1
|
Hu T, Wan C, Zhan Y, Li X, Zheng Y. Preparation and performance of biocompatible gadolinium polymer as liver-targeting magnetic resonance imaging contrast agent. J Biosci Bioeng 2024; 137:134-140. [PMID: 38195341 DOI: 10.1016/j.jbiosc.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/11/2024]
Abstract
A biocompatible macromolecule-conjugated gadolinium chelate complex (PAV2-EDA-DOTA-Gd) as a new liver-specific contrast agent for magnetic resonance imaging (MRI) was synthesized and evaluated. An aspartic acid-valine copolymer was used as a carrier and ethylenediamine as a chemical linker, and the aspartic acid-valine copolymer was covalently linked to the small molecule MRI contrast agent Gd-DOTA (Dotarem) to synthesize a large molecule contrast agent. In vitro MR relaxation showed that the T1-relaxivity of PAV2-EDA-DOTA-Gd (13.7 mmol-1 L s-1) was much higher than that of the small-molecule Gd-DOTA (4.9 mmol-1 L s-1). In vivo imaging of rats showed that the enhancement effect of PAV2-EDA-DOTA-Gd (55.37 ± 2.80%) on liver imaging was 2.6 times that of Gd-DOTA (21.12 ± 3.86%), and it produced a longer imaging window time (40-70 min for PAV2-EDA-DOTA-Gd and 10-30 min for Gd-DOTA). Preliminary safety experiments, such as cell experiments and tissue sectioning, showed that PAV2-EDA-DOTA-Gd had low toxicity and satisfactory biocompatibility. The results of this study indicated that PAV2-EDA-DOTA-Gd had high potential as a liver-specific MRI contrast agent.
Collapse
Affiliation(s)
- Tingting Hu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Chuanling Wan
- School of Science, Changchun Institute of Technology, Changchun 130012, Jilin Province, China
| | - Youyang Zhan
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin Province, China
| | - Xiaojing Li
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin Province, China
| | - Yan Zheng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| |
Collapse
|
2
|
Sun W, Wang Z, Liu J, Jiang C, Chen W, Yu B, Wang W, Lu L. On-demand degradable magnetic resonance imaging nanoprobes. Sci Bull (Beijing) 2021; 66:676-684. [PMID: 36654443 DOI: 10.1016/j.scib.2020.10.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/14/2020] [Accepted: 10/21/2020] [Indexed: 01/20/2023]
Abstract
Theranostic nanoprobes can potentially integrate imaging and therapeutic capabilities into a single platform, offering a new personalized cancer diagnostic tool. However, there is a growing concern that their clinical application is not safe, particularly due to metal-containing elements, such as the gadolinium used in magnetic resonance imaging (MRI). We demonstrate for the first time that the photothermal melting of the DNA duplex helix was a reliable and versatile strategy that enables the on-demand degradation of the gadolinium-containing MRI reporter gene from polydopamine (PDA)-based theranostic nanoprobes. The combination of chemotherapy (doxorubicin) and photothermal therapy, which leads to the enhanced anti-tumor effect. In vivo MRI tracking reveals that renal filtration was able to rapidly clear the free gadolinium-containing MRI reporter from the mice body. This results in a decrease in the long-term toxic effect of theranostic MRI nanoprobes. Our findings may pave the way to address toxicity issues of the theranostic nanoprobes.
Collapse
Affiliation(s)
- Wenbo Sun
- College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao 266071, China; State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zonghua Wang
- College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao 266071, China.
| | - Jianhua Liu
- Department of Radiology, Second Hospital of Jilin University, Changchun 130041, China
| | - Chunhuan Jiang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Weihua Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Bin Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Wei Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Lehui Lu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| |
Collapse
|
3
|
Li X, Sun Y, Ma L, Liu G, Wang Z. The Renal Clearable Magnetic Resonance Imaging Contrast Agents: State of the Art and Recent Advances. Molecules 2020; 25:E5072. [PMID: 33139643 PMCID: PMC7662352 DOI: 10.3390/molecules25215072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023] Open
Abstract
The advancements of magnetic resonance imaging contrast agents (MRCAs) are continuously driven by the critical needs for early detection and diagnosis of diseases, especially for cancer, because MRCAs improve diagnostic accuracy significantly. Although hydrophilic gadolinium (III) (Gd3+) complex-based MRCAs have achieved great success in clinical practice, the Gd3+-complexes have several inherent drawbacks including Gd3+ leakage and short blood circulation time, resulting in the potential long-term toxicity and narrow imaging time window, respectively. Nanotechnology offers the possibility for the development of nontoxic MRCAs with an enhanced sensitivity and advanced functionalities, such as magnetic resonance imaging (MRI)-guided synergistic therapy. Herein, we provide an overview of recent successes in the development of renal clearable MRCAs, especially nanodots (NDs, also known as ultrasmall nanoparticles (NPs)) by unique advantages such as high relaxivity, long blood circulation time, good biosafety, and multiple functionalities. It is hoped that this review can provide relatively comprehensive information on the construction of novel MRCAs with promising clinical translation.
Collapse
Affiliation(s)
- Xiaodong Li
- Department of Radiology, China-Japan Union Hospital of Jilin University, Xiantai Street, Changchun 130033, China;
| | - Yanhong Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (Y.S.); (L.M.)
| | - Lina Ma
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (Y.S.); (L.M.)
| | - Guifeng Liu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Xiantai Street, Changchun 130033, China;
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (Y.S.); (L.M.)
| |
Collapse
|
4
|
Zhang B, Yang W, Yu J, Guo W, Wang J, Liu S, Xiao Y, Shi D. Green Synthesis of Sub-10 nm Gadolinium-Based Nanoparticles for Sparkling Kidneys, Tumor, and Angiogenesis of Tumor-Bearing Mice in Magnetic Resonance Imaging. Adv Healthc Mater 2017; 6. [PMID: 28004887 DOI: 10.1002/adhm.201600865] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/18/2016] [Indexed: 12/13/2022]
Abstract
Gadolinium (Gd)-based nanoparticles are known for their high potential in magnetic resonance imaging (MRI). However, further MRI applications of these nanoparticles are hampered by their relatively large sizes resulting in poor organ/tumor targeting. In this study, ultrafine sub-10 nm and biocompatible Gd-based nanoparticles are synthesized in a bioinspired, environmentally benign, and straightforward fashion. This novel green synthetic strategy is developed for growing dextran-coated Gd-based nanoparticles (GdNPs@Dex). The as-prepared GdNPs@Dex is not only biocompatible but also stable with a sub-10 nm size. It exhibits higher longitudinal and transverse relaxivities in water (r1 and r2 values of 5.43 and 7.502 s-1 × 10-3 m-1 of Gd3+ , respectively) than those measured for Gd-DTPA solution (r1 and r2 values of 3.42 and 3.86 s-1 × 10-3 m-1 of Gd3+ , respectively). In vivo dynamic T1 -weighted MRI in tumor-bearing mice shows GdNPs@Dex can selectively target kidneys and tumor, in addition to liver and spleen. GdNPs@Dex is found particularly capable for determining the tumor boundary with clearly enhanced tumor angiogenesis. GdNPs@Dex is also found cleared from body gradually mainly via hepatobiliary and renal processing with no obvious systemic toxicity. With this green synthesis strategy, the sub-10 nm GdNPs@Dex presents promising potentials for translational biomedical imaging applications.
Collapse
Affiliation(s)
- Bingbo Zhang
- Institute of Photomedicine; Shanghai Skin Disease Hospital; The Institute for Biomedical Engineering and Nano Science; Tongji University School of Medicine; Shanghai 200443 China
| | - Weitao Yang
- School of Materials Science and Engineering; School of Life Science; Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology; Tianjin University; Tianjin 300072 China
| | - Jiani Yu
- Institute of Photomedicine; Shanghai Skin Disease Hospital; The Institute for Biomedical Engineering and Nano Science; Tongji University School of Medicine; Shanghai 200443 China
| | - Weisheng Guo
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety; National Center for Nanoscience and Technology; No. 11 Beiyitiao, Zhongguancun Beijing 100190 China
| | - Jun Wang
- Institute of Photomedicine; Shanghai Skin Disease Hospital; The Institute for Biomedical Engineering and Nano Science; Tongji University School of Medicine; Shanghai 200443 China
| | - Shiyuan Liu
- Department of Radiology; Changzheng Hospital; The Second Military Medical University; Shanghai 200003 China
| | - Yi Xiao
- Department of Radiology; Changzheng Hospital; The Second Military Medical University; Shanghai 200003 China
| | - Donglu Shi
- The Institute for Translational Nanomedicine; Shanghai East Hospital; The Institute for Biomedical Engineering and Nano Science; Tongji University School of Medicine; Shanghai 200092 P. R. China
- Department of Mechanical and Materials Engineering; College of Engineering and Applied Science; University of Cincinnati; Cincinnati OH 45221-0072 USA
| |
Collapse
|
5
|
Zhan Y, Xue R, Zhang M, Wan C, Li X, Pei F, Sun C, Liu L. Synthesis and Evaluation of a Biocompatible Macromolecular Gadolinium Compound as a Liver-Specific Contrast Agent for MRI. Aust J Chem 2017. [DOI: 10.1071/ch16347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A new macromolecular biocompatible gadolinium chelate complex (PAI-N2-DOTA-Gd) as a liver-specific magnetic resonance imaging (MRI) contrast agent was synthesised and evaluated. An aspartic acid–isoleucine copolymer was chemically linked with Gd-DOTA via ethylenediamine to give PAI-N2-DOTA-Gd. In vitro, the T1-relaxivity of PAI-N2-DOTA-Gd (14.38 mmol–1⋅L⋅s–1, 0.5 T) was much higher than that of the clinically used Gd-DOTA (4.96 mmol–1⋅L⋅s–1, 0.5 T), with obvious imaging signal enhancement. In the imaging experiments in vivo, PAI-N2-DOTA-Gd exhibited good liver selectivity, and had a greater intensity enhancement (68.8 ± 5.6 %) and a longer imaging window time (30–70 min), compared to Gd-DOTA (21.1 ± 5.3 %, 10–30 min). Furthermore, the in vivo histological studies of PAI-N2-DOTA-Gd showed a low acute toxicity and desirable biocompatibility. The results of this study indicate that PAI-N2-DOTA-Gd is a feasible liver-specific contrast agent for MRI.
Collapse
|
6
|
Ponsiglione AM, Russo M, Netti PA, Torino E. Impact of biopolymer matrices on relaxometric properties of contrast agents. Interface Focus 2016; 6:20160061. [PMID: 27920897 PMCID: PMC5071819 DOI: 10.1098/rsfs.2016.0061] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Properties of water molecules at the interface between contrast agents (CAs) for magnetic resonance imaging and macromolecules could have a valuable impact on the effectiveness of metal chelates. Recent studies, indeed, demonstrated that polymer architectures could influence CAs' relaxivity by modifying the correlation times of the metal chelate. However, an understanding of the physico-chemical properties of polymer/CA systems is necessary to improve the efficiency of clinically used CAs, still exhibiting low relaxivity. In this context, we investigate the impact of hyaluronic acid (HA) hydrogels on the relaxometric properties of Gd-DTPA, a clinically used CA, to understand better the determining role of the water, which is crucial for both the relaxation enhancement and the polymer conformation. To this aim, water self-diffusion coefficients, thermodynamic interactions and relaxometric properties of HA/Gd-DTPA solutions are studied through time-domain NMR relaxometry and isothermal titration calorimetry. We observed that the presence of Gd-DTPA could alter the polymer conformation and the behaviour of water molecules at the HA/Gd-DTPA interface, thus modulating the relaxivity of the system. In conclusion, the tunability of hydrogel structures could be exploited to improve magnetic properties of metal chelates, inspiring the development of new CAs as well as metallopolymer complexes with applications as sensors and memory devices.
Collapse
Affiliation(s)
- Alfonso Maria Ponsiglione
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy
- Center for Advanced Biomaterials for Healthcare IIT@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | - Maria Russo
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy
- Center for Advanced Biomaterials for Healthcare IIT@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | - Paolo Antonio Netti
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy
- Interdisciplinary Research Center on Biomaterials, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy
- Center for Advanced Biomaterials for Healthcare IIT@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | - Enza Torino
- Interdisciplinary Research Center on Biomaterials, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy
- Center for Advanced Biomaterials for Healthcare IIT@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| |
Collapse
|