1
|
Nishioka N, Shimizu Y, Kaneko Y, Shirai T, Suzuki A, Amemiya T, Ochi H, Bito Y, Takizawa M, Ikebe Y, Kameda H, Harada T, Fujima N, Kudo K. Accelerating FLAIR imaging via deep learning reconstruction: potential for evaluating white matter hyperintensities. Jpn J Radiol 2025; 43:200-209. [PMID: 39316286 PMCID: PMC11790734 DOI: 10.1007/s11604-024-01666-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024]
Abstract
PURPOSE To evaluate deep learning-reconstructed (DLR)-fluid-attenuated inversion recovery (FLAIR) images generated from undersampled data, compare them with fully sampled and rapidly acquired FLAIR images, and assess their potential for white matter hyperintensity evaluation. MATERIALS AND METHODS We examined 30 patients with white matter hyperintensities, obtaining fully sampled FLAIR images (standard FLAIR, std-FLAIR). We created accelerated FLAIR (acc-FLAIR) images using one-third of the fully sampled data and applied deep learning to generate DLR-FLAIR images. Three neuroradiologists assessed the quality (amount of noise and gray/white matter contrast) in all three image types. The reproducibility of hyperintensities was evaluated by comparing a subset of 100 hyperintensities in acc-FLAIR and DLR-FLAIR images with those in the std-FLAIR images. Quantitatively, similarities and errors of the entire image and the focused regions on white matter hyperintensities in acc-FLAIR and DLR-FLAIR images were measured against std-FLAIR images using structural similarity index measure (SSIM), regional SSIM, normalized root mean square error (NRMSE), and regional NRMSE values. RESULTS All three neuroradiologists evaluated DLR-FLAIR as having significantly less noise and higher image quality scores compared with std-FLAIR and acc-FLAIR (p < 0.001). All three neuroradiologists assigned significantly higher frontal lobe gray/white matter visibility scores for DLR-FLAIR than for acc-FLAIR (p < 0.001); two neuroradiologists attributed significantly higher scores for DLR-FLAIR than for std-FLAIR (p < 0.05). Regarding white matter hyperintensities, all three neuroradiologists significantly preferred DLR-FLAIR (p < 0.0001). DLR-FLAIR exhibited higher similarity to std-FLAIR in terms of visibility of the hyperintensities, with 97% of the hyperintensities rated as nearly identical or equivalent. Quantitatively, DLR-FLAIR demonstrated significantly higher SSIM and regional SSIM values than acc-FLAIR, with significantly lower NRMSE and regional NRMSE values (p < 0.0001). CONCLUSIONS DLR-FLAIR can reduce scan time and generate images of similar quality to std-FLAIR in patients with white matter hyperintensities. Therefore, DLR-FLAIR may serve as an effective method in traditional magnetic resonance imaging protocols.
Collapse
Affiliation(s)
- Noriko Nishioka
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan
- Department of Diagnostic Imaging, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yukie Shimizu
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan.
- Department of Diagnostic Imaging, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| | - Yukio Kaneko
- Medical Systems Research & Development Center, FUJIFILM Corporation, Tokyo, Japan
| | - Toru Shirai
- Medical Systems Research & Development Center, FUJIFILM Corporation, Tokyo, Japan
| | - Atsuro Suzuki
- Medical Systems Research & Development Center, FUJIFILM Corporation, Tokyo, Japan
| | - Tomoki Amemiya
- Medical Systems Research & Development Center, FUJIFILM Corporation, Tokyo, Japan
| | - Hisaaki Ochi
- Medical Systems Research & Development Center, FUJIFILM Corporation, Tokyo, Japan
| | - Yoshitaka Bito
- Department of Diagnostic Imaging, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- FUJIFILM Healthcare Corporation, Tokyo, Japan
| | | | - Yohei Ikebe
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan
- Center for Cause of Death Investigation, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroyuki Kameda
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan
- Faculty of Dental Medicine, Department of Radiology, Hokkaido University, Sapporo, Japan
| | - Taisuke Harada
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan
- Department of Diagnostic Imaging, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Noriyuki Fujima
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan
- Department of Diagnostic Imaging, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kohsuke Kudo
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan
- Department of Diagnostic Imaging, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Center for Cause of Death Investigation, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Division of Medical AI Education and Research, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
2
|
Chen Q, Shah NJ, Worthoff WA. Compressed Sensing in Sodium Magnetic Resonance Imaging: Techniques, Applications, and Future Prospects. J Magn Reson Imaging 2021; 55:1340-1356. [PMID: 34918429 DOI: 10.1002/jmri.28029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 11/06/2022] Open
Abstract
Sodium (23 Na) yields the second strongest nuclear magnetic resonance (NMR) signal in biological tissues and plays a vital role in cell physiology. Sodium magnetic resonance imaging (MRI) can provide insights into cell integrity and tissue viability relative to pathologies without significant anatomical alternations, and thus it is considered to be a potential surrogate biomarker that provides complementary information for standard hydrogen (1 H) MRI in a noninvasive and quantitative manner. However, sodium MRI suffers from a relatively low signal-to-noise ratio and long acquisition times due to its relatively low NMR sensitivity. Compressed sensing-based (CS-based) methods have been shown to accelerate sodium imaging and/or improve sodium image quality significantly. In this manuscript, the basic concepts of CS and how CS might be applied to improve sodium MRI are described, and the historical milestones of CS-based sodium MRI are briefly presented. Representative advanced techniques and evaluation methods are discussed in detail, followed by an expose of clinical applications in multiple anatomical regions and diseases as well as thoughts and suggestions on potential future research prospects of CS in sodium MRI. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Qingping Chen
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich GmbH, Jülich, Germany.,Faculty of Medicine, RWTH Aachen University, Aachen, Germany.,Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - N Jon Shah
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich GmbH, Jülich, Germany.,Institute of Neuroscience and Medicine 11, INM-11, JARA, Forschungszentrum Jülich GmbH, Jülich, Germany.,JARA-BRAIN-Translational Medicine, Aachen, Germany.,Department of Neurology, RWTH Aachen University, Aachen, Germany
| | - Wieland A Worthoff
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
3
|
Zaric O, Juras V, Szomolanyi P, Schreiner M, Raudner M, Giraudo C, Trattnig S. Frontiers of Sodium MRI Revisited: From Cartilage to Brain Imaging. J Magn Reson Imaging 2020; 54:58-75. [PMID: 32851736 PMCID: PMC8246730 DOI: 10.1002/jmri.27326] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 12/19/2022] Open
Abstract
Sodium magnetic resonance imaging (23 Na-MRI) is a highly promising imaging modality that offers the possibility to noninvasively quantify sodium content in the tissue, one of the most relevant parameters for biochemical investigations. Despite its great potential, due to the intrinsically low signal-to-noise ratio (SNR) of sodium imaging generated by low in vivo sodium concentrations, low gyromagnetic ratio, and substantially shorter relaxation times than for proton (1 H) imaging, 23 Na-MRI is extremely challenging. In this article, we aim to provide a comprehensive overview of the literature that has been published in the last 10-15 years and which has demonstrated different technical designs for a range of 23 Na-MRI methods applicable for disease diagnoses and treatment efficacy evaluations. Currently, a wider use of 3.0T and 7.0T systems provide imaging with the expected increase in SNR and, consequently, an increased image resolution and a reduced scanning time. A great interest in translational research has enlarged the field of sodium MRI applications to almost all parts of the body: articular cartilage tendons, spine, heart, breast, muscle, kidney, and brain, etc., and several pathological conditions, such as tumors, neurological and degenerative diseases, and others. The quantitative parameter, tissue sodium concentration, which reflects changes in intracellular sodium concentration, extracellular sodium concentration, and intra-/extracellular volume fractions is becoming acknowledged as a reliable biomarker. Although the great potential of this technique is evident, there must be steady technical development for 23 Na-MRI to become a standard imaging tool. The future role of sodium imaging is not to be considered as an alternative to 1 H MRI, but to provide early, diagnostically valuable information about altered metabolism or tissue function associated with disease genesis and progression. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY STAGE: 1.
Collapse
Affiliation(s)
- Olgica Zaric
- Institute for Clinical Molecular MRI in the Musculoskeletal System, Karl Landsteiner Society, Vienna, Austria
| | - Vladimir Juras
- High-Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.,Department of Imaging Methods, Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Pavol Szomolanyi
- High-Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Markus Schreiner
- Deartment of Orthopaedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Marcus Raudner
- High-Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Chiara Giraudo
- Radiology Institute, Department of Medicine, DIMED Padova University Via Giustiniani 2, Padova, Italy
| | - Siegfried Trattnig
- Institute for Clinical Molecular MRI in the Musculoskeletal System, Karl Landsteiner Society, Vienna, Austria.,High-Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.,Christian Doppler Laboratory for Clinical Molecular MRI, Christian Doppler Forschungsgesellschaft, Vienna, Austria
| |
Collapse
|
4
|
Knowles BR, Friedrich F, Fischer C, Paech D, Ladd ME. Beyond T2 and 3T: New MRI techniques for clinicians. Clin Transl Radiat Oncol 2019; 18:87-97. [PMID: 31341982 PMCID: PMC6630188 DOI: 10.1016/j.ctro.2019.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 12/12/2022] Open
Abstract
Technological advances in Magnetic Resonance Imaging (MRI) in terms of field strength and hybrid MR systems have led to improvements in tumor imaging in terms of anatomy and functionality. This review paper discusses the applications of such advances in the field of radiation oncology with regards to treatment planning, therapy guidance and monitoring tumor response and predicting outcome.
Collapse
Affiliation(s)
- Benjamin R. Knowles
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Florian Friedrich
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| | - Carola Fischer
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| | - Daniel Paech
- Department of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mark E. Ladd
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
5
|
Hu R, Kleimaier D, Malzacher M, Hoesl MA, Paschke NK, Schad LR. X‐nuclei imaging: Current state, technical challenges, and future directions. J Magn Reson Imaging 2019; 51:355-376. [DOI: 10.1002/jmri.26780] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/16/2022] Open
Affiliation(s)
- Ruomin Hu
- Computer Assisted Clinical MedicineHeidelberg University Mannheim Germany
| | - Dennis Kleimaier
- Computer Assisted Clinical MedicineHeidelberg University Mannheim Germany
| | - Matthias Malzacher
- Computer Assisted Clinical MedicineHeidelberg University Mannheim Germany
| | | | - Nadia K. Paschke
- Computer Assisted Clinical MedicineHeidelberg University Mannheim Germany
| | - Lothar R. Schad
- Computer Assisted Clinical MedicineHeidelberg University Mannheim Germany
| |
Collapse
|
6
|
Grover H, Qian Y, Boada FE, Lakshmanan K, Flanagan S, Lui YW. MRI Evidence of Altered Callosal Sodium in Mild Traumatic Brain Injury. AJNR Am J Neuroradiol 2018; 39:2200-2204. [PMID: 30498019 DOI: 10.3174/ajnr.a5903] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 09/27/2018] [Indexed: 01/06/2023]
Abstract
BACKGROUND AND PURPOSE Mild traumatic brain injury is a leading cause of death and disability worldwide with 42 million cases reported annually, increasing the need to understand the underlying pathophysiology because this could help guide the development of targeted therapy. White matter, particularly the corpus callosum, is susceptible to injury. Animal models suggest stretch-induced mechanoporation of the axonal membrane resulting in ionic shifts and altered sodium ion distribution. The purpose of this study was to compare the distribution of total sodium concentration in the corpus callosum between patients with mild traumatic brain injury and controls using sodium (23Na) MR imaging. MATERIALS AND METHODS Eleven patients with a history of mild traumatic brain injury and 10 age- and sex-matched controls underwent sodium (23Na) MR imaging using a 3T scanner. Total sodium concentration was measured in the genu, body, and splenium of the corpus callosum with 5-mm ROIs; total sodium concentration of the genu-to-splenium ratio was calculated and compared between patients and controls. RESULTS Higher total sodium concentration in the genu (49.28 versus 43.29 mmol/L, P = .01) and lower total sodium concentration in the splenium (which was not statistically significant; 38.35 versus 44.06 mmol/L, P = .08) was seen in patients with mild traumatic brain injury compared with controls. The ratio of genu total sodium concentration to splenium total sodium concentration was also higher in patients with mild traumatic brain injury (1.3 versus 1.01, P = .001). CONCLUSIONS Complex differences are seen in callosal total sodium concentration in symptomatic patients with mild traumatic brain injury, supporting the notion of ionic dysfunction in the pathogenesis of mild traumatic brain injury. The total sodium concentration appears to be altered beyond the immediate postinjury phase, and further work is needed to understand the relationship to persistent symptoms and outcome.
Collapse
Affiliation(s)
- H Grover
- From the New York University Langone Medical Center, New York, New York
| | - Y Qian
- From the New York University Langone Medical Center, New York, New York
| | - F E Boada
- From the New York University Langone Medical Center, New York, New York
| | - K Lakshmanan
- From the New York University Langone Medical Center, New York, New York
| | - S Flanagan
- From the New York University Langone Medical Center, New York, New York
| | - Y W Lui
- From the New York University Langone Medical Center, New York, New York.
| |
Collapse
|
7
|
Thulborn KR. Quantitative sodium MR imaging: A review of its evolving role in medicine. Neuroimage 2018; 168:250-268. [PMID: 27890804 PMCID: PMC5443706 DOI: 10.1016/j.neuroimage.2016.11.056] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/23/2016] [Accepted: 11/22/2016] [Indexed: 12/26/2022] Open
Abstract
Sodium magnetic resonance (MR) imaging in humans has promised metabolic information that can improve medical management in important diseases. This technology has yet to find a role in clinical practice, lagging proton MR imaging by decades. This review covers the literature that demonstrates that this delay is explained by initial challenges of low sensitivity at low magnetic fields and the limited performance of gradients and electronics available in the 1980s. These constraints were removed by the introduction of 3T and now ultrahigh (≥7T) magnetic field scanners with superior gradients and electronics for proton MR imaging. New projection pulse sequence designs have greatly improved sodium acquisition efficiency. The increased field strength has provided the expected increased sensitivity to achieve resolutions acceptable for metabolic interpretation even in small target tissues. Consistency of quantification of the sodium MR image to provide metabolic parametric maps has been demonstrated by several different pulse sequences and calibration procedures. The vital roles of sodium ion in membrane transport and the extracellular matrix will be reviewed to indicate the broad opportunities that now exist for clinical sodium MR imaging. The final challenge is for the technology to be supplied on clinical ≥3T scanners.
Collapse
Affiliation(s)
- Keith R Thulborn
- Center for Magnetic Resonance Research, University of Illinois at Chicago, 1801 West Taylor Street, Chicago, IL 60612, United States.
| |
Collapse
|
8
|
Zhu XH, Chen W. In vivo 17O MRS imaging - Quantitative assessment of regional oxygen consumption and perfusion rates in living brain. Anal Biochem 2016; 529:171-178. [PMID: 27568551 DOI: 10.1016/j.ab.2016.08.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 08/22/2016] [Accepted: 08/24/2016] [Indexed: 10/21/2022]
Abstract
In the last decade, in vivo oxygen-17 (17O) MRS has evolved into a promising MR technique for noninvasively studying oxygen metabolism and perfusion in aerobic organs with the capability of imaging the regional metabolic rate of oxygen and its changes. In this chapter, we will briefly review the methodology of the in vivo17O MRS technique and its recent development and applications; we will also discuss the advantages of the high/ultrahigh magnetic field for 17O MR detection, as well as the challenges and potential of this unique MRS method for biomedical research of oxygen metabolism, mitochondrial function and tissue energetics in health and disease.
Collapse
Affiliation(s)
- Xiao-Hong Zhu
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, School of Medicine, Minneapolis, MN, USA.
| | - Wei Chen
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, School of Medicine, Minneapolis, MN, USA
| |
Collapse
|
9
|
Shah NJ, Worthoff WA, Langen KJ. Imaging of sodium in the brain: a brief review. NMR IN BIOMEDICINE 2016; 29:162-174. [PMID: 26451752 DOI: 10.1002/nbm.3389] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 07/30/2015] [Accepted: 08/07/2015] [Indexed: 06/05/2023]
Abstract
Sodium-based MRI plays a vital role in the study of metabolism and can unveil valuable information about emerging and existing pathology--in particular in the human brain. Sodium is the second most abundant MR active nucleus in living tissue and, due to its quadrupolar nature, has magnetic properties not common to conventional proton MRI, which can reveal further insights, such as information on the compartmental distribution of intra- and extracellular sodium. Nevertheless, the use of sodium nuclei for imaging comes at the expense of a lower sensitivity and significantly reduced relaxation times, making in vivo sodium studies feasible only at high magnetic field strength and by the use of dedicated pulse sequences. Hybrid imaging combining sodium MRI and positron emission tomography (PET) simultaneously is a novel and promising approach to access information on dynamic metabolism with much increased, PET-derived specificity. Application of this new methodology is demonstrated herein using examples from tumour imaging.
Collapse
Affiliation(s)
- N Jon Shah
- Institute of Neuroscience and Medicine-4, Forschungszentrum Juelich GmbH, 52425, Jülich, Germany
- Department of Neurology, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Jülich Aachen Research Alliance (JARA) - Translational Brain Medicine, Aachen and Jülich, Germany
| | - Wieland A Worthoff
- Institute of Neuroscience and Medicine-4, Forschungszentrum Juelich GmbH, 52425, Jülich, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine-4, Forschungszentrum Juelich GmbH, 52425, Jülich, Germany
- Jülich Aachen Research Alliance (JARA) - Translational Brain Medicine, Aachen and Jülich, Germany
- Department of Nuclear Medicine, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
10
|
Konstandin S, Krämer P, Günther M, Schad LR. Sodium magnetic resonance imaging using ultra-short echo time sequences with anisotropic resolution and uniform k-space sampling. Magn Reson Imaging 2014; 33:319-27. [PMID: 25527394 DOI: 10.1016/j.mri.2014.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 12/01/2014] [Accepted: 12/01/2014] [Indexed: 01/12/2023]
Abstract
A method for uniform k-space sampling of 3D ultra-short echo time (UTE) techniques with anisotropic resolution in one direction is introduced to increase signal-to-noise ratio (SNR). State-of-the-art acquisition schemes for sodium MRI with radial (projection reconstruction) and twisting (twisted projection imaging (TPI)) trajectories are investigated regarding SNR efficiency, blurring behavior under T2(⁎) decay, and measurement time in case of anisotropic field-of-view and resolution. 3D radial and twisting trajectories are redistributed in k-space for UTE sodium MRI with homogeneous noise distribution and optimal SNR efficiency, if T2(⁎) decay can be neglected. Simulations based on Voronoi tessellations and phantom simulations/measurements were performed to calculate SNR efficiency. Point-spread functions were simulated to demonstrate the influence of T2(⁎) decay on SNR and resolution. Phantom simulations/measurements and in vivo measurements confirm the SNR gain obtained by simulations based on Voronoi cells. An increase in SNR of up to 21% at an anisotropy factor of 10 could be theoretically achieved by TPI with projection adaption compared to the same sequence but without redistribution of projections in k-space. Sodium MRI with anisotropic resolution and uniform k-space sampling is demonstrated by in vivo measurements of human intervertebral disks and heart at 3 T. The SNR gain can be invested in a measurement time reduction of up to 32%, which is important especially for sodium MRI.
Collapse
Affiliation(s)
- Simon Konstandin
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; MR-Imaging and Spectroscopy, Faculty 01 (Physics/Electrical Engineering), University of Bremen, NW 1 Otto-Hahn-Allee 1, 28359 Bremen, Germany.
| | - Philipp Krämer
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Matthias Günther
- MR-Imaging and Spectroscopy, Faculty 01 (Physics/Electrical Engineering), University of Bremen, NW 1 Otto-Hahn-Allee 1, 28359 Bremen, Germany; Fraunhofer MEVIS, Universitätsallee 29, 28359 Bremen, Germany
| | - Lothar R Schad
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| |
Collapse
|
11
|
Jordan CD, Monu UD, McWalter EJ, Watkins RD, Chen W, Bangerter NK, Hargreaves BA, Gold GE. Variability of CubeQuant T1ρ, quantitative DESS T2, and cones sodium MRI in knee cartilage. Osteoarthritis Cartilage 2014; 22:1559-67. [PMID: 25278065 PMCID: PMC4185151 DOI: 10.1016/j.joca.2014.06.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 05/20/2014] [Accepted: 06/03/2014] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To measure the variability of T1ρ relaxation times using CubeQuant, T2 relaxation times using quantitative double echo in steady state (DESS), and normalized sodium signals using 3D cones sodium magnetic resonance imaging (MRI) of knee cartilage in vivo at 3 T. DESIGN Eight healthy subjects were scanned at 3 T at baseline, 1 day, 5 months, and 1 year. Ten regions of interest (ROIs) of knee cartilage were segmented in the medial and lateral compartments of each subject's knee. T1ρ and T2 relaxation times and normalized sodium signals were measured and the root-mean-square coefficient of variation (CVRMS) was calculated. Intra-subject variability was measured over short, moderate and long-term, as well as intra-observer and inter-observer variability. RESULTS The average intra-subject CVRMS measurements over short, moderate, and long-term time periods were 4.6%, 6.1%, and 6.0% for the T1ρ measurements, 6.4%, 9.3%, and 10.7% for the T2 measurements and 11.3%, 11.6%, and 12.9% for the sodium measurements, respectively. The average CVRMS measurements for intra-observer and inter-observer segmentation were 3.8% and 5.7% for the T1ρ measurements, 4.7% and 6.7% for the T2 measurements, and 8.1% and 11.4% for the sodium measurements, respectively. CONCLUSIONS These CVRMS measurements are substantially lower than previously measured changes expected in patients with advanced osteoarthritis compared to healthy volunteers, suggesting that CubeQuant T1ρ, quantitative DESS T2 and 3D cones sodium measurements are sufficiently sensitive for in vivo cartilage studies.
Collapse
Affiliation(s)
- Caroline D. Jordan
- Radiology, Stanford University, Stanford, CA, United States,Bioengineering, Stanford University, Stanford CA, United States
| | - Uchechukwuka D. Monu
- Radiology, Stanford University, Stanford, CA, United States,Electrical Engineering, Stanford University, Stanford CA, United States
| | | | | | - Weitian Chen
- GE Applied Science Laboratory, Menlo Park, CA, United States
| | - Neal K. Bangerter
- Electrical & Computer Engineering, Brigham Young University, Provo, UT, United States
| | - Brian A. Hargreaves
- Radiology, Stanford University, Stanford, CA, United States,Bioengineering, Stanford University, Stanford CA, United States,Electrical Engineering, Stanford University, Stanford CA, United States
| | - Garry E. Gold
- Radiology, Stanford University, Stanford, CA, United States,Bioengineering, Stanford University, Stanford CA, United States,Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| |
Collapse
|
12
|
Bernsen MR, Ruggiero A, van Straten M, Kotek G, Haeck JC, Wielopolski PA, Krestin GP. Computed tomography and magnetic resonance imaging. Recent Results Cancer Res 2013. [PMID: 23179877 DOI: 10.1007/978-3-642-10853-2_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Imaging in Oncology is rapidly moving from the detection and size measurement of a lesion to the quantitative assessment of metabolic processes and cellular and molecular interactions. Increasing insights into cancer as a complex disease with involvement of the tumor stroma in tumor pathobiological processes have made it clear that for successful control of cancer, treatment strategies should not only be directed at the tumor cells but also targeted at the tumor microenvironment. This requires understanding of the complex molecular and cellular interactions in cancer tissue. Recent developments in imaging technology have increased the possibility to image various pathobiological processes in cancer development and response to treatment. For computed tomography (CT) and magnetic resonance imaging (MRI) various improvements in hardware, software, and imaging probes have lifted these modalities from classical anatomical imaging techniques to techniques suitable to image and quantify various physiological processes and molecular and cellular interactions. Next to a more general overview of possible imaging targets in oncology this chapter provides an overview of the various developments in CT and MRI technology and some specific applications.
Collapse
Affiliation(s)
- Monique R Bernsen
- Department of Radiology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
13
|
Boada FE, Qian Y, Nemoto E, Jovin T, Jungreis C, Jones SC, Weimer J, Lee V. Sodium MRI and the assessment of irreversible tissue damage during hyper-acute stroke. Transl Stroke Res 2012; 3:236-45. [PMID: 24323779 DOI: 10.1007/s12975-012-0168-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 03/29/2012] [Indexed: 12/24/2022]
Abstract
Sodium MRI (sMRI) has undergone a tremendous amount of technical development during the last two decades that makes it a suitable tool for the study of human pathology in the acute setting within the constraints of a clinical environment. The salient role of the sodium ion during impaired ATP production during the course of brain ischemia makes sMRI an ideal tool for the study of ischemic tissue viability during stroke. In this paper, the current limitations of conventional MRI for the determination of tissue viability during evolving brain ischemia are discussed. This discussion is followed by a summary of the known findings about the dynamics of tissue sodium changes during brain ischemia. A mechanistic model for the explanation of these findings is presented together with the technical requirements for its investigation using clinical MRI scanners. An illustration of the salient features of the technique is also presented using a nonhuman primate model of reversible middle cerebral artery occlusion.
Collapse
Affiliation(s)
- Fernando E Boada
- MR Research Center, Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA,
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Atkinson IC, Lu A, Thulborn KR. Clinically constrained optimization of flexTPI acquisition parameters for the tissue sodium concentration bioscale. Magn Reson Med 2011; 66:1089-99. [PMID: 21446034 DOI: 10.1002/mrm.22908] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 02/13/2011] [Accepted: 02/15/2011] [Indexed: 11/09/2022]
Abstract
The rapid transverse relaxation of the sodium magnetic resonance signal during spatial encoding causes a loss of image resolution, an effect known as T(2)-blurring. Conventional wisdom suggests that spatial resolution is maximized by keeping the readout duration as short as possible to minimize T(2)-blurring. Flexible twisted projection imaging performed with an ultrashort echo time, relative to T(2), and a long repetition time, relative to T(1), has been shown to be effective for quantitative sodium magnetic resonance imaging. A minimized readout duration requires a very large number of projections and, consequentially, results in an impractically long total acquisition time to meet these conditions. When the total acquisition time is limited to a clinically practical duration (e.g., 10 min), the optimal parameters for maximal spatial resolution of a flexible twisted projection imaging acquisition do not correspond to the shortest possible readout. Simulation and experimental results for resolution optimized acquisition parameters of quantitative sodium flexible twisted projection imaging of parenchyma and cerebrospinal fluid are presented for the human brain at 9.4 and 3.0T. The effect of signal loss during data collection on sodium quantification bias and image signal-to-noise ratio are discussed.
Collapse
Affiliation(s)
- Ian C Atkinson
- Center for MR Research, University of Illinois at Chicago, Chicago, Illinois 60612, USA.
| | | | | |
Collapse
|
15
|
Madelin G, Jerschow A, Regatte RR. Sodium MRI with fluid suppression: will it improve early detection of osteoarthritis? ACTA ACUST UNITED AC 2011. [DOI: 10.2217/iim.10.70] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|