1
|
Storsjö T, Tinnerberg H, Sun J, Ruiqi C, Farbrot A. Elemental carbon - An efficient method to measure occupational exposure from materials in the graphene family. NANOIMPACT 2024; 33:100499. [PMID: 38369193 DOI: 10.1016/j.impact.2024.100499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/09/2024] [Accepted: 02/16/2024] [Indexed: 02/20/2024]
Abstract
Graphene is a 2D-material with many useful properties such as flexibility, elasticity, and conductivity among others. Graphene could therefore become a material used in many occupational fields in the future, which can give rise to occupational exposure. Today, exposure is unknown, due to the lack of efficient measuring techniques for occupational exposure to graphene. Readily available screening techniques for air sampling and -analysis are either nonspecific or nonquantitative. Quantifying materials from the broad graphene family by an easy-to-use method is important for the large-scale industrial application of graphene, especially when for the safety of working environment. Graphene consists primarily of elemental carbon, and the present study evaluates the organic carbon/elemental carbon (OC/EC)-technique for exposure assessment. The purpose of this work is to evaluate the OC/EC analysis technique as an efficient and easy-to-use method for quantification of occupational exposure to graphene. Methods that can identify graphene would be preferable for screening, but they are time consuming and semi-quantitative and therefore not suited for quantitative work environment assessments. The OC/EC-technique is a thermal optical analysis (TOA), that quantitively determines the amount of and distinguishes between two different types of carbon, organic and elemental. The technique is standardised, well-established and among other things used for diesel exposure measurements (ref standard). OC/EC could therefore be a feasible measuring technique to quantitively determine occupational exposure to graphene. The present evaluation of the technique provides an analytical method that works quantitatively for graphene, graphene oxide and reduced graphene oxide. Interestingly, the TOA technique makes it possible to distinguish between the three graphene forms used in this study. The technique was tested in an industrial setting and the outcome suggests that the technique is an efficient monitoring technique to be used in combination with characterisation techniques like for example Raman spectroscopy, scanning electron microscopy and atomic force microscopy.
Collapse
Affiliation(s)
- Tobias Storsjö
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden; Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Håkan Tinnerberg
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden; Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Jinhua Sun
- Materials and Manufacture, Chalmers University of Technology, Gothenburg, Sweden.
| | - Chen Ruiqi
- Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden; Materials and Manufacture, Chalmers University of Technology, Gothenburg, Sweden.
| | - Anne Farbrot
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden; Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
2
|
Wang H, Zhang F, Xu TW, Xu Y, Tian Y, Wu Y, Xu J, Hu S, Xu G. DNMT1 involved in the analgesic effect of folic acid on gastric hypersensitivity through downregulating ASIC1 in adult offspring rats with prenatal maternal stress. CNS Neurosci Ther 2023; 29:1678-1689. [PMID: 36852448 PMCID: PMC10173708 DOI: 10.1111/cns.14131] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/30/2022] [Accepted: 12/10/2022] [Indexed: 03/01/2023] Open
Abstract
AIMS Gastric hypersensitivity (GHS) is a characteristic pathogenesis of functional dyspepsia (FD). DNA methyltransferase 1 (DNMT1) and acid-sensing ion channel 1 (ASIC1) are associated with GHS induced by prenatal maternal stress (PMS). The aim of this study was to investigate the mechanism of DNMT1 mediating the analgesic effect of folic acid (FA) on PMS-induced GHS. METHODS GHS was quantified by electromyogram recordings. The expression of DNMT1, DNMT3a, DNMT3b, and ASIC1 were detected by western blot, RT-PCR, and double-immunofluorescence. Neuronal excitability and proton-elicited currents of dorsal root ganglion (DRG) neurons were determined by whole-cell patch clamp recordings. RESULTS The expression of DNMT1, but not DNMT3a or DNMT3b, was decreased in DRGs of PMS rats. FA alleviated PMS-induced GHS and hyperexcitability of DRG neurons. FA also increased DNMT1 and decreased ASIC1 expression and sensitivity. Intrathecal injection of DNMT1 inhibitor DC-517 attenuated the effect of FA on GHS alleviation and ASIC1 downregulation. Overexpression of DNMT1 with lentivirus not only rescued ASIC1 upregulation and hypersensitivity, but also alleviated GHS and hyperexcitability of DRG neurons induced by PMS. CONCLUSIONS These results indicate that increased DNMT1 contributes to the analgesic effect of FA on PMS-induced GHS by reducing ASIC1 expression and sensitivity.
Collapse
Affiliation(s)
- Hong‐Jun Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of NeuroscienceSoochow UniversitySuzhouJiangsuChina
- Jiangsu Key Laboratory of Anesthesiology & Jiangsu Key Laboratory of Anesthesia and Analgesia Application TechnologyXuzhou Medical UniversityXuzhouChina
| | - Fu‐Chao Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of NeuroscienceSoochow UniversitySuzhouJiangsuChina
| | - Timothy W. Xu
- Suzhou Academy of Xi'an Jiaotong UniversitySuzhouChina
| | - Yu‐Cheng Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of NeuroscienceSoochow UniversitySuzhouJiangsuChina
| | - Yuan‐Qing Tian
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of NeuroscienceSoochow UniversitySuzhouJiangsuChina
| | - Yan‐Yan Wu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of NeuroscienceSoochow UniversitySuzhouJiangsuChina
| | - Ji‐Tian Xu
- Department of Physiology and NeurobiologyCollege of Basic Medical Sciences, Zhengzhou UniversityZhengzhouChina
| | - Shufen Hu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of NeuroscienceSoochow UniversitySuzhouJiangsuChina
| | - Guang‐Yin Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of NeuroscienceSoochow UniversitySuzhouJiangsuChina
| |
Collapse
|
3
|
Borzooee Moghadam N, Avatefi M, Karimi M, Mahmoudifard M. Graphene family in cancer therapy: recent progress in cancer gene/drug delivery applications. J Mater Chem B 2023; 11:2568-2613. [PMID: 36883982 DOI: 10.1039/d2tb01858f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
In the past few years, the development in the construction and architecture of graphene based nanocomplexes has dramatically accelerated the use of nano-graphene for therapeutic and diagnostic purposes, fostering a new area of nano-cancer therapy. To be specific, nano-graphene is increasingly used in cancer therapy, where diagnosis and treatment are coupled to deal with the clinical difficulties and challenges of this lethal disease. As a distinct family of nanomaterials, graphene derivatives exhibit outstanding structural, mechanical, electrical, optical, and thermal capabilities. Concurrently, they can transport a wide variety of synthetic agents, including medicines and biomolecules, such as nucleic acid sequences (DNA and RNA). Herewith, we first provide an overview of the most effective functionalizing agents for graphene derivatives and afterward discuss the significant improvements in the gene and drug delivery composites based on graphene.
Collapse
Affiliation(s)
- Negin Borzooee Moghadam
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| | - Manizheh Avatefi
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| | - Mahnaz Karimi
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| | - Matin Mahmoudifard
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| |
Collapse
|
4
|
Zamorina S, Timganova V, Bochkova M, Shardina K, Uzhviyuk S, Khramtsov P, Usanina D, Rayev M. The Effect of PEGylated Graphene Oxide Nanoparticles on the Th17-Polarization of Activated T Helpers. MATERIALS (BASEL, SWITZERLAND) 2023; 16:877. [PMID: 36676614 PMCID: PMC9865146 DOI: 10.3390/ma16020877] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
We investigated the direct effect of PEGylated graphene oxide (P-GO) nanoparticles on the differentiation, viability, and cytokine profile of activated T helper type 17 (Th17) in vitro. The subject of the study were cultures of "naive" T-helpers (CD4+) isolated by immunomagnetic separation and polarized into the Th17 phenotype with a TCR activator and cytokines. It was found that P-GO at low concentrations (5 µg/mL) had no effect on the parameters studied. The presence of high concentrations of P-GO in T-helper cultures (25 μg/mL) did not affect the number and viability of these cells. However, the percentage of proliferating T-helpers in these cultures was reduced. GO nanoparticles modified with linear polyethylene glycol (PEG) significantly increased the percentage of Th17/22 cells in cultures of Th17-polarized T helpers and the production of IFN-γ, whereas those modified with branched PEG suppressed the synthesis of IL-17. Thus, a low concentration of PEGylated GO nanoparticles (5 μg/mL), in contrast to a concentration of 25 μg/mL, has no effect on the Th17-polarization of T helpers, allowing their further use for in-depth studies of the functions of T lymphocytes and other immune cells. Overall, we have studied for the first time the direct effect of P-GO nanoparticles on the conversion of T helper cells to the Th17 phenotype.
Collapse
Affiliation(s)
- Svetlana Zamorina
- Branch of the Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, Institute of Ecology and Genetics of Microorganisms, Goleva st., 13, Perm 614081, Russia
- Department of Microbiology and Immunology, Faculty of Biology, Perm State National Research University, Bukireva st., 15, Perm 614990, Russia
| | - Valeria Timganova
- Branch of the Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, Institute of Ecology and Genetics of Microorganisms, Goleva st., 13, Perm 614081, Russia
| | - Maria Bochkova
- Branch of the Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, Institute of Ecology and Genetics of Microorganisms, Goleva st., 13, Perm 614081, Russia
- Department of Microbiology and Immunology, Faculty of Biology, Perm State National Research University, Bukireva st., 15, Perm 614990, Russia
| | - Kseniya Shardina
- Branch of the Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, Institute of Ecology and Genetics of Microorganisms, Goleva st., 13, Perm 614081, Russia
| | - Sofya Uzhviyuk
- Branch of the Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, Institute of Ecology and Genetics of Microorganisms, Goleva st., 13, Perm 614081, Russia
| | - Pavel Khramtsov
- Branch of the Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, Institute of Ecology and Genetics of Microorganisms, Goleva st., 13, Perm 614081, Russia
- Department of Microbiology and Immunology, Faculty of Biology, Perm State National Research University, Bukireva st., 15, Perm 614990, Russia
| | - Darya Usanina
- Branch of the Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, Institute of Ecology and Genetics of Microorganisms, Goleva st., 13, Perm 614081, Russia
- Department of Microbiology and Immunology, Faculty of Biology, Perm State National Research University, Bukireva st., 15, Perm 614990, Russia
| | - Mikhail Rayev
- Branch of the Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, Institute of Ecology and Genetics of Microorganisms, Goleva st., 13, Perm 614081, Russia
- Department of Microbiology and Immunology, Faculty of Biology, Perm State National Research University, Bukireva st., 15, Perm 614990, Russia
| |
Collapse
|