1
|
León-Mejía G, Vargas JE, Quintana-Sosa M, Rueda RA, Pérez JP, Miranda-Guevara A, Moreno OF, Trindade C, Acosta-Hoyos A, Dias J, da Silva J, Pêgas Henriques JA. Exposure to coal mining can lead to imbalanced levels of inorganic elements and DNA damage in individuals living near open-pit mining sites. ENVIRONMENTAL RESEARCH 2023; 227:115773. [PMID: 36966995 DOI: 10.1016/j.envres.2023.115773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 05/08/2023]
Abstract
Coal mining activities are considered harmful to living organisms. These activities release compounds to the environment, such as polycyclic aromatic hydrocarbons (PAHs), metals, and oxides, which can cause oxidative damage to DNA. In this study, we compared the DNA damage and the chemical composition of peripherical blood of 150 individuals exposed to coal mining residues and 120 non-exposed individuals. Analysis of coal particles revealed the presence of elements such as copper (Cu), aluminum (Al), chrome (Cr), silicon (Si) and iron (Fe). The exposed individuals in our study had significant concentrations of Al, sulfur (S), Cr, Fe, and Cu in their blood, as well as hypokalemia. Results from the enzyme-modified comet assay (FPG enzyme) suggest that exposure to coal mining residues caused oxidative DNA damage, particularly purine damage. Furthermore, particles with a diameter of <2.5 μm indicate that direct inhalation could promote these physiological alterations. Finally, a systems biology analysis was performed to investigate the effects of these elements on DNA damage and oxidative stress pathways. Interestingly, Cu, Cr, Fe, and K are key nodes that intensely modulate these pathways. Our results suggest that understanding the imbalance of inorganic elements caused by exposure to coal mining residues is crucial to understanding their effect on human health.
Collapse
Affiliation(s)
- Grethel León-Mejía
- Centro de Investigaciones en Ciencias de La Vida (CICV), Universidad Simón Bolívar, Barranquilla, 080002, Colombia.
| | - Jose Eduardo Vargas
- Departamento de Biologia Celular. Universidade Federal de Paraná, Curitiba, Brazil
| | - Milton Quintana-Sosa
- Centro de Investigaciones en Ciencias de La Vida (CICV), Universidad Simón Bolívar, Barranquilla, 080002, Colombia
| | - Robinson Alvarez Rueda
- Centro de Investigaciones en Ciencias de La Vida (CICV), Universidad Simón Bolívar, Barranquilla, 080002, Colombia
| | - Jose Pérez Pérez
- Centro de Investigaciones en Ciencias de La Vida (CICV), Universidad Simón Bolívar, Barranquilla, 080002, Colombia
| | - Alvaro Miranda-Guevara
- Centro de Investigaciones en Ciencias de La Vida (CICV), Universidad Simón Bolívar, Barranquilla, 080002, Colombia
| | - Ornella Fiorillo Moreno
- Centro de Investigaciones en Ciencias de La Vida (CICV), Universidad Simón Bolívar, Barranquilla, 080002, Colombia
| | - Cristiano Trindade
- Centro de Investigaciones en Ciencias de La Vida (CICV), Universidad Simón Bolívar, Barranquilla, 080002, Colombia
| | - Antonio Acosta-Hoyos
- Centro de Investigaciones en Ciencias de La Vida (CICV), Universidad Simón Bolívar, Barranquilla, 080002, Colombia
| | - Johnny Dias
- Laboratório de Implantação Iônica, Instituto de Física, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Juliana da Silva
- Laboratório de Genética Toxicológica, Universidade Luterana Do Brasil (ULBRA)& Universidade La Salle (UniaSalle), Canoas, RS, Brazil
| | - João Antonio Pêgas Henriques
- Departamento de Biofísica, Centro de Biotecnologia, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil; Programa de Pós-Graduação Em Biotecnologia e Em Ciências Médicas, Universidade Do Vale Do Taquari - UNIVATES, Lajeado, RS, Brazil
| |
Collapse
|
2
|
Wu CJ, Ho AC, Chen SY, Pan CH, Chuang HC, Lai CH. Exposure to Heavy Metals and Serum Adiponectin Levels among Workers: A 2-Year Follow-Up Study. Metabolites 2023; 13:metabo13020158. [PMID: 36837777 PMCID: PMC9961065 DOI: 10.3390/metabo13020158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
The workers exposed to metal fumes had an increased risk of metabolic syndrome, which was correlated with decreased serum adiponectin. Thus, we aimed to explore whether heavy metal exposure affects the adiponectin level. There were 96 male workers recruited from a shipyard at baseline. Apart from 82 participants completed the follow-up assessments, new participants were recruited in next year. Finally, there were 100 welding workers in the exposure group and 31 office workers in the control group. Inferential statistics on repeated measures were performed using generalized estimating equations. A weighted quantile sum (WQS) regression model was conducted to examine the joint effect of the multimetal exposure with serum adiponectin. Significantly negative associations of metals with adiponectin were detected in the welding workers, including Cr (β = -0.088; 95% CI: -0.148, -0.027), Mn (β = -0.174; 95% CI: -0.267, -0.081), Co (β = -0.094; 95% CI: -0.158, -0.029), Ni (β = -0.108; 95% CI: -0.208, -0.008), Cd (β = -0.067; 95% CI: -0.115, -0.018), and Pb (β = -0.089; 95% CI: -0.163, -0.015). The WQS regression suggested that Pb was the greatest contributor. In conclusion, our findings highlighted that welding workers exposed to heavy metals would reduce serum adiponectin.
Collapse
Affiliation(s)
- Chen-Jung Wu
- Division of Family Medicine, Taoyuan Armed Forces General Hospital, Taoyuan 325, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan
| | - A-Chuan Ho
- School of Public Health, National Defense Medical Center, Taipei 114, Taiwan
| | - Shih-Ya Chen
- School of Public Health, National Defense Medical Center, Taipei 114, Taiwan
| | - Chih-Hong Pan
- Institute of Labor, Occupational Safety and Health, Ministry of Labor, New Taipei City 221, Taiwan
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Ching-Huang Lai
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan
- School of Public Health, National Defense Medical Center, Taipei 114, Taiwan
| |
Collapse
|
3
|
Guo L, Chen Y, Li H, Yin F, Ge M, Hu L, Zi M, Qin Z, He Y. Telomere length is maternally inherited and associated with lipid metabolism in Chinese population. Aging (Albany NY) 2022; 14:354-367. [PMID: 34995210 PMCID: PMC8791204 DOI: 10.18632/aging.203810] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 12/25/2021] [Indexed: 11/25/2022]
Abstract
Telomere is a unique DNA-protein complex which covers the ends of chromosomes to avoid end fusion and maintain the stability and integrity of chromosomes. Telomere length (TL) shortening has been linked to aging and various age-related diseases in humans. Here we recruited a total of 1031 Chinese individuals aged between 12 and 111 years, including 108 families with parents and their offspring. DNA was extracted from peripheral white blood cells and TL was measured by quantitative PCR (qPCR). We explored the associations of TL with age, gender and clinical variables, and tested the parental effects on TL variation. First, we found that TL was shortened with age, however, TL was better maintained in females than males. Second, there was a robust association of TL between mother and offspring, but not between father and their offspring. In addition, TL was inversely associated with visceral fat index in females, and positively associated with apolipoprotein A levels. Knockdown of the key genes for lipid metabolism (PNPLA2 and CPT1) shortened the TL in HepG2 cells. These findings indicate that TL is maternally inherited, and impairment of lipid metabolism may contribute to the TL shortening in the Chinese population.
Collapse
Affiliation(s)
- Liyun Guo
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases and Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Yajuan Chen
- School of Rehabilitation, Kunming Medical University, Kunming 650500, China
| | - Huiqin Li
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Fanqian Yin
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingxia Ge
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Hu
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- College of Basic Medicine and Life Sciences, Hainan Medical University, Haikou 571199, China
| | - Meiting Zi
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Zhenghong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases and Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Yonghan He
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|