1
|
Gerić M, Nanić L, Micek V, Novak Jovanović I, Gajski G, Rašić D, Orct T, Ljubojević M, Karaica D, Jurasović J, Vrhovac Madunić I, Peraica M, Sabolić I, de Andrade VM, Breljak D, Rubelj I. The Impact of Resveratrol and Melatonin on the Genome and Oxidative Status in Ageing Rats. Nutrients 2025; 17:1187. [PMID: 40218945 PMCID: PMC11990809 DOI: 10.3390/nu17071187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Given the growing challenges posed by an ageing population, particularly in Western countries, we aimed to investigate the potential geroprotective effects of resveratrol and melatonin in ageing rats. METHODS The animals were treated with these two compounds starting at 3 months of age and continuing until 1 year or 2 years of age. Using a multibiomarker approach, we assessed DNA damage, telomere length, and the oxidative status in their urine, liver, and kidneys. RESULTS Despite employing this experimental approach, our results did not provide conclusive evidence of geroprotective effects across the evaluated organs. However, we observed sex-dependent differences in response to treatment. CONCLUSIONS Given the high potency of these two compounds, further research is warranted to explore their incorporation into daily routines as a strategy to mitigate ageing-related effects.
Collapse
Affiliation(s)
- Marko Gerić
- Division of Toxicology, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Lucia Nanić
- Laboratory for Molecular and Cellular Biology, Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Vedran Micek
- Animal Breeding Unit, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Ivana Novak Jovanović
- Division of Toxicology, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Goran Gajski
- Division of Toxicology, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Dubravka Rašić
- Division of Toxicology, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Tatjana Orct
- Division of Occupational and Environmental Health, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Marija Ljubojević
- Division of Toxicology, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Dean Karaica
- Division of Toxicology, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Jasna Jurasović
- Animal Breeding Unit, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Ivana Vrhovac Madunić
- Division of Toxicology, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Maja Peraica
- Division of Toxicology, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Ivan Sabolić
- Division of Toxicology, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Vanessa Moraes de Andrade
- Laboratory of Translational Biomedicine, Graduate Program of Health Sciences, University of Southern Santa Catarina–UNESC, Criciúma 88806-000, Brazil;
| | - Davorka Breljak
- Division of Toxicology, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Ivica Rubelj
- Laboratory for Molecular and Cellular Biology, Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| |
Collapse
|
2
|
Moka MK, George M, Sriram DK. Advancing Longevity: Exploring Antiaging Pharmaceuticals in Contemporary Clinical Trials Amid Aging Dynamics. Rejuvenation Res 2024; 27:220-233. [PMID: 39162996 DOI: 10.1089/rej.2024.0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024] Open
Abstract
Aging is an inevitable biological process that significantly impacts human health, leading to a decline in cellular function and an increase in cellular damage. This study elucidates the burgeoning potential of antiaging pharmaceuticals in mitigating the thriving burden of chronic conditions linked to advancing age. It underscores the pivotal role of these pharmacotherapeutic agents in fostering longevity free from debilitating age-related afflictions, notably cardiovascular disorders, neoplastic processes, and neurodegenerative pathologies. While commendable strides have been made evident in preclinical models, it is crucial to thoroughly investigate their effectiveness and safety in human groups. In addition, ethical concerns about fair access, societal impacts, and careful resource distribution are significant in discussions about developing and using antiaging medications. By approaching the development and utilization of antiaging medications with diligence and foresight, we can strive toward a future where individuals can enjoy extended lifespans free from the debilitating effects of age-related ailments.
Collapse
Affiliation(s)
| | - Melvin George
- Department of Clinical Research, Hindu Mission Hospital, Tambaram, India
| | - D K Sriram
- Department of Diabetology and Endocrinology, Hindu Mission Hospital, Tambaram, India
| |
Collapse
|
3
|
Lazzarini E, Lodrini AM, Arici M, Bolis S, Vagni S, Panella S, Rendon-Angel A, Saibene M, Metallo A, Torre T, Vassalli G, Ameri P, Altomare C, Rocchetti M, Barile L. Stress-induced premature senescence is associated with a prolonged QT interval and recapitulates features of cardiac aging. Theranostics 2022; 12:5237-5257. [PMID: 35836799 PMCID: PMC9274748 DOI: 10.7150/thno.70884] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 06/11/2022] [Indexed: 01/12/2023] Open
Abstract
Rationale: Aging in the heart is a gradual process, involving continuous changes in cardiovascular cells, including cardiomyocytes (CMs), namely cellular senescence. These changes finally lead to adverse organ remodeling and resulting in heart failure. This study exploits CMs from human induced pluripotent stem cells (iCMs) as a tool to model and characterize mechanisms involved in aging. Methods and Results: Human somatic cells were reprogrammed into human induced pluripotent stem cells and subsequently differentiated in iCMs. A senescent-like phenotype (SenCMs) was induced by short exposure (3 hours) to doxorubicin (Dox) at the sub-lethal concentration of 0.2 µM. Dox treatment induced expression of cyclin-dependent kinase inhibitors p21 and p16, and increased positivity to senescence-associated beta-galactosidase when compared to untreated iCMs. SenCMs showed increased oxidative stress, alteration in mitochondrial morphology and depolarized mitochondrial membrane potential, which resulted in decreased ATP production. Functionally, when compared to iCMs, SenCMs showed, prolonged multicellular QTc and single cell APD, with increased APD variability and delayed afterdepolarizations (DADs) incidence, two well-known arrhythmogenic indexes. These effects were largely ascribable to augmented late sodium current (INaL) and reduced delayed rectifier potassium current (Ikr). Moreover sarcoplasmic reticulum (SR) Ca2+ content was reduced because of downregulated SERCA2 and increased RyR2-mediated Ca2+ leak. Electrical and intracellular Ca2+ alterations were mostly justified by increased CaMKII activity in SenCMs. Finally, SenCMs phenotype was furtherly confirmed by analyzing physiological aging in CMs isolated from old mice in comparison to young ones. Conclusions: Overall, we showed that SenCMs recapitulate the phenotype of aged primary CMs in terms of senescence markers, electrical and Ca2+ handling properties and metabolic features. Thus, Dox-induced SenCMs can be considered a novel in vitro platform to study aging mechanisms and to envision cardiac specific anti-aging approach in humans.
Collapse
Affiliation(s)
- Edoardo Lazzarini
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Alessandra Maria Lodrini
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, Milano, Italy.,Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Martina Arici
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, Milano, Italy
| | - Sara Bolis
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland.,Cellular and Molecular Cardiology, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Sara Vagni
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, Milano, Italy
| | - Stefano Panella
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Azucena Rendon-Angel
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Melissa Saibene
- Department of Earth and Environmental Sciences, Università degli Studi di Milano-Bicocca, Milano, Italy
| | - Alessia Metallo
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, Milano, Italy
| | - Tiziano Torre
- Department of Cardiac Surgery Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Giuseppe Vassalli
- Cellular and Molecular Cardiology, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Pietro Ameri
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico, Genova, Italy.,Department of Internal Medicine, University of Genova, Genova, Italy
| | - Claudia Altomare
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Marcella Rocchetti
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, Milano, Italy.,✉ Corresponding authors: Lucio Barile, PhD. Istituto Cardiocentro Ticino, Laboratories for Translational Research, EOC Via Chiesa 5, 6500 Bellinzona, Switzerland. +41 586667104 ; Marcella Rocchetti, PhD. University of Milano-Bicocca, Dept. of Biotechnology and Biosciences, P.za della Scienza 2, 20126 Milano, Italy. +39 0264483313
| | - Lucio Barile
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland.,Institute of Life Science, Scuola Superiore Sant'Anna, Pisa, Italy.,✉ Corresponding authors: Lucio Barile, PhD. Istituto Cardiocentro Ticino, Laboratories for Translational Research, EOC Via Chiesa 5, 6500 Bellinzona, Switzerland. +41 586667104 ; Marcella Rocchetti, PhD. University of Milano-Bicocca, Dept. of Biotechnology and Biosciences, P.za della Scienza 2, 20126 Milano, Italy. +39 0264483313
| |
Collapse
|