected papers and reached 90. The current use of the Allium-comet assay seems to be directed towards two types of approach: the direct study of the genotoxicity of compounds, mainly biocides (20% of analyzed compounds) and nano- and microparticles (17%), and assessing a treatment's ability to reduce or eliminate genotoxicity of known genotoxicants (19%). Although the genotoxicity identified by the Allium-comet assay is only one piece of a larger puzzle, this method could be considered a useful tool for screening the genotoxic potential of compounds released into the environment.
Collapse
Affiliation(s)
- Carlotta Alias
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Ilaria Zerbini
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Donatella Feretti
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| |
Collapse
|
13
|
Kong W, Hou X, Wei L, Chen W, Liu J, Schnoor JL, Jiang G. Accumulation, translocation, and transformation of two CdSe/ZnS quantum dots in rice and pumpkin plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161156. [PMID: 36572319 DOI: 10.1016/j.scitotenv.2022.161156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
As a widely applied semiconductor nanomaterial, quantum dots (QDs) have drawn considerable interest. In this study, pumpkin and rice seedlings were hydroponically exposed to two core/shell CdSe/ZnS QDs coated with cysteamine (CdSe/ZnS-CA) and polyethylene glycol-carboxy (CdSe/ZnS-PEG-COOH) for 10 days to analyze their time-varying uptake, translocation, and transformation behaviors in plants. Both QDs were mainly adsorbed/absorbed by the roots in the particulate state, and more CdSe/ZnS-CA accumulated than CdSe/ZnS-PEG-COOH. For CdSe/ZnS-CA-treated plants, the Se and Cd concentrations (CSe and CCd) associated with the roots were 561 ± 75 and 580 ± 73 μg/g (dw) for rice and 474 ± 49 and 546 ± 53 μg/g (dw) for pumpkin, respectively, on day 10. For CdSe/ZnS-PEG-COOH-treated plants, the concentrations of Se and Cd associated with roots were 392 ± 56 and 453 ± 56 μg/g (dw) for rice and 363 ± 52 and 417 ± 52 μg/g (dw) for pumpkin, respectively. The surface charges and coatings significantly affected the accumulation of QDs at the beginning of exposure; however, the impaction decreased with time. The ratios between the Cd and Se concentrations (CCd/CSe) in the stems and leaves varied from those of the QD standards, indicating the transformation of the QDs in the exposure system. Se and Cd were more likely to translocate in CdSe/ZnS-PEG-COOH-treated plants than in CdSe/ZnS-CA-treated plants. The vertical translocation of Se was greater than that of Cd. Rice showed greater abilities of accumulation and translocation of Se and Cd from both QDs than pumpkin. These findings improve our understanding of the interference of QDs with plants and their environmental fate.
Collapse
Affiliation(s)
- Wenqian Kong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingwang Hou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Linfeng Wei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weifang Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China
| | - Jiyan Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China.
| | - Jerald L Schnoor
- Department of Civil and Environmental Engineering, University of Iowa, Iowa City, IA, USA
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China
| |
Collapse
|
14
|
Le N, Zhang M, Kim K. Quantum Dots and Their Interaction with Biological Systems. Int J Mol Sci 2022; 23:ijms231810763. [PMID: 36142693 PMCID: PMC9501347 DOI: 10.3390/ijms231810763] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Quantum dots are nanocrystals with bright and tunable fluorescence. Due to their unique property, quantum dots are sought after for their potential in several applications in biomedical sciences as well as industrial use. However, concerns regarding QDs’ toxicity toward the environment and other biological systems have been rising rapidly in the past decade. In this mini-review, we summarize the most up-to-date details regarding quantum dots’ impacts, as well as QDs’ interaction with mammalian organisms, fungal organisms, and plants at the cellular, tissue, and organismal level. We also provide details about QDs’ cellular uptake and trafficking, and QDs’ general interactions with biological structures. In this mini-review, we aim to provide a better understanding of our current standing in the research of quantum dots, point out some knowledge gaps in the field, and provide hints for potential future research.
Collapse
Affiliation(s)
- Nhi Le
- Department of Biology, Missouri State University, 901 S National, Springfield, MO 65897, USA
| | - Min Zhang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Kyoungtae Kim
- Department of Biology, Missouri State University, 901 S National, Springfield, MO 65897, USA
- Correspondence: ; Tel.: +1-417-836-5440; Fax: +1-417-836-5126
| |
Collapse
|
15
|
Ince Yardimci A, Istifli ES, Acikbas Y, Liman R, Yagmucukardes N, Yilmaz S, Ciğerci İH. Synthesis and characterization of single-walled carbon nanotube: Cyto-genotoxicity in Allium cepa root tips and molecular docking studies. Microsc Res Tech 2022; 85:3193-3206. [PMID: 35678501 DOI: 10.1002/jemt.24177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/17/2022] [Accepted: 05/27/2022] [Indexed: 11/11/2022]
Abstract
Herein, single-walled carbon nanotubes (SWCNTs) were synthesized by the thermal chemical vapor deposition (CVD) method, and characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), Raman spectroscopy, dynamic light scattering (DLS), and thermo-gravimetric analysis (TGA). The results indicated that obtained nanotubes were SWCNTs with high crystallinity and their average diameter was 10.15 ± 3 nm. Allium cepa ana-telophase and comet assays on the root meristem were employed to evaluate the cytotoxic and genotoxic effects of SWCNTs by examining mitotic phases, mitotic index (MI), chromosomal aberrations (CAs), and DNA damage. A. cepa root tip cells were exposed to SWCNTs at concentrations of 12.5, 25, 50, and 100 μg/ml for 4 h. Distilled water and methyl methanesulfonate (MMS, 10 μg/ml) were used as the negative and positive control groups, respectively. It was observed that MIs decreased statistically significantly for all applied doses. Besides, CAs such as chromosome laggards, disturbed anaphase-telophase, stickiness and bridges and also DNA damage increased in the presence of SWCNTs in a concentration-dependent manner. In the molecular docking study, the SWCNT were found to be a strong DNA major groove binder showing an energetically very favorable binding free energy of -21.27 kcal/mol. Furthermore, the SWCNT interacted effectively with the nucleotides on both strands of DNA primarily via hydrophobic π and electrostatic interactions. As a result, cytotoxic and genotoxic effects of SWCNTs in A. cepa root meristematic cells which is a reliable system for assessment of nanoparticle toxicology were demonstrated in this study.
Collapse
Affiliation(s)
| | - Erman Salih Istifli
- Department of Biology, Faculty of Science and Literature, Cukurova University, Adana, Turkey
| | - Yaser Acikbas
- Department of Materials Science and Nanotechnology Engineering, Faculty of Engineering, Usak University, Usak, Turkey
| | - Recep Liman
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Usak University, Usak, Turkey
| | - Nesli Yagmucukardes
- Department of Materials Science and Nanotechnology Engineering, Faculty of Engineering, Usak University, Usak, Turkey
| | - Selahattin Yilmaz
- Department of Chemical Engineering, Izmir Institute of Technology, Izmir, Turkey
| | - İbrahim Hakkı Ciğerci
- Department of Molecular Biology and Genetics, Faculty of Science and Literature, Afyon Kocatepe University, Afyonkarahisar, Turkey
| |
Collapse
|
16
|
Ünlü C, Budak E, Kestir SM. Altering natural photosynthesis through quantum dots: effect of quantum dots on viability, light harvesting capacity and growth of photosynthetic organisms. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:444-451. [PMID: 35184797 DOI: 10.1071/fp21136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Quantum dots are versatile fluorescent semiconductor nanocrystals with unique photophysical properties. They have been used in various research fields of biotechnology effectively for almost three decades including cell imaging, protein tracking, energy transfer, etc. With their great potential as energy donors or acceptors, quantum dots have also been used in many studies about altering growth rate and photosynthetic activity of photosynthetic organisms by manipulating their light harvesting capacity. In this review, effect of quantum dots on growth rate of photosynthetic organisms and light harvesting capacity of photosynthetic organisms were discussed in details together with toxic effects of cadmium-based and carbon-based quantum dots on photosynthetic organisms. In short, as one of the promising materials of nanotechnology, quantum dots have become one of the essential research topics in photosynthesis research area and will help researchers to manipulate natural photosynthesis in future.
Collapse
Affiliation(s)
- Caner Ünlü
- Istanbul Technical University, Department of Nanoscience and Nanoengineering, Maslak, 34469 Istanbul, Turkey; and Istanbul Technical University, Faculty of Science and Letters, Department of Chemistry, Maslak, 34469 Istanbul, Turkey; and Istanbul Technical University Nanotechnology Research and Application Centre (ITUNano), Istanbul, Turkey
| | - Esranur Budak
- Istanbul Technical University, Department of Nanoscience and Nanoengineering, Maslak, 34469 Istanbul, Turkey
| | - Sacide Melek Kestir
- Istanbul Technical University, Department of Nanoscience and Nanoengineering, Maslak, 34469 Istanbul, Turkey
| |
Collapse
|