1
|
Li X, Ai G, Qiao X, Chen W, Fan Q, Wang Y, He X, Chen T, Guo D, Liu Y. Radiomic analysis using T1 mapping in gadoxetic acid disodium-enhanced MRI for liver function assessment. BMC Med Imaging 2025; 25:111. [PMID: 40197206 PMCID: PMC11977955 DOI: 10.1186/s12880-025-01658-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 04/01/2025] [Indexed: 04/10/2025] Open
Abstract
OBJECTIVES To explore the value of a T1 mapping-based radiomic model for evaluating liver function. METHODS From September 2020 to October 2022, 163 patients were retrospectively recruited and categorized into normal liver function group, chronic liver disease group without cirrhosis, Child‒Pugh class A group, and Child‒Pugh class B and C group. Patients were randomly split into training and testing sets. Radiomic features were extracted from T1 mapping images taken both pre- and post-contrast injection, as well as during the hepatobiliary phase (HBP). Radiomic models were constructed to stratify chronic liver disease, cirrhosis and decompensated cirrhosis. Model performance was assessed with receiver operating characteristic curve analysis, and decision curve analysis. RESULTS The K-Nearest Neighbors model demonstrated the best generalization across native T1 map, HBP T1 maps and HBP images. In the training set, based on native T1 maps, it achieved accuracies of 0.83, 0.86, and 0.86 in distinguishing chronic liver disease, cirrhosis, and decompensated cirrhosis, with corresponding AUCs of 0.92, 0.92, and 0.95. In the testing set, the accuracies were 0.75, 0.89, and 0.71, with AUCs of 0.79, 0.92, and 0.83, respectively. When using HBP images with T1 maps, the accuracies were 0.72, 0.90, and 0.72 in the testing set in identifying chronic liver disease, cirrhosis, and decompensated cirrhosis with AUCs of 0.82, 0.93, and 0.79, respectively. CONCLUSION Radiomic analysis based on native T1 map, and HBP with or without T1 map images shows promising potential for liver function assessment, particularly in distinguishing cirrhosis.
Collapse
Affiliation(s)
- Xin Li
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Guangyong Ai
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Xiaofeng Qiao
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Weijuan Chen
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Qianrui Fan
- Institute of Research, Infervision Medical Technology Co., Ltd, 25F Building E, Yuanyang International Center, Chaoyang District, Beijing, 100025, China
| | - Yudong Wang
- Institute of Research, Infervision Medical Technology Co., Ltd, 25F Building E, Yuanyang International Center, Chaoyang District, Beijing, 100025, China
| | - Xiaojing He
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Tianwu Chen
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Dajing Guo
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - YangYang Liu
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
2
|
Li Q, Zhang T, Yao S, Gao F, Nie L, Tang H, Song B, Wei Y. Preoperative assessment of liver regeneration using T1 mapping and the functional liver imaging score derived from Gd-EOB-DTPA-enhanced magnetic resonance for patient with hepatocellular carcinoma after hepatectomy. Front Immunol 2025; 16:1516848. [PMID: 39949770 PMCID: PMC11821634 DOI: 10.3389/fimmu.2025.1516848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/02/2025] [Indexed: 02/16/2025] Open
Abstract
Objectives To explore whether T1 mapping parameters and the functional liver imaging score (FLIS) based on Gd-EOB-DTPA MRI could evaluate liver regeneration after hepatectomy for HCC patient. Methods This retrospective study finally included 60 HCC patients (48 men and 12 women, with a median age of 53 years). T1 relaxation time of liver before gadoxetic acid injection (T1pre) and during the hepatobiliary phase (T1HBP), reduction rate (Δ%) and FLIS were calculated, their correlations with liver fibrosis stage, hepatic steatosis, and liver regeneration, quantified as regeneration index (RI), were assessed by Kendall's tau-b correlation test or Spearman's correlation test. Multivariate linear regression analyses were used to explore the indicator of RI. Results T1pre, T1HBP, Δ%, and FLIS manifested significant correlation with fibrosis stage (r = 0.434, P =0.001; r = 0.546, P < 0.001; r = -0.356, P =0.005; r = -0.653, P <0.001, respectively). T1pre showed significant correction with steatosis grade (r = 0.415, P =0.001). Fibrosis stage and steatosis grade were associated with RI (r = -0.436, P<0.001; r = -0.338, P =0.008). Accordingly, T1pre, T1HBP and FLIS were the significant predictors (P<0.05) of RI in multivariate analysis. Similarly, in the patients undergoing minor hepatectomy (n=35), T1HBP, Δ% and FLIS were related to RI (P<0.05) in multivariate analysis. Nevertheless, in the patients undergoing major hepatectomy (n=25), no T1 mapping parameter and FLIS was the independent predictor of RI. Conclusions T1 mapping parameters and FLIS were the potential noninvasive indicators of liver regeneration, except for HCC patients undergoing major hepatectomy. Clinical relevance statement The value of T1 mapping and FLIS with Gd-EOB-DTPA MRI for accurate preoperative evaluation of liver regeneration is critical to prevent liver failure and improve prognosis of HCC patients.
Collapse
Affiliation(s)
- Qian Li
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Tong Zhang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Shan Yao
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Feifei Gao
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Lisha Nie
- MRI Research, GE Healthcare (China), Beijing, China
| | - Hehan Tang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- Department of Radiology, Sanya People’s Hospital, Sanya, China
| | - Yi Wei
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Huang W, Peng Y, Kang L. Advancements of non‐invasive imaging technologies for the diagnosis and staging of liver fibrosis: Present and future. VIEW 2024; 5. [DOI: 10.1002/viw.20240010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 06/28/2024] [Indexed: 01/04/2025] Open
Abstract
AbstractLiver fibrosis is a reparative response triggered by liver injury. Non‐invasive assessment and staging of liver fibrosis in patients with chronic liver disease are of paramount importance, as treatment strategies and prognoses depend significantly on the degree of fibrosis. Although liver fibrosis has traditionally been staged through invasive liver biopsy, this method is prone to sampling errors, particularly when biopsy sizes are inadequate. Consequently, there is an urgent clinical need for an alternative to biopsy, one that ensures precise, sensitive, and non‐invasive diagnosis and staging of liver fibrosis. Non‐invasive imaging assessments have assumed a pivotal role in clinical practice, enjoying growing popularity and acceptance due to their potential for diagnosing, staging, and monitoring liver fibrosis. In this comprehensive review, we first delved into the current landscape of non‐invasive imaging technologies, assessing their accuracy and the transformative impact they have had on the diagnosis and management of liver fibrosis in both clinical practice and animal models. Additionally, we provided an in‐depth exploration of recent advancements in ultrasound imaging, computed tomography imaging, magnetic resonance imaging, nuclear medicine imaging, radiomics, and artificial intelligence within the field of liver fibrosis research. We summarized the key concepts, advantages, limitations, and diagnostic performance of each technique. Finally, we discussed the challenges associated with clinical implementation and offer our perspective on advancing the field, hoping to provide alternative directions for the future research.
Collapse
Affiliation(s)
- Wenpeng Huang
- Department of Nuclear Medicine Peking University First Hospital Beijing China
| | - Yushuo Peng
- Department of Nuclear Medicine Peking University First Hospital Beijing China
| | - Lei Kang
- Department of Nuclear Medicine Peking University First Hospital Beijing China
| |
Collapse
|
4
|
Di Stasio M, Cordopatri C, Nardi C, Busoni S, Noferini L, Colagrande S, Calistri L. Liver Biliary Function Evaluation on a 1.5T Magnetic Resonance Imaging Scan by T1 Reduction Rate Assessment Using Variable-Flip-Angle Sequences. J Comput Assist Tomogr 2024; 48:354-360. [PMID: 38346811 PMCID: PMC11882171 DOI: 10.1097/rct.0000000000001582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/18/2023] [Indexed: 05/16/2024]
Abstract
OBJECTIVE Magnetic resonance (MR) relaxometry is an absolute and reproducible quantitative method, compared with signal intensity for the evaluation of liver biliary function. This is obtainable by the T1 reduction rate (T1RR), as it carries a smaller systematic error than the pre/post contrast agent T1 measurement. We aimed to develop and test an MR T1 relaxometry tool tailored for the evaluation of liver T1RR after gadolinium ethoxybenzyl-diethylenetriaminepentaacetic acid administration on 1.5T MR. METHODS In vitro/vivo (liver) T1RR values with two 3D FLASH variable-flip-angle sequences were calculated by a MATLAB algorithm. In vitro measurements were done by 2 physicists, in consensus. The prospective in vivo study was approved by the local ethical committee and performed on 13 normal/26 cirrhotic livers. A supplemental test in 5 normal/5 cirrhotic livers, out of the studied series, was done to compare the results of our method (without B1 inhomogeneity correction) and those of a standardized commercial tool (with B1 inhomogeneity correction). All in vivo evaluations were performed by 2 radiologists with 7 years of experience in abdominal imaging. Open-source Java-based software ImageJ was used to draw the free-hand regions of interest on liver section and for the measurement of hepatic T1RR values. The T1RR values of each group of patients were compared to assess statistically significant differences. All statistical analyses were performed with IBM-SPSS Statistics. In vivo evaluations, the intrareader and interreader reliability was assessed by intraclass correlation coefficient. RESULTS Our method showed good accuracy in evaluating in vitro T1RR with a maximum percentage error of 9% (constant at various time points) with T1 values in the 200- to 1400-millisecond range. In vivo, a high concordance between the T1RR evaluated with the proposed method and that calculated from the standardized commercial software was verified ( P < 0.05). The median T1RRs were 74.8, 67.9, and 52.1 for the normal liver, Child-Pugh A, and Child-Pugh B cirrhotic groups, respectively. A very good agreement was found, both within intrareader and interreader reliability, with intraclass correlation coefficient values ranging from 0.88 to 0.95 and from 0.85 to 0.90, respectively. CONCLUSIONS The proposed method allowed accurate reliable in vitro/vivo T1RR assessment evaluation of the liver biliary function after gadolinium ethoxybenzyl-diethylenetriaminepentaacetic acid administration.
Collapse
Affiliation(s)
- Marco Di Stasio
- From the Department of Experimental and Clinical Biomedical Sciences, University of Florence–Azienda Ospedaliero-Universitaria Careggi
| | - Cesare Cordopatri
- From the Department of Experimental and Clinical Biomedical Sciences, University of Florence–Azienda Ospedaliero-Universitaria Careggi
| | - Cosimo Nardi
- From the Department of Experimental and Clinical Biomedical Sciences, University of Florence–Azienda Ospedaliero-Universitaria Careggi
| | - Simone Busoni
- Department of Health Physics, UOC Fisica Sanitaria, Azienda Ospedaliero–Universitaria Careggi, Florence, Italy
| | - Linhsia Noferini
- Department of Health Physics, UOC Fisica Sanitaria, Azienda Ospedaliero–Universitaria Careggi, Florence, Italy
| | - Stefano Colagrande
- From the Department of Experimental and Clinical Biomedical Sciences, University of Florence–Azienda Ospedaliero-Universitaria Careggi
| | - Linda Calistri
- From the Department of Experimental and Clinical Biomedical Sciences, University of Florence–Azienda Ospedaliero-Universitaria Careggi
| |
Collapse
|
5
|
Tokorodani R, Kume T, Daisaki H, Hayashi N, Iwasa H, Yamagami T. Combining 99mTc-GSA single-photon emission-computed tomography and Gd-EOB-DTPA-enhanced magnetic resonance imaging for staging liver fibrosis. Medicine (Baltimore) 2023; 102:e32975. [PMID: 36800578 PMCID: PMC9936016 DOI: 10.1097/md.0000000000032975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Abstract
Preoperative assessment of the degree of liver fibrosis is important to determine treatment strategies. In this study, galactosyl human serum albumin single-photon emission-computed tomography and ethoxybenzyl (EOB) contrast-enhanced magnetic resonance imaging (MRI) were used to assess the changes in hepatocyte function after liver fibrosis, and the standardized uptake value (SUV) was combined with gadolinium EOB-diethylenetriaminepentaacetic acid to evaluate its added value for liver fibrosis staging. A total of 484 patients diagnosed with hepatocellular carcinoma who underwent liver resection between January 2010 and August 2018 were included. Resected liver specimens were classified based on pathological findings into nonfibrotic and fibrotic groups (stratified according to the Ludwig scale). Galactosyl human serum albumin-single-photon emission-computed tomography and EOB contrast-enhanced MRI examinations were performed, and the mean SUVs (SUVmean) and contrast enhancement indices (CEIs) were obtained. The diagnostic value of the acquired SUV and CEIs for fibrosis was assessed by calculating the area under the receiver operating characteristic curve (AUC). In the receiver operating characteristic analysis, SUV + CEI showed the highest AUC in both fibrosis groups. In particular, in the comparison between fibrosis groups, SUV + CEI showed significantly higher AUCs than SUV and CEI alone in discriminating between fibrosis (F3 and 4) and no or mild fibrosis (F0 and 2) (AUC: 0.879, vs SUV [P = 0.008], vs. CEI [P = 0.023]), suggesting that the combination of SUV + CEI has greater diagnostic performance than the individual indices. Combining the SUV and CEI provides high accuracy for grading liver fibrosis, especially in differentiating between grades F0 and 2 and F3-4. SUV and gadolinium EOB-diethylenetriaminepentaacetic acid-enhanced MRI can be noninvasive diagnostic methods to guide the selection of clinical treatment options for patients with liver diseases.
Collapse
Affiliation(s)
- Ryotaro Tokorodani
- Division of Radiology, Department of Medical Technology, Kochi Medical School Hospital, Nankoku, Japan
- * Correspondence: Ryotaro Tokorodani, Department of Radiology, Kochi Medical School, Kochi University, Nankoku, Kochi 783-8505, Japan (e-mail: )
| | - Toshiaki Kume
- Department of Radiological Technology, Kochi Health Sciences Center, Kochi, Japan
| | - Hiromitu Daisaki
- Department of Gunma Prefectural College of Health Sciences, Maebashi, Japan
| | - Naoya Hayashi
- Division of Radiology, Department of Medical Technology, Kochi Medical School Hospital, Nankoku, Japan
| | - Hitomi Iwasa
- Department of Diagnostic and Interventional Radiology, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Takuji Yamagami
- Department of Diagnostic and Interventional Radiology, Kochi Medical School, Kochi University, Nankoku, Japan
| |
Collapse
|
6
|
Roberts NT, Tamada D, Muslu Y, Hernando D, Reeder SB. Confounder-corrected T 1 mapping in the liver through simultaneous estimation of T 1 , PDFF, R 2 * , and B 1 + in a single breath-hold acquisition. Magn Reson Med 2023; 89:2186-2203. [PMID: 36656152 PMCID: PMC10139739 DOI: 10.1002/mrm.29590] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/23/2022] [Accepted: 01/01/2023] [Indexed: 01/20/2023]
Abstract
PURPOSE Quantitative volumetric T1 mapping in the liver has the potential to aid in the detection, diagnosis, and quantification of liver fibrosis, inflammation, and spatially resolved liver function. However, accurate measurement of hepatic T1 is confounded by the presence of fat and inhomogeneous B 1 + $$ {B}_1^{+} $$ excitation. Furthermore, scan time constraints related to respiratory motion require tradeoffs of reduced volumetric coverage and/or increased acquisition time. This work presents a novel 3D acquisition and estimation method for confounder-corrected T1 measurement over the entire liver within a single breath-hold through simultaneous estimation of T1 , fat and B 1 + $$ {B}_1^{+} $$ . THEORY AND METHODS The proposed method combines chemical shift encoded MRI and variable flip angle MRI with a B 1 + $$ {B}_1^{+} $$ mapping technique to enable confounder-corrected T1 mapping. The method was evaluated theoretically and demonstrated in both phantom and in vivo acquisitions at 1.5 and 3.0T. At 1.5T, the method was evaluated both pre- and post- contrast enhancement in healthy volunteers. RESULTS The proposed method demonstrated excellent linear agreement with reference inversion-recovery spin-echo based T1 in phantom acquisitions at both 1.5 and 3.0T, with minimal bias (5.2 and 45 ms, respectively) over T1 ranging from 200-1200 ms. In vivo results were in general agreement with reference saturation-recovery based 2D T1 maps (SMART1 Map, GE Healthcare). CONCLUSION The proposed 3D T1 mapping method accounts for fat and B 1 + $$ {B}_1^{+} $$ confounders through simultaneous estimation of T1 , B 1 + $$ {B}_1^{+} $$ , PDFF and R 2 * $$ {R}_2^{\ast } $$ . It demonstrates strong linear agreement with reference T1 measurements, with low bias and high precision, and can achieve full liver coverage in a single breath-hold.
Collapse
Affiliation(s)
- Nathan T Roberts
- Department of Radiology, University of Wisconsin - Madison, Madison, Wisconsin, USA.,Department of Electrical and Computer Engineering, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Daiki Tamada
- Department of Radiology, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Yavuz Muslu
- Department of Radiology, University of Wisconsin - Madison, Madison, Wisconsin, USA.,Department of Biomedical Engineering, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Diego Hernando
- Department of Radiology, University of Wisconsin - Madison, Madison, Wisconsin, USA.,Department of Electrical and Computer Engineering, University of Wisconsin - Madison, Madison, Wisconsin, USA.,Department of Biomedical Engineering, University of Wisconsin - Madison, Madison, Wisconsin, USA.,Department of Medical Physics, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Scott B Reeder
- Department of Radiology, University of Wisconsin - Madison, Madison, Wisconsin, USA.,Department of Biomedical Engineering, University of Wisconsin - Madison, Madison, Wisconsin, USA.,Department of Medical Physics, University of Wisconsin - Madison, Madison, Wisconsin, USA.,Department of Medicine, University of Wisconsin - Madison, Madison, Wisconsin, USA.,Department of Emergency Medicine, University of Wisconsin - Madison, Madison, Wisconsin, USA
| |
Collapse
|
7
|
Fellner C, Nickel MD, Kannengiesser S, Verloh N, Stroszczynski C, Haimerl M, Luerken L. Water-Fat Separated T1 Mapping in the Liver and Correlation to Hepatic Fat Fraction. Diagnostics (Basel) 2023; 13:diagnostics13020201. [PMID: 36673011 PMCID: PMC9858222 DOI: 10.3390/diagnostics13020201] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/29/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
(1) Background: T1 mapping in magnetic resonance imaging (MRI) of the liver has been proposed to estimate liver function or to detect the stage of liver disease, among others. Thus far, the impact of intrahepatic fat on T1 quantification has only been sparsely discussed. Therefore, the aim of this study was to evaluate the potential of water-fat separated T1 mapping of the liver. (2) Methods: A total of 386 patients underwent MRI of the liver at 3 T. In addition to routine imaging techniques, a 3D variable flip angle (VFA) gradient echo technique combined with a two-point Dixon method was acquired to calculate T1 maps from an in-phase (T1_in) and water-only (T1_W) signal. The results were correlated with proton density fat fraction using multi-echo 3D gradient echo imaging (PDFF) and multi-echo single voxel spectroscopy (PDFF_MRS). Using T1_in and T1_W, a novel parameter FF_T1 was defined and compared with PDFF and PDFF_MRS. Furthermore, the value of retrospectively calculated T1_W (T1_W_calc) based on T1_in and PDFF was assessed. Wilcoxon test, Pearson correlation coefficient and Bland-Altman analysis were applied as statistical tools. (3) Results: T1_in was significantly shorter than T1_W and the difference of both T1 values was correlated with PDFF (R = 0.890). FF_T1 was significantly correlated with PDFF (R = 0.930) and PDFF_MRS (R = 0.922) and yielded only minor bias compared to both established PDFF methods (0.78 and 0.21). T1_W and T1_W_calc were also significantly correlated (R = 0.986). (4) Conclusion: T1_W acquired with a water-fat separated VFA technique allows to minimize the influence of fat on liver T1. Alternatively, T1_W can be estimated retrospectively from T1_in and PDFF, if a Dixon technique is not available for T1 mapping.
Collapse
Affiliation(s)
- Claudia Fellner
- Department of Radiology, University Hospital Regensburg, 93053 Regensburg, Germany
| | | | | | - Niklas Verloh
- Department of Diagnostic and Interventional Radiology, Medical Center University of Freiburg, 79106 Freiburg, Germany
| | | | - Michael Haimerl
- Department of Radiology, University Hospital Regensburg, 93053 Regensburg, Germany
- Correspondence: (M.H.); (L.L.); Tel.: +49-941-944-7401 (M.H.)
| | - Lukas Luerken
- Department of Radiology, University Hospital Regensburg, 93053 Regensburg, Germany
- Correspondence: (M.H.); (L.L.); Tel.: +49-941-944-7401 (M.H.)
| |
Collapse
|
8
|
Altinmakas E, Bane O, Hectors SJ, Issa R, Carbonell G, Abboud G, Schiano TD, Thung S, Fischman A, Kelly MD, Friedman SL, Kennedy P, Taouli B. Performance of native and gadoxetate-enhanced liver and spleen T 1 mapping for noninvasive diagnosis of clinically significant portal hypertension: preliminary results. ABDOMINAL RADIOLOGY (NEW YORK) 2022; 47:3758-3769. [PMID: 36085378 DOI: 10.1007/s00261-022-03645-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 01/18/2023]
Abstract
PURPOSE In this preliminary study, our aim was to assess the utility of quantitative native-T1 (T1-pre), iron-corrected T1 (cT1) of the liver/spleen and T1 mapping of the liver obtained during hepatobiliary phase (T1-HBP) post-gadoxetate disodium, compared to spleen size/volume and APRI (aspartate aminotransferase-to-platelet ratio index) for noninvasive diagnosis of clinically significant portal hypertension [CSPH, defined as hepatic venous pressure gradient (HVPG) ≥ 10 mm Hg]. METHODS Forty-nine patients (M/F: 27/22, mean age 53y) with chronic liver disease, HVPG measurement and MRI were included. Breath-held T1 and cT1 measurements were obtained using an inversion recovery Look-Locker sequence and a T2* corrected modified Look-Locker sequence, respectively. Liver T1-pre (n = 49), spleen T1 (obtained pre-contrast, n = 47), liver and spleen cT1 (both obtained pre-contrast, n = 30), liver T1-HBP (obtained 20 min post gadoxetate disodium injection, n = 36) and liver T1 uptake (ΔT1, n = 36) were measured. Spleen size/volume and APRI were also obtained. Spearman correlation coefficients were used to assess the correlation between each of liver/spleen T1/cT1 parameters, spleen size/volume and APRI with HVPG. ROC analysis was performed to determine the performance of measured parameters for diagnosis of CSPH. RESULTS There were 12/49 (24%) patients with CSPH. Liver T1-pre (r = 0.287, p = 0.045), liver T1-HBP (r = 0.543, p = 0.001), liver ΔT1 (r = - 0.437, p = 0.008), spleen T1 (r = 0.311, p = 0.033) and APRI (r = 0.394, p = 0.005) were all significantly correlated with HVPG, while liver cT1, spleen cT1 and spleen size/volume were not. The highest AUCs for the diagnosis of CSPH were achieved with liver T1-HBP, liver ΔT1 and spleen T1: 0.881 (95%CI 0.76-1.0, p = 0.001), 0.852 (0.72-0.98, p = 0.002) and 0.781 (0.60-0.95, p = 0.004), respectively. CONCLUSION Our preliminary results demonstrate the potential of liver T1 mapping obtained during HBP post gadoxetate disodium for the diagnosis of CSPH. These results require further validation.
Collapse
Affiliation(s)
- Emre Altinmakas
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, New York, NY, 10029, USA.,BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Radiology, Koc University School of Medicine, Istanbul, Turkey
| | - Octavia Bane
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, New York, NY, 10029, USA.,BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stefanie J Hectors
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, New York, NY, 10029, USA.,BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rayane Issa
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, New York, NY, 10029, USA
| | - Guillermo Carbonell
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Radiology, Virgen de La Arrixaca University Clinical Hospital, University of Murcia, Murcia, Spain
| | - Ghadi Abboud
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, New York, NY, 10029, USA.,BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Thomas D Schiano
- Icahn School of Medicine at Mount Sinai, Recanati/Miller Transplantation Institute, New York, NY, USA
| | - Swan Thung
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aaron Fischman
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, New York, NY, 10029, USA
| | | | - Scott L Friedman
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paul Kennedy
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, New York, NY, 10029, USA.,BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bachir Taouli
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, New York, NY, 10029, USA. .,BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
9
|
Wang F, Yang Q, Zhang Y, Liu J, Liu M, Zhu J. 3D variable flip angle T1 mapping for differentiating benign and malignant liver lesions at 3T: comparison with diffusion weighted imaging. BMC Med Imaging 2022; 22:146. [PMID: 35982406 PMCID: PMC9389795 DOI: 10.1186/s12880-022-00873-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 08/11/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Different methods have been used to improve the imaging diagnosis of focal liver lesions (FLL). Among them, magnetic resonance imaging (MRI) has received more attention since it provides significant amount of information without radiation exposure. However, atypical imaging characteristics of FLL on MRI may complicate the differential diagnosis between benign and malignant FLL. This study aimed to compare the diagnostic value of T1 mapping and diffusion-weighted imaging (DWI) for differentiating of benign and malignant FLLs. METHODS This retrospective study enrolled 294 FLLs, including 150 benign and 144 malignant lesions. Whole liver T1 mapping sequences were obtained before and 2 min after the administration of Gd-DTPA to acquire native T1 and enhanced T1 and ΔT1%. Additionally, DWI sequence was conducted to generate apparent diffusion coefficient (ADC) maps. These quantitative parameters were compared using one-way analysis of variance, and the diagnostic accuracy of T1 mapping and ADC for FLLs was calculated by area under the curve (AUC). RESULTS Significant differences were observed regarding the native T1, enhanced T1, ΔT1%, and ADC between benign and malignant FLLs. Furthermore, the sensitivity and specificity of the parameters are as follows: native T1 0.797/0.702 (cut off value 1635.5 ms); enhanced T1, 0.911/0.976 (cutoff value 339.2 ms); ΔT1%, 0.901/0.905 (cutoff value 70.8%); and ADC, 0.975/0.952 (cutoff value 1.21 × 10-3 mm2/s). The ideal cutoff values for native T1 and ADC in identifying cyst and haemangioma were 2422.9 ms (AUC 0.990, P < 0.01) and 2.077 × 10-3 mm2/s (AUC 0.949, P < 0.01), respectively, with a sensitivity and specificity of 0.963/1 and 0.852/0.892, respectively. ADC was significantly positively correlated with T1 and ΔT1%, and significantly negatively correlated with enhanced T1. CONCLUSION The 3D Variable flip angle T1 mapping technique with Gd-DTPA has a high clinical potential for identifying benign and malignant FLLs. The enhanced T1 and ΔT1% values have similar diagnostic accuracy compared with DWI in evaluating FLLs. Native T1 shows better performance than DWI in distinguishing benign liver lesions, specifically, cysts, and haemangioma.
Collapse
Affiliation(s)
- Fei Wang
- Department of Medical Imaging, Anqing Hospital Affiliated to Anhui Medical University, 352 Renmin Road, Anqing, 246000, China
| | - Qing Yang
- Department of Medical Imaging, Anqing Hospital Affiliated to Anhui Medical University, 352 Renmin Road, Anqing, 246000, China
| | - Yupei Zhang
- Department of Medical Imaging, Anqing Hospital Affiliated to Anhui Medical University, 352 Renmin Road, Anqing, 246000, China
| | - Jun Liu
- Department of Medical Imaging, Anqing Hospital Affiliated to Anhui Medical University, 352 Renmin Road, Anqing, 246000, China
| | - Mengxiao Liu
- Siemens Healthcare Ltd., Shanghai, 201318, China
| | - Juan Zhu
- Department of Medical Imaging, Anqing Hospital Affiliated to Anhui Medical University, 352 Renmin Road, Anqing, 246000, China.
| |
Collapse
|
10
|
Obmann VC, Catucci D, Berzigotti A, Gräni C, Ebner L, Heverhagen JT, Christe A, Huber AT. T1 reduction rate with Gd-EOB-DTPA determines liver function on both 1.5 T and 3 T MRI. Sci Rep 2022; 12:4716. [PMID: 35304554 PMCID: PMC8933426 DOI: 10.1038/s41598-022-08659-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 02/01/2022] [Indexed: 11/10/2022] Open
Abstract
Magnetic resonance T1 mapping before and after Gd-EOB-DTPA administration allows quantification of the T1 reduction rate as a non-invasive surrogate marker of liver function. A major limitation of T1 relaxation time measurement is its dependency on MRI field strengths. Since T1 reduction rate is calculated as the relative shortening of T1 relaxation time before and after contrast administration, we hypothesized that the T1 reduction rate is comparable between 1.5 and 3 T. We thus compared liver T1 relaxation times between 1.5 and 3 T in a total of 243 consecutive patients (124, 1.5 T and 119, 3 T) between 09/2018 and 07/2019. T1 reduction rates were compared between patients with no cirrhosis and patients with cirrhosis Child-Pugh A-C. There was no significant difference of T1 reduction rate between 1.5 and 3 T in any patient group (p-value 0.126-0.861). On both 1.5 T and 3 T, T1 reduction rate allowed to differentiate between patients with no cirrhosis and patients with liver cirrhosis Child A-C (p < 0.001). T1 reduction rate showed a good performance to predict liver cirrhosis Child A (AUC = 0.83, p < 0.001), Child B (AUC = 0.83, p < 0.001) and Child C (AUC = 0.92, p < 0.001). In conclusion, T1 reduction rate allows to determine liver function on Gd-EOB-DTPA MRI with comparable values on 1.5 T and 3 T.
Collapse
Affiliation(s)
- Verena Carola Obmann
- Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 10, 3010, Bern, Switzerland
| | - Damiano Catucci
- Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 10, 3010, Bern, Switzerland
| | - Annalisa Berzigotti
- Hepatology, Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Christoph Gräni
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Lukas Ebner
- Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 10, 3010, Bern, Switzerland
| | - Johannes Thomas Heverhagen
- Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 10, 3010, Bern, Switzerland
| | - Andreas Christe
- Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 10, 3010, Bern, Switzerland
| | - Adrian Thomas Huber
- Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 10, 3010, Bern, Switzerland.
| |
Collapse
|
11
|
Tadimalla S, Wilson DJ, Shelley D, Bainbridge G, Saysell M, Mendichovszky IA, Graves MJ, Guthrie JA, Waterton JC, Parker GJM, Sourbron SP. Bias, Repeatability and Reproducibility of Liver T 1 Mapping With Variable Flip Angles. J Magn Reson Imaging 2022; 56:1042-1052. [PMID: 35224803 PMCID: PMC9545852 DOI: 10.1002/jmri.28127] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 12/16/2022] Open
Abstract
Background Three‐dimensional variable flip angle (VFA) methods are commonly used for T1 mapping of the liver, but there is no data on the accuracy, repeatability, and reproducibility of this technique in this organ in a multivendor setting. Purpose To measure bias, repeatability, and reproducibility of VFA T1 mapping in the liver. Study Type Prospective observational. Population Eight healthy volunteers, four women, with no known liver disease. Field Strength/Sequence 1.5‐T and 3.0‐T; three‐dimensional steady‐state spoiled gradient echo with VFAs; Look‐Locker. Assessment Traveling volunteers were scanned twice each (30 minutes to 3 months apart) on six MRI scanners from three vendors (GE Healthcare, Philips Medical Systems, and Siemens Healthineers) at two field strengths. The maximum period between the first and last scans among all volunteers was 9 months. Volunteers were instructed to abstain from alcohol intake for at least 72 hours prior to each scan and avoid high cholesterol foods on the day of the scan. Statistical Tests Repeated measures ANOVA, Student t‐test, Levene's test of variances, and 95% significance level. The percent error relative to literature liver T1 in healthy volunteers was used to assess bias. The relative error (RE) due to intrascanner and interscanner variation in T1 measurements was used to assess repeatability and reproducibility. Results The 95% confidence interval (CI) on the mean bias and mean repeatability RE of VFA T1 in the healthy liver was 34 ± 6% and 10 ± 3%, respectively. The 95% CI on the mean reproducibility RE at 1.5 T and 3.0 T was 29 ± 7% and 25 ± 4%, respectively. Data Conclusion Bias, repeatability, and reproducibility of VFA T1 mapping in the liver in a multivendor setting are similar to those reported for breast, prostate, and brain. Level of Evidence 1 Technical Efficacy Stage 1
Collapse
Affiliation(s)
- Sirisha Tadimalla
- Institute of Medical Physics, University of Sydney, Sydney, Australia.,Department of Biomedical Imaging Sciences, University of Leeds, Leeds, UK
| | | | | | | | | | | | - Martin J Graves
- Department of Radiology, University of Cambridge, Cambridge, UK
| | | | - John C Waterton
- Bioxydyn Ltd, Manchester, UK.,Centre for Imaging Sciences, Division of Informatics Imaging and Data Sciences, School of Health Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Geoffrey J M Parker
- Bioxydyn Ltd, Manchester, UK.,Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Steven P Sourbron
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| |
Collapse
|
12
|
Quantitative evaluation of hepatic fibrosis by fibro Scan and Gd-EOB-DTPA-enhanced T1 mapping magnetic resonance imaging in chronic hepatitis B. Abdom Radiol (NY) 2022; 47:684-692. [PMID: 34825269 DOI: 10.1007/s00261-021-03300-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/25/2021] [Accepted: 09/28/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE Studies have found that both FibroScan (FS) and Gd-EOB-DTPA-enhanced T1 mapping magnetic resonance imaging (Gd-MRI) could assess liver fibrosis (LF) with high effectiveness. The aim of this study is to compare their accuracy in the quantitative evaluation of LF in patients with chronic hepatitis B (CHB), and to explore the diagnostic accuracy of their combination. METHODS 160 patients with CHB were included in this study. FS and Gd-MRI were performed within 3 months before the pathological LF staging, which was classified according to the Scheuer-Ludwig scale. The liver stiffness measurement (LSM) was obtained by FS. T1 mapping images of the liver before and 20 min after enhancement were obtained by Look-Locker Gd-MRI. RESULTS There were 45, 35, 31 and 49 patients with stage S1, S2, S3 and S4 LF, respectively. LSM increased and the reduction rate of T1 relaxation time of 20 min (rrT120min%) decreased with the severity of LF. The area under curve (AUC) of LSM, rrT120min% and LSM + rrT120min% for the diagnosis of ≥ S2 LF were 0.892, 0.811 and 0.900, respectively. The AUC for ≥ S3 LF was 0.883, 0.838 and 0.899, respectively. The AUC for S4 LF was 0.882, 0.894 and 0.928, respectively. CONCLUSION The diagnostic accuracy of FS is better than that of Gd-MRI in the evaluation of ≥ S2 stage LF. The combination of these two methods significantly improved the diagnostic efficiency in the evaluation of S4 stage LF.
Collapse
|
13
|
Gallo A, Giral P, Rosenbaum D, Mattina A, Kilinc A, Giron A, Bouazizi K, Gueda Moussa M, Salem JE, Carrié A, Carreau V, Béliard S, Bittar R, Cluzel P, Bruckert E, Redheuil A, Kachenoura N. Myocardial fibrosis assessed by magnetic resonance imaging in asymptomatic heterozygous familial hypercholesterolemia: the cholcoeur study. EBioMedicine 2021; 74:103735. [PMID: 34864619 PMCID: PMC8646177 DOI: 10.1016/j.ebiom.2021.103735] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Familial Hypercholesterolemia (FH) is an underdiagnosed condition with an increased cardiovascular risk. It is unknown whether lipid accumulation plays a role in structural myocardial changes. Cardiovascular Magnetic Resonance (CMR) is the reference technique for the morpho-functional evaluation of heart chambers through cine sequences and for myocardial tissue characterization through late gadolinium enhancement (LGE) and T1 mapping images. We aimed to assess the prevalence of myocardial fibrosis in FH patients. METHODS Seventy-two asymptomatic subjects with genetically confirmed FH (mean age 49·24, range 40 to 60 years) were prospectively recruited along with 31 controls without dyslipidaemia matched for age, sex, BMI, and other cardiovascular risk factors. All underwent CMR including cine, LGE, pre- and post-contrast T1 mapping. Extracellular volume (ECV) and enhancement rate of the myocardium (ERM = difference between pre- and post-contrast myocardial T1, normalized by pre-contrast myocardial T1) were calculated. FINDINGS Five FH patients and none of the controls had intramyocardial LGE (p= 0·188). While no changes in Native T1 and ECV were found, post-contrast T1 was significantly lower (430·6 ± 55ms vs. 476·1 ± 43ms, p<0·001) and ERM was higher (57·44± 5·99 % vs 53·04±4·88, p=0·005) in HeFH patients compared to controls. Moreover, low post-contrast T1 was independently associated with the presence of xanthoma (HR 5·221 [1·04-26·28], p= 0·045). A composite score combining the presence of LGE, high native T1 and high ERM (defined as ≥ mean ± 1·5 SD) was found in 20·8% of the HeFH patients vs. 0% in controls (p<0·000, after adjustment for main confounders). INTERPRETATION CMR revealed early changes in myocardial tissue characteristics in HeFH patients, that should foster further work to better understand and prevent the underlying pathophysiological processes.
Collapse
Affiliation(s)
- Antonio Gallo
- Cardiovascular Prevention Unit, Department of Endocrinology, Metabolism and cardiovascular prevention-University Hospital Pitié-Salpêtrière - Assistance Publique/Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière - Sorbonne University; Sorbonne University, Biomedical Imaging Laboratory, CNRS, INSERM, Paris, France; Sorbonne University, INSERM, Institute of Cardio-metabolism and Nutrition (ICAN), Imaging Core Lab, Hôpital de la Pitié-Salpêtrière, Paris, France; Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose, Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France.
| | - Philippe Giral
- Cardiovascular Prevention Unit, Department of Endocrinology, Metabolism and cardiovascular prevention-University Hospital Pitié-Salpêtrière - Assistance Publique/Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière - Sorbonne University
| | - David Rosenbaum
- Cardiovascular Prevention Unit, Department of Endocrinology, Metabolism and cardiovascular prevention-University Hospital Pitié-Salpêtrière - Assistance Publique/Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière - Sorbonne University
| | - Alessandro Mattina
- Cardiovascular Prevention Unit, Department of Endocrinology, Metabolism and cardiovascular prevention-University Hospital Pitié-Salpêtrière - Assistance Publique/Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière - Sorbonne University; Diabetes and Islet Transplantation Unit, Department of Diagnostic and Therapeutic Services, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), University of Pittsburgh Medical Center - Italy, Palermo, Italy
| | - Ali Kilinc
- Sorbonne University, INSERM, Institute of Cardio-metabolism and Nutrition (ICAN), Imaging Core Lab, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Alain Giron
- Sorbonne University, Biomedical Imaging Laboratory, CNRS, INSERM, Paris, France
| | - Khaoula Bouazizi
- Sorbonne University, INSERM, Institute of Cardio-metabolism and Nutrition (ICAN), Imaging Core Lab, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Moussa Gueda Moussa
- Sorbonne University, Biomedical Imaging Laboratory, CNRS, INSERM, Paris, France
| | - Joe-Elie Salem
- AP-HP, Pitié-Salpêtrière Hospital, Department of Pharmacology and CIC-1901, F-75013 Paris, France; INSERM, CIC-1901 and UMR 1166, F-75013 Paris, France, Sorbonne Universités
| | - Alain Carrié
- Sorbonne University, Inserm, UMR_S1166, APHP, Department of Biochemistry, Obesity and Dyslipidemia Genetics Unit, Hôpital de la Pitié, Paris, France
| | - Valérie Carreau
- Cardiovascular Prevention Unit, Department of Endocrinology, Metabolism and cardiovascular prevention-University Hospital Pitié-Salpêtrière - Assistance Publique/Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière - Sorbonne University
| | - Sophie Béliard
- Aix Marseille Univ, INSERM, INRA, C2VN, Marseille, France; Department of Nutrition, Metabolic Diseases, Endocrinology, La Conception Hospital, Marseille, France
| | - Randa Bittar
- Sorbonne University, Inserm, UMR_S1166, Department of Metabolic Biochemistry, Assistance Publique, Hôpitaux de Paris, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Philippe Cluzel
- Cardiovascular and Thoracic Imaging Unit, Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, Sorbonne University, INSERM, Paris, France
| | - Eric Bruckert
- Cardiovascular Prevention Unit, Department of Endocrinology, Metabolism and cardiovascular prevention-University Hospital Pitié-Salpêtrière - Assistance Publique/Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière - Sorbonne University; Sorbonne University, INSERM, Institute of Cardio-metabolism and Nutrition (ICAN), Imaging Core Lab, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Alban Redheuil
- Sorbonne University, Biomedical Imaging Laboratory, CNRS, INSERM, Paris, France; Sorbonne University, INSERM, Institute of Cardio-metabolism and Nutrition (ICAN), Imaging Core Lab, Hôpital de la Pitié-Salpêtrière, Paris, France; Cardiovascular and Thoracic Imaging Unit, Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, Sorbonne University, INSERM, Paris, France
| | - Nadjia Kachenoura
- Sorbonne University, Biomedical Imaging Laboratory, CNRS, INSERM, Paris, France; Sorbonne University, INSERM, Institute of Cardio-metabolism and Nutrition (ICAN), Imaging Core Lab, Hôpital de la Pitié-Salpêtrière, Paris, France
| |
Collapse
|
14
|
Li J, Cao B, Bi X, Chen W, Wang L, Du Z, Zhang X, Yu X. Evaluation of liver function in patients with chronic hepatitis B using Gd-EOB-DTPA-enhanced T1 mapping at different acquisition time points: a feasibility study. Radiol Med 2021; 126:1149-1158. [PMID: 34105102 DOI: 10.1007/s11547-021-01382-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 05/25/2021] [Indexed: 01/18/2023]
Abstract
PURPOSE This study aimed to explore the impact of different acquisition times on the evaluation of liver function levels in chronic hepatitis B using Gd-EOB-DTPA-enhanced T1 positioning technology under 3.0 Tesla magnetic resonance imaging (MRI). METHODS A total of 146 patients with chronic hepatitis B (CHB) were classified into four groups as follows: chronic hepatitis B without liver cirrhosis (CH, 22 cases), liver cirrhosis with Child-Pugh classification A (LCA 63 cases), Child-Pugh B (LCB 47 cases) and Child-Pugh C (LCC 14 cases). Normal liver function (NLF) group was composed of 23 persons who had healthy liver and no medical histories of hepatitis. T1 mapping images were performed before and after administration of Gd-EOB-DPTA using Look-Locker sequence. Changes in T1 relaxation time (T1rt), the reduction rate of T1 relaxation time (ΔT1) and the increase in T1 relaxation rate (ΔR1) of liver over time (at 5, 10, 15 and 20 min) were investigated and compared among all five groups using a one-way analysis of variance (ANOVA). The Spearman's rank correlation coefficient (r) was used to show the correlations of these parameters in different liver function groups. RESULTS In the NLF, CH, LCA and LCB groups, postT1 gradually decreased, while the ΔT1 and ΔR1 gradually increased with time. The parameters were compared between different liver function levels at the same time point, and the differences were statistically significant except for NLF-CH, NLF-LCA and CH-LCA. There was no significant difference in the area under the ROC curve of other parameters at 10, 15 and 20 min. At each time point, no correlation was found between preT1rt and the degrees of liver function. PostT1rt was positively correlated with liver function classification, while ΔT1 and ΔR1 were negatively correlated with liver function classification. CONCLUSION Gd-EOB-DTPA-enhanced T1 mapping magnetic resonance imaging is beneficial to assess liver function. Using the Gd-EOB-DTPA to enhance T1 mapping imaging to assess liver function can shorten the observation time of the hepatobiliary period and 10 min after enhancement may be the best time point.
Collapse
Affiliation(s)
- Jiamin Li
- Department of Medical Imaging, Zhuhai People's Hospital, Zhuhai Hospital Affiliated With Jinan University, Zhuhai, 519000, Guangdong, People's Republic of China
| | - Boling Cao
- Department of Medical Imaging, Zhuhai People's Hospital, Zhuhai Hospital Affiliated With Jinan University, Zhuhai, 519000, Guangdong, People's Republic of China
| | - Xinjun Bi
- Department of Radiology, Affiliated Matern and Child Care Hospital of Nantong University, Nantong, 226000, Jiangsu, People's Republic of China
| | - Weipeng Chen
- Department of Medical Imaging, Zhuhai People's Hospital, Zhuhai Hospital Affiliated With Jinan University, Zhuhai, 519000, Guangdong, People's Republic of China
| | - Lanjing Wang
- Department of Medical Imaging, Zhuhai People's Hospital, Zhuhai Hospital Affiliated With Jinan University, Zhuhai, 519000, Guangdong, People's Republic of China
| | - Zhongli Du
- Department of Medical Imaging, Zhuhai People's Hospital, Zhuhai Hospital Affiliated With Jinan University, Zhuhai, 519000, Guangdong, People's Republic of China
| | - Xueqin Zhang
- Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226000, Jiangsu, People's Republic of China.
| | - Xiangrong Yu
- Department of Medical Imaging, Zhuhai People's Hospital, Zhuhai Hospital Affiliated With Jinan University, Zhuhai, 519000, Guangdong, People's Republic of China.
| |
Collapse
|
15
|
Lee HJ, Hong SB, Lee NK, Kim S, Seo HI, Kim DU, Han SY, Choo KS. Validation of functional liver imaging scores (FLIS) derived from gadoxetic acid-enhanced MRI in patients with chronic liver disease and liver cirrhosis: the relationship between Child-Pugh score and FLIS. Eur Radiol 2021; 31:8606-8614. [PMID: 33881570 DOI: 10.1007/s00330-021-07955-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 03/15/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVES To validate the functional liver imaging score (FLIS) for prediction of hepatic function in gadoxetic acid-enhanced MRI. METHODS We retrospectively identified 134 patients (88 men, 46 women; mean age, 58.8 years) between January 2015 and December 2018 with the following inclusion criteria: patients diagnosed with liver cirrhosis or chronic liver disease (CLD) who underwent gadoxetic acid-enhanced MRI. Three parameters on hepatobiliary phase images were evaluated for FLIS: liver parenchymal enhancement, biliary excretion, and signal intensity of the portal vein. Patients were classified as CLD (n = 11), Child-Pugh (CP) class A (n = 87), CP B (n = 22), or CP C (n = 14). We assessed the correlation between CP score and both FLIS and its components using Spearman rank correlation. Receiver operating characteristic (ROC) curve analysis was performed to demonstrate the cutoff value of FLIS for differentiating between CP classes. The associations between patient characteristics, serum markers, FLIS, and hepatic decompensation were evaluated with Cox proportional hazard models. RESULTS FLIS and three FLIS parameters showed strong to very strong correlation with CP score (r = -0.60 to 0.82). ROC curve analysis showed that FLIS ≥ 5 was the optimal cutoff for prediction of CP class A or CLD (sensitivity, 83.7%; specificity, 94.4%; area under the curve [AUC], 0.93). FLIS < 5 was independently associated with the development of first hepatic decompensation in patients with CP A (HR, 50.0; 95% confidence interval, 6.2, 400.4). CONCLUSION FLIS showed a strong correlation with hepatic function and can stratify the CP class. In addition, FLIS can help prediction for the development of first decompensation. KEY POINTS • Functional liver imaging scores (FLIS) and its three parameters, derived from hepatobiliary phase image, have strong to very strong correlations with Child-Pugh (CP) scores. • FLIS can stratify patients with chronic liver disease or liver cirrhosis according to CP classification. • Low FLIS is an independent predictor for first hepatic decompensation in patients with CP class A.
Collapse
Affiliation(s)
- Ho Jun Lee
- Department of Radiology, Biomedical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan, South Korea
| | - Seung Baek Hong
- Department of Radiology, Biomedical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan, South Korea.
| | - Nam Kyung Lee
- Department of Radiology, Biomedical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan, South Korea
| | - Suk Kim
- Department of Radiology, Biomedical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan, South Korea
| | - Hyung Il Seo
- Department of Surgery, Biomedical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan, South Korea
| | - Dong Uk Kim
- Department of Internal Medicine, Biomedical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan, South Korea
| | - Sung Yong Han
- Department of Internal Medicine, Biomedical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan, South Korea
| | - Ki Suk Choo
- Department of Radiology, Biomedical Research Institute, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, South Korea
| |
Collapse
|
16
|
T2 mapping in gadoxetic acid-enhanced MRI: utility for predicting decompensation and death in cirrhosis. Eur Radiol 2021; 31:8376-8387. [PMID: 33782768 DOI: 10.1007/s00330-021-07805-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/21/2020] [Accepted: 02/17/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVES To determine whether T2 mapping in liver MRI can predict decompensation and death in cirrhotic patients. METHODS This retrospective study included 292 cirrhotic patients who underwent gadoxetic acid-enhanced MRI, including T1 and T2 mapping at 10-min hepatobiliary phase by using the Look-Locker and radial turbo spin-echo sequences, respectively. T1 and T2 values of the liver and spleen were measured. The association of MR parameters and serum markers with decompensation and death was investigated. Risk models combining T2Liver, serum albumin level, and Model for End-Stage Liver Disease (MELD) score were created for predicting decompensation (T2Liver, < 49.3 versus ≥ 49.3 ms) and death (< 57.4 versus ≥ 57.4 ms). RESULTS In patients with compensated cirrhosis at baseline and in the full patient cohort, 9.6% (19 of 197) and 5.1% (15 of 292) developed decompensation and died during the mean follow-up periods of 18.7 and 19.2 months, respectively. A prolonged T2Liver (hazard ratio (HR), 2.59; 95% confidence interval (CI), 1.26, 5.31) was independently predictive of decompensation along with the serum albumin level (HR, 0.28; 95% CI, 0.12, 0.68) and MELD score (HR, 1.34; 95% CI, 1.08, 1.66). T2Liver (HR, 2.61; 95% CI, 1.19, 5.72) and serum albumin level (HR, 0.46; 95% CI, 0.19, 1.14) were independent predictors of death. The mean times to decompensation (12.9 versus 29.2 months) and death (16.5 versus 29.6 months) were significantly different between the high- and low-risk groups (p < 0.001). CONCLUSION T2Liver from T2 mapping can predict decompensation and death in patients with cirrhosis. KEY POINTS • Liver T2 values from the radial turbo spin-echo (TSE) T2 mapping sequence with tiered echo sharing and pseudo golden-angle (pGA) reordering were significantly higher in decompensated cirrhosis than compensated cirrhosis. • Liver T2 values from the radial TSE T2 mapping sequence with tiered echo sharing and pGA reordering can predict decompensation and death in patients with cirrhosis. • T2 mapping is recommended as part of liver MRI examinations for cirrhotic patients because it can provide a noninvasive prognostic marker for the development of decompensation and death.
Collapse
|
17
|
Moullet B, Kolev M, Ebner L, Langer R, Gräni C, Obmann V, Maurer M, Semmo N, Christe A, Huber AT. Adult form of Langerhans cell histiocytosis with pulmonary and hepatic involvement mimicking malignancy in a patient with chronic hepatitis C infection. Radiol Case Rep 2020; 16:327-333. [PMID: 33318775 PMCID: PMC7724096 DOI: 10.1016/j.radcr.2020.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 11/28/2022] Open
Abstract
Langerhans cell histiocytosis (LCH) is a myeloid neoplasm with inflammatory properties. There are few published reports of adult LCH with liver involvement, which is still poorly understood, but shows high morbidity and mortality. We report a case of a 37-year-old woman suffering from hepatitis C showing a LCH affecting the lung as well as the liver. Consistent with histology, we found an early stage of a proliferative/granulomatous phase of hepatobiliary LCH, whereas pulmonary findings showed a nodular stage of adult pulmonary LCH. Although hepatocellular carcinoma is a common malignancy in patients suffering from hepatitis C, it is crucial to keep in mind differential diagnosis for newly appearing liver lesions.
Collapse
Affiliation(s)
- Barbara Moullet
- Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital University Hospital, University of Bern, Freiburgstrasse 10, Inselspital, 3010, Bern, Switzerland
| | - Mirjam Kolev
- Hepatology, Department of Visceral Surgery and Medicine, Inselspital University Hospital, University of Bern, Bern, Switzerland
| | - Lukas Ebner
- Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital University Hospital, University of Bern, Freiburgstrasse 10, Inselspital, 3010, Bern, Switzerland
| | - Rupert Langer
- Department of Pathology, Inselspital University Hospital, University of Bern, Bern, Switzerland
| | - Christoph Gräni
- Department of Cardiology, Inselspital University Hospital, University of Bern, Bern, Switzerland
| | - Verena Obmann
- Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital University Hospital, University of Bern, Freiburgstrasse 10, Inselspital, 3010, Bern, Switzerland
| | - Martin Maurer
- Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital University Hospital, University of Bern, Freiburgstrasse 10, Inselspital, 3010, Bern, Switzerland
| | - Nasser Semmo
- Hepatology, Department of Visceral Surgery and Medicine, Inselspital University Hospital, University of Bern, Bern, Switzerland
| | - Andreas Christe
- Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital University Hospital, University of Bern, Freiburgstrasse 10, Inselspital, 3010, Bern, Switzerland
| | - Adrian Thomas Huber
- Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital University Hospital, University of Bern, Freiburgstrasse 10, Inselspital, 3010, Bern, Switzerland
- Corresponding author.
| |
Collapse
|
18
|
Kennedy P, Bane O, Hectors SJ, Fischman A, Schiano T, Lewis S, Taouli B. Noninvasive imaging assessment of portal hypertension. Abdom Radiol (NY) 2020; 45:3473-3495. [PMID: 32926209 PMCID: PMC10124623 DOI: 10.1007/s00261-020-02729-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/16/2020] [Accepted: 08/30/2020] [Indexed: 02/07/2023]
Abstract
Portal hypertension (PH) is a spectrum of complications of chronic liver disease (CLD) and cirrhosis, with manifestations including ascites, gastroesophageal varices, splenomegaly, hypersplenism, hepatic hydrothorax, hepatorenal syndrome, hepatopulmonary syndrome and portopulmonary hypertension. PH can vary in severity and is diagnosed via invasive hepatic venous pressure gradient measurement (HVPG), which is considered the reference standard. Accurate diagnosis of PH and assessment of severity are highly relevant as patients with clinically significant portal hypertension (CSPH) are at higher risk for developing acute variceal bleeding and mortality. In this review, we discuss current and upcoming noninvasive imaging methods for diagnosis and assessment of severity of PH.
Collapse
|
19
|
Quantification of liver function using gadoxetic acid-enhanced MRI. Abdom Radiol (NY) 2020; 45:3532-3544. [PMID: 33034671 PMCID: PMC7593310 DOI: 10.1007/s00261-020-02779-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/20/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023]
Abstract
The introduction of hepatobiliary contrast agents, most notably gadoxetic acid (GA), has expanded the role of MRI, allowing not only a morphologic but also a functional evaluation of the hepatobiliary system. The mechanism of uptake and excretion of gadoxetic acid via transporters, such as organic anion transporting polypeptides (OATP1,3), multidrug resistance-associated protein 2 (MRP2) and MRP3, has been elucidated in the literature. Furthermore, GA uptake can be estimated on either static images or on dynamic imaging, for example, the hepatic extraction fraction (HEF) and liver perfusion. GA-enhanced MRI has achieved an important role in evaluating morphology and function in chronic liver diseases (CLD), allowing to distinguish between the two subgroups of nonalcoholic fatty liver diseases (NAFLD), simple steatosis and nonalcoholic steatohepatitis (NASH), and help to stage fibrosis and cirrhosis, predict liver transplant graft survival, and preoperatively evaluate the risk of liver failure if major resection is planned. Finally, because of its noninvasive nature, GA-enhanced MRI can be used for long-term follow-up and post-treatment monitoring. This review article aims to describe the current role of GA-enhanced MRI in quantifying liver function in a variety of hepatobiliary disorders.
Collapse
|
20
|
Validation and feasibility of liver T1 mapping using free breathing MOLLI sequence in children and young adults. Sci Rep 2020; 10:18390. [PMID: 33110134 PMCID: PMC7591907 DOI: 10.1038/s41598-020-74717-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 10/05/2020] [Indexed: 12/20/2022] Open
Abstract
We investigated the feasibility of free-breathing modified Look-Locker inversion recovery (MOLLI) sequence for measuring hepatic T1 values in children and young adults. To investigate the accuracy and the reproducibility of the T1 maps, a phantom study was performed with 12 different gadoterate meglumine concentrations and the T1 relaxation times of phantoms measured with the MOLLI sequence were compared against those measured with three different sequences: spin-echo inversion recovery, variable flip angle (VFA), and VFA with B1 correction. To evaluate the feasibility of free-breathing MOLLI sequence, hepatic T1 relaxation times obtained by free-breathing and breath-hold technique in twenty patients were compared. The phantom study revealed the excellent accuracy and reproducibility of MOLLI. In twenty patients, the mean value of hepatic T1 values obtained by free-breathing (606.7 ± 64.5 ms) and breath-hold (609.8 ± 64.0 ms) techniques showed no significant difference (p > 0.05). The Bland–Altman plot between the free-breathing and breath-hold revealed that the mean difference of T1 values was − 3.0 ms (− 0.5%). Therefore, T1 relaxation times obtained by MOLLI were comparable to the values obtained using the standard inversion recovery method. The hepatic T1 relaxation times measured by MOLLI technique with free-breathing were comparable to those obtained with breath-hold in children and young adults.
Collapse
|
21
|
Chan WY, Hartono S, Thng CH, Koh DM. New Advances in Magnetic Resonance Techniques in Abdomen and Pelvis. Magn Reson Imaging Clin N Am 2020; 28:433-445. [PMID: 32624160 DOI: 10.1016/j.mric.2020.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This article explores new acquisition methods in magnetic resonance (MR) imaging to provide high spatial and temporal resolution imaging for a wide spectrum of clinical applications in the abdomen and pelvis. We present an overview of some of these advanced MR techniques, such as non-cartesian image acquisition, fast sampling and compressed sensing, diffusion quantification and quantitative MR that can improve data sampling, enhance image quality, yield quantitative measurements, and/or optimize diagnostic performance in the body.
Collapse
Affiliation(s)
- Wan Ying Chan
- Division of Oncologic Imaging, National Cancer Centre, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Septian Hartono
- Department of Neurology, National Neuroscience Institute, Singapore, 11 Jln Tan Tock Seng, Singapore 308433, Singapore
| | - Choon Hua Thng
- Division of Oncologic Imaging, National Cancer Centre, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Dow-Mu Koh
- Department of Radiology, Royal Marsden Hospital, Downs Road, Sutton SM2 5PT, UK.
| |
Collapse
|
22
|
Theilig D, Tsereteli A, Elkilany A, Raabe P, Lüdemann L, Malinowski M, Stockmann M, Pratschke J, Hamm B, Denecke T, Geisel D. Gd-EOB-DTPA-enhanced MRI T1 relaxometry as an imaging-based liver function test compared with 13C-methacetin breath test. Acta Radiol 2020; 61:291-301. [PMID: 31324131 DOI: 10.1177/0284185119861314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Gadolinium ethoxybenzyl diethylenetriaminepentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) can be used as an imaging-based liver function test. This study aims to further corroborate its validity. Purpose To compare Gd-EOB-DTPA-enhanced MRI as an imaging-based liver function test with the 13C-methacetin breath test. Material and Methods Fifty-three patients who underwent Gd-EOB-DTPA-enhanced MRI T1 relaxometry before and 20 min after intravenous Gd-EOB-DTPA administration as well as a 13C-methacetin breath test (LiMAx test) were retrospectively analyzed. T1 relaxation times of liver parenchyma, total liver volume (TLV), and functional liver volume (FLV) were determined. Pearson correlations, multiple linear regression analysis, and receiver operating characteristic curve analysis were performed with indices derived from T1 relaxometry, liver volumetry, and laboratory parameters to identify the best predictor of liver function as determined by the LiMAx test. Results T1 reduction rate (T1 RR), T1 RR × TLV, T1 RR × FLV, and T1 relaxation time 20 min after intravenous Gd-EOB administration showed a statistically significant correlation with LiMAx and discriminatory capacity between patients with LiMAx of > and < 315 µg/kg/h. Of the indices investigated, T1 RR showed the best discriminatory capacity and proved to be the only statistically significant parameter in multiple linear regression analysis. Conclusion Gd-EOB-DTPA-enhanced MRI as an imaging-based liver function test also correlates with the LiMAx test which in turn reflects cytochrome P450 function. The T1 reduction rate of the liver on Gd-EOB-DTPA-enhanced MRI allows prediction of liver function as determined by the LiMAx test both for 1.5 and 3.0 T.
Collapse
Affiliation(s)
- Dorothea Theilig
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Diagnostic and Interventional Radiology, Berlin, Germany
| | - Ana Tsereteli
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Diagnostic and Interventional Radiology, Berlin, Germany
| | - Aboelyazid Elkilany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Diagnostic and Interventional Radiology, Berlin, Germany
| | - Philip Raabe
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Diagnostic and Interventional Radiology, Berlin, Germany
| | - Lutz Lüdemann
- Department of Medical Physics, Essen University Hospital, Essen, Germany
| | - Maciej Malinowski
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of General, Visceral and Transplantation Surgery, Berlin, Germany
| | - Martin Stockmann
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of General, Visceral and Transplantation Surgery, Berlin, Germany
| | - Johann Pratschke
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of General, Visceral and Transplantation Surgery, Berlin, Germany
| | - Bernd Hamm
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Diagnostic and Interventional Radiology, Berlin, Germany
| | - Timm Denecke
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Diagnostic and Interventional Radiology, Berlin, Germany
| | - Dominik Geisel
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Diagnostic and Interventional Radiology, Berlin, Germany
| |
Collapse
|
23
|
T1 mapping for liver function evaluation in gadoxetic acid–enhanced MR imaging: comparison of look-locker inversion recovery and B1 inhomogeneity–corrected variable flip angle method. Eur Radiol 2019; 29:3584-3594. [DOI: 10.1007/s00330-018-5947-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 10/27/2018] [Accepted: 12/04/2018] [Indexed: 02/06/2023]
|
24
|
Predicting liver failure after extended right hepatectomy following right portal vein embolization with gadoxetic acid-enhanced MRI. Eur Radiol 2019; 29:5861-5872. [DOI: 10.1007/s00330-019-06101-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/06/2019] [Accepted: 02/11/2019] [Indexed: 12/13/2022]
|
25
|
Huber AT, Lamy J, Bravetti M, Bouazizi K, Bacoyannis T, Roux C, De Cesare A, Rigolet A, Benveniste O, Allenbach Y, Kerneis M, Cluzel P, Redheuil A, Kachenoura N. Comparison of MR T1 and T2 mapping parameters to characterize myocardial and skeletal muscle involvement in systemic idiopathic inflammatory myopathy (IIM). Eur Radiol 2019; 29:5139-5147. [DOI: 10.1007/s00330-019-06054-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/19/2018] [Accepted: 01/30/2019] [Indexed: 12/30/2022]
|
26
|
Abstract
Modern radiotherapy techniques have enabled high focal doses of radiation to be delivered to patients with primary and secondary malignancies of the liver. The current clinical practice of radiation oncology has benefitted from decades of research that have informed how to achieve excellent local control and survival outcomes with minimal toxicities. Still, one of the most devastating consequences of radiation to the liver remains a challenge: radiation-induced liver disease (RILD). Here, we will review the current understanding of classic and nonclassic RILD from a clinical perspective, the evaluation and management of patients who are at risk of developing RILD, methods to reduce the likelihood of RILD using modern radiation techniques, and the diagnosis and treatment of radiation-related liver toxicities.
Collapse
|
27
|
Evaluation of two-point Dixon water-fat separation for liver specific contrast-enhanced assessment of liver maximum capacity. Sci Rep 2018; 8:13863. [PMID: 30218001 PMCID: PMC6138716 DOI: 10.1038/s41598-018-32207-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 09/04/2018] [Indexed: 01/01/2023] Open
Abstract
Gadoxetic acid-enhanced magnetic resonance imaging has become a useful tool for quantitative evaluation of liver capacity. We report on the importance of intrahepatic fat on gadoxetic acid-supported T1 mapping for estimation of liver maximum capacity, assessed by the realtime 13C-methacetin breathing test (13C-MBT). For T1 relaxometry, we used a respective T1-weighted sequence with two-point Dixon water-fat separation and various flip angles. Both T1 maps of the in-phase component without fat separation (T1_in) and T1 maps merely based on the water component (T1_W) were generated, and respective reduction rates of the T1 relaxation time (rrT1) were evaluated. A steady considerable decline in rrT1 with progressive reduction of liver function could be observed for both T1_in and T1_W (p < 0.001). When patients were subdivided into 3 different categories of 13C-MBT readouts, the groups could be significantly differentiated by their rrT1_in and rrT1_W values (p < 0.005). In a simple correlation model of 13C-MBT values with T1_inpost (r = 0.556; p < 0.001), T1_Wpost (r = 0.557; p < 0.001), rrT1_in (r = 0.711; p < 0.001) and rrT1_W (r = 0.751; p < 0.001), a log-linear correlation has been shown. Liver maximum capacity measured with 13C-MBT can be determined more precisely from gadoxetic acid-supported T1 mapping when intrahepatic fat is taken into account. Here, T1_W maps are shown to be significantly superior to T1_in maps without separation of fat.
Collapse
|
28
|
Dekkers IA, Lamb HJ. Clinical application and technical considerations of T 1 & T 2(*) mapping in cardiac, liver, and renal imaging. Br J Radiol 2018; 91:20170825. [PMID: 29975154 DOI: 10.1259/bjr.20170825] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Pathological tissue alterations due to disease processes such as fibrosis, edema and infiltrative disease can be non-invasively visualized and quantified by MRI using T1 and T2 relaxation properties. Pixel-wise mapping of T1 and T2 image sequences enable direct quantification of T1, T2(*), and extracellular volume values of the target organ of interest. Tissue characterization based on T1 and T2(*) mapping is currently making the transition from a research tool to a clinical modality, as clinical usefulness has been established for several diseases such as myocarditis, amyloidosis, Anderson-Fabry and iron deposition. Other potential clinical applications besides the heart include, quantification of steatosis, cirrhosis, hepatic siderosis and renal fibrosis. Here, we provide an overview of potential clinical applications of T1 andT2(*) mapping for imaging of cardiac, liver and renal disease. Furthermore, we give an overview of important technical considerations necessary for clinical implementation of quantitative parametric imaging, involving data acquisition, data analysis, quality assessment, and interpretation. In order to achieve clinical implementation of these techniques, standardization of T1 and T2(*) mapping methodology and validation of impact on clinical decision making is needed.
Collapse
Affiliation(s)
- Ilona A Dekkers
- 1 Department of Radiology, Leiden University Medical Center , Leiden , The Netherlands
| | - Hildo J Lamb
- 1 Department of Radiology, Leiden University Medical Center , Leiden , The Netherlands
| |
Collapse
|
29
|
Besa C, Wagner M, Lo G, Gordic S, Chatterji M, Kennedy P, Stueck A, Thung S, Babb J, Smith A, Taouli B. Detection of liver fibrosis using qualitative and quantitative MR elastography compared to liver surface nodularity measurement, gadoxetic acid uptake, and serum markers. J Magn Reson Imaging 2018; 47:1552-1561. [PMID: 29193508 DOI: 10.1002/jmri.25911] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/13/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Multiparametric magnetic resonance imaging (mpMRI) combining different techniques such as MR elastography (MRE) has emerged as a noninvasive approach to diagnose and stage liver fibrosis with high accuracy allowing for anatomical and functional information. PURPOSE To assess the diagnostic performance of mpMRI including qualitative and quantitative assessment of MRE, liver surface nodularity (LSN) measurement, hepatic enhancement ratios postgadoxetic acid, and serum markers (APRI, FIB-4) for the detection of liver fibrosis. STUDY TYPE IRB-approved retrospective. SUBJECTS Eighty-three adult patients. FIELD STRENGTH/SEQUENCE 1.5T and 3.0T MR systems. MRE and T1 -weighted postgadoxetic acid sequences. ASSESSMENT Two independent observers analyzed qualitative color-coded MRE maps on a scale of 0-3. Regions of interest were drawn to measure liver stiffness on MRE stiffness maps and on pre- and postcontrast T1 -weighted images to measure hepatic enhancement ratios. Software was used to generate LSN measurements. Histopathology was used as the reference standard for diagnosis of liver fibrosis in all patients. STATISTICAL TESTS A multivariable logistic analysis was performed to identify independent predictors of liver fibrosis. Receiver operating characteristic (ROC) analysis evaluated the performance of each imaging technique for detection of fibrosis, in comparison with serum markers. RESULTS Liver stiffness measured with MRE provided the strongest correlation with histopathologic fibrosis stage (r = 0.74, P < 0.001), and the highest diagnostic performance for detection of stages F2-F4, F3-F4, and F4 (areas under the curve [AUCs] of 0.87, 0.91, and 0.89, respectively, P < 0.001) compared to other methods. Qualitative assessment of MRE maps showed fair to good accuracy for detection of fibrosis (AUC range 0.76-0.84). Multivariable logistic analysis identified liver stiffness and FIB-4 as independent predictors of fibrosis with AUCs of 0.90 (F2-F4), 0.93 (F3-F4) and 0.92 (F4) when combined. DATA CONCLUSION Liver stiffness measured with MRE showed the best performance for detection of liver fibrosis compared to LSN and gadoxetic acid uptake, with slight improvement when combined with FIB-4. LEVEL OF EVIDENCE 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:1552-1561.
Collapse
Affiliation(s)
- Cecilia Besa
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Radiology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mathilde Wagner
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Grace Lo
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sonja Gordic
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Manjil Chatterji
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Paul Kennedy
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ashley Stueck
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Swan Thung
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - James Babb
- Department of Radiology, New York University Langone Medical Center, New York, New York, USA
| | - Andrew Smith
- Department of Radiology, University of Alabama, Birmingham, Alabama, USA
| | - Bachir Taouli
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
30
|
Bane O, Hectors S, Wagner M, Arlinghaus LL, Aryal M, Cao Y, Chenevert T, Fennessy F, Huang W, Hylton N, Kalpathy-Cramer J, Keenan K, Malyarenko D, Mulkern R, Newitt D, Russek SE, Stupic KF, Tudorica A, Wilmes L, Yankeelov TE, Yen YF, Boss M, Taouli B. Accuracy, repeatability, and interplatform reproducibility of T 1 quantification methods used for DCE-MRI: Results from a multicenter phantom study. Magn Reson Med 2018; 79:2564-2575. [PMID: 28913930 PMCID: PMC5821553 DOI: 10.1002/mrm.26903] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 08/14/2017] [Accepted: 08/16/2017] [Indexed: 02/05/2023]
Abstract
PURPOSE To determine the in vitro accuracy, test-retest repeatability, and interplatform reproducibility of T1 quantification protocols used for dynamic contrast-enhanced MRI at 1.5 and 3 T. METHODS A T1 phantom with 14 samples was imaged at eight centers with a common inversion-recovery spin-echo (IR-SE) protocol and a variable flip angle (VFA) protocol using seven flip angles, as well as site-specific protocols (VFA with different flip angles, variable repetition time, proton density, and Look-Locker inversion recovery). Factors influencing the accuracy (deviation from reference NMR T1 measurements) and repeatability were assessed using general linear mixed models. Interplatform reproducibility was assessed using coefficients of variation. RESULTS For the common IR-SE protocol, accuracy (median error across platforms = 1.4-5.5%) was influenced predominantly by T1 sample (P < 10-6 ), whereas test-retest repeatability (median error = 0.2-8.3%) was influenced by the scanner (P < 10-6 ). For the common VFA protocol, accuracy (median error = 5.7-32.2%) was influenced by field strength (P = 0.006), whereas repeatability (median error = 0.7-25.8%) was influenced by the scanner (P < 0.0001). Interplatform reproducibility with the common VFA was lower at 3 T than 1.5 T (P = 0.004), and lower than that of the common IR-SE protocol (coefficient of variation 1.5T: VFA/IR-SE = 11.13%/8.21%, P = 0.028; 3 T: VFA/IR-SE = 22.87%/5.46%, P = 0.001). Among the site-specific protocols, Look-Locker inversion recovery and VFA (2-3 flip angles) protocols showed the best accuracy and repeatability (errors < 15%). CONCLUSIONS The VFA protocols with 2 to 3 flip angles optimized for different applications achieved acceptable balance of extensive spatial coverage, accuracy, and repeatability in T1 quantification (errors < 15%). Further optimization in terms of flip-angle choice for each tissue application, and the use of B1 correction, are needed to improve the robustness of VFA protocols for T1 mapping. Magn Reson Med 79:2564-2575, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Octavia Bane
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai,Radiology, Icahn School of Medicine at Mount Sinai
| | - Stefanie Hectors
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai,Radiology, Icahn School of Medicine at Mount Sinai
| | - Mathilde Wagner
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai,Radiology, Icahn School of Medicine at Mount Sinai
| | | | | | - Yue Cao
- Radiation Oncology, University of Michigan
| | | | | | - Wei Huang
- Advanced Imaging Research Center, Knight Cancer Institute, Oregon Health and Science University
| | - Nola Hylton
- Radiology, University of California San Francisco
| | | | | | | | | | - David Newitt
- Radiology, University of California San Francisco
| | | | | | | | - Lisa Wilmes
- Radiology, University of California San Francisco
| | | | - Yi-Fei Yen
- Radiology, Massachusetts General Hospital
| | | | - Bachir Taouli
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai,Radiology, Icahn School of Medicine at Mount Sinai
| |
Collapse
|
31
|
Horowitz JM, Venkatesh SK, Ehman RL, Jhaveri K, Kamath P, Ohliger MA, Samir AE, Silva AC, Taouli B, Torbenson MS, Wells ML, Yeh B, Miller FH. Evaluation of hepatic fibrosis: a review from the society of abdominal radiology disease focus panel. Abdom Radiol (NY) 2017. [PMID: 28624924 DOI: 10.1007/s00261-017-1211-7] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hepatic fibrosis is potentially reversible; however early diagnosis is necessary for treatment in order to halt progression to cirrhosis and development of complications including portal hypertension and hepatocellular carcinoma. Morphologic signs of cirrhosis on ultrasound (US), computed tomography (CT), and magnetic resonance imaging (MRI) alone are unreliable and are seen with more advanced disease. Newer imaging techniques to diagnose liver fibrosis are reliable and accurate, and include magnetic resonance elastography and US elastography (one-dimensional transient elastography and point shear wave elastography or acoustic radiation force impulse imaging). Research is ongoing with multiple other techniques for the noninvasive diagnosis of hepatic fibrosis, including MRI with diffusion-weighted imaging, hepatobiliary contrast enhancement, and perfusion; CT using perfusion, fractional extracellular space techniques, and dual-energy, contrast-enhanced US, texture analysis in multiple modalities, quantitative mapping, and direct molecular imaging probes. Efforts to advance the noninvasive imaging assessment of hepatic fibrosis will facilitate earlier diagnosis and improve patient monitoring with the goal of preventing the progression to cirrhosis and its complications.
Collapse
Affiliation(s)
- Jeanne M Horowitz
- Department of Radiology, Feinberg School of Medicine, Northwestern University, 676 St. Clair St, Suite 800, Chicago, IL, 60611, USA.
| | - Sudhakar K Venkatesh
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Richard L Ehman
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Kartik Jhaveri
- Division of Abdominal Imaging, Joint Department of Medical Imaging, University Health Network, Mt. Sinai Hospital & Women's College Hospital, University of Toronto, 610 University Ave, Toronto, ON, M5G 2M9, Canada
| | - Patrick Kamath
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Michael A Ohliger
- Department of Radiology and Biomedical Imaging, UCSF School of Medicine, Zuckerberg San Francisco General Hospital, 1001 Potrero Ave, San Francisco, CA, 94110, USA
| | - Anthony E Samir
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
| | - Alvin C Silva
- Department of Radiology, Mayo Clinic in Arizona, 13400 E. Shea Blvd., Scottsdale, AZ, 85259, USA
| | - Bachir Taouli
- Department of Radiology and Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, Box 1234, New York, NY, 10029, USA
| | - Michael S Torbenson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Michael L Wells
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Benjamin Yeh
- Department of Radiology and Biomedical Imaging, UCSF School of Medicine, Zuckerberg San Francisco General Hospital, 1001 Potrero Ave, San Francisco, CA, 94110, USA
| | - Frank H Miller
- Department of Radiology, Feinberg School of Medicine, Northwestern University, 676 St. Clair St, Suite 800, Chicago, IL, 60611, USA
| |
Collapse
|
32
|
Sheng RF, Wang HQ, Yang L, Jin KP, Xie YH, Fu CX, Zeng MS. Assessment of liver fibrosis using T1 mapping on Gd-EOB-DTPA-enhanced magnetic resonance. Dig Liver Dis 2017; 49:789-795. [PMID: 28237298 DOI: 10.1016/j.dld.2017.02.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 02/02/2017] [Accepted: 02/06/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Few studies have investigated the value of Gd-EOB-DTPA-enhanced T1 mapping in exact fibrosis staging, especially its correlation with hepatic molecular transporters. AIMS To investigate the diagnostic value of Gd-EOB-DTPA-enhanced T1 mapping in staging liver fibrosis and its relationship with hepatic molecular transporters. METHODS Thirty rats were divided into the carbon tetrachloride-induced fibrosis groups and a control group. T1-mapping was performed before and 20min after administration of Gd-EOB-DTPA. The T1 relaxation time and reduction rate (Δ%) were calculated, and their correlations with the degree of fibrosis, necroinflammatory activity, iron load and hepatic molecular transporters were assessed and compared. RESULTS Hepatobiliary phase T1 relaxation time (HBP) and Δ% were different between each adjacent fibrosis subgroups(P=0.000-0.042). Very strong correlations existed between fibrosis and both HBP and Δ% (r=0.960/-0.952), and multivariate analyses revealed that fibrosis was the only factor independently predicted by HBP (P=0.000) and Δ% (P=0.001), comparing to necroinflammatory activity and iron load. The expression of the organic anion transporting polypeptide1a1 (Oatp1a1) was significantly correlated with HBP and Δ% at both mRNA (r=-0.741/0.697) and protein (r=-0.577/0.602) levels. Weaker correlations were found for multidrug resistance associated protein2 (Mrp2). Generally, both transporters showed decreasing levels with increasing degrees of fibrosis. CONCLUSION Gd-EOB-DTPA-enhanced T1 mapping may provide a reliable diagnostic tool in staging liver fibrosis, and can be regarded as a useful imaging biomarker of hepatocyte transporter function.
Collapse
Affiliation(s)
- Ruo Fan Sheng
- Department of Radiology, Zhongshan Hospital, Fudan University, Xuhui District, Shanghai, China; Shanghai Institute of Medical Imaging, Xuhui District, Shanghai, China
| | - He Qing Wang
- Department of Radiology, Zhongshan Hospital, Fudan University, Xuhui District, Shanghai, China; Shanghai Institute of Medical Imaging, Xuhui District, Shanghai, China
| | - Li Yang
- Department of Radiology, Zhongshan Hospital, Fudan University, Xuhui District, Shanghai, China; Shanghai Institute of Medical Imaging, Xuhui District, Shanghai, China
| | - Kai Pu Jin
- Department of Radiology, Zhongshan Hospital, Fudan University, Xuhui District, Shanghai, China; Shanghai Institute of Medical Imaging, Xuhui District, Shanghai, China
| | - Yan Hong Xie
- Department of Pathology, Zhongshan Hospital, Fudan University, Xuhui District, Shanghai 200032, China
| | - Cai Xia Fu
- MR Collaboration NEA, Siemens Ltd. China, Shanghai, China
| | - Meng Su Zeng
- Department of Radiology, Zhongshan Hospital, Fudan University, Xuhui District, Shanghai, China; Shanghai Institute of Medical Imaging, Xuhui District, Shanghai, China.
| |
Collapse
|
33
|
Yoo H, Lee JM, Yoon JH, Kang HJ, Lee SM, Yang HK, Han JK. T2 * Mapping from Multi-Echo Dixon Sequence on Gadoxetic Acid-Enhanced Magnetic Resonance Imaging for the Hepatic Fat Quantification: Can It Be Used for Hepatic Function Assessment? Korean J Radiol 2017; 18:682-690. [PMID: 28670163 PMCID: PMC5447644 DOI: 10.3348/kjr.2017.18.4.682] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 03/03/2017] [Indexed: 12/12/2022] Open
Abstract
Objective To evaluate the diagnostic value of T2* mapping using 3D multi-echo Dixon gradient echo acquisition on gadoxetic acid-enhanced liver magnetic resonance imaging (MRI) as a tool to evaluate hepatic function. Materials and Methods This retrospective study was approved by the IRB and the requirement of informed consent was waived. 242 patients who underwent liver MRIs, including 3D multi-echo Dixon fast gradient-recalled echo (GRE) sequence at 3T, before and after administration of gadoxetic acid, were included. Based on clinico-laboratory manifestation, the patients were classified as having normal liver function (NLF, n = 50), mild liver damage (MLD, n = 143), or severe liver damage (SLD, n = 30). The 3D multi-echo Dixon GRE sequence was obtained before, and 10 minutes after, gadoxetic acid administration. Pre- and post-contrast T2* values, as well as T2* reduction rates, were measured from T2* maps, and compared among the three groups. Results There was a significant difference in T2* reduction rates between the NLF and SLD groups (−0.2 ± 4.9% vs. 5.0 ± 6.9%, p = 0.002), and between the MLD and SLD groups (3.2 ± 6.0% vs. 5.0 ± 6.9%, p = 0.003). However, there was no significant difference in both the pre- and post-contrast T2* values among different liver function groups (p = 0.735 and 0.131, respectively). A receiver operating characteristic (ROC) curve analysis showed that the area under the ROC curve for using T2* reduction rates to differentiate the SLD group from the NLF group was 0.74 (95% confidence interval: 0.63–0.83). Conclusion Incorporation of T2* mapping using 3D multi-echo Dixon GRE sequence in gadoxetic acid-enhanced liver MRI protocol may provide supplemental information for liver function deterioration in patients with SLD.
Collapse
Affiliation(s)
- Hyunsuk Yoo
- Department of Radiology, Seoul National University Hospital, Seoul 03080, Korea
| | - Jeong Min Lee
- Department of Radiology, Seoul National University Hospital, Seoul 03080, Korea.,Institute of Radiation Medicine, Seoul National University Hospital, Seoul 03080, Korea
| | - Jeong Hee Yoon
- Department of Radiology, Seoul National University Hospital, Seoul 03080, Korea
| | - Hyo-Jin Kang
- Department of Radiology, Seoul National University Hospital, Seoul 03080, Korea
| | - Sang Min Lee
- Department of Radiology, Seoul National University Hospital, Seoul 03080, Korea.,Department of Radiology, Hallym University Sacred Heart Hospital, Anyang 14068, Korea
| | - Hyun Kyung Yang
- Department of Radiology, Seoul National University Hospital, Seoul 03080, Korea
| | - Joon Koo Han
- Department of Radiology, Seoul National University Hospital, Seoul 03080, Korea.,Institute of Radiation Medicine, Seoul National University Hospital, Seoul 03080, Korea
| |
Collapse
|
34
|
Nakagawa M, Namimoto T, Shimizu K, Morita K, Sakamoto F, Oda S, Nakaura T, Utsunomiya D, Shiraishi S, Yamashita Y. Measuring hepatic functional reserve using T1 mapping of Gd-EOB-DTPA enhanced 3T MR imaging: A preliminary study comparing with 99mTc GSA scintigraphy and signal intensity based parameters. Eur J Radiol 2017. [PMID: 28624009 DOI: 10.1016/j.ejrad.2017.05.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE To determine the utility of liver T1-mapping on gadolinium-ethoxybenzyl-diethylenetriamine-pentaacetic acid (Gd-EOB-DTPA) enhanced magnetic resonance (MR) imaging for the measurement of liver functional reserve compared with the signal intensity (SI) based parameters, technetium-99m-galactosyl serum albumin (99mTc-GSA) scintigraphy and indocyanine green (ICG) clearance. MATERIALS AND METHODS This retrospective study included 111 patients (Child-Pugh-A 90; -B 21) performed with both Gd-EOB-DTPA enhanced liver MR imaging and 99mTc-GSA (76 patients with ICG). Receiver operating characteristic (ROC) curve analysis was performed to compare diagnostic performances of T1-relaxation-time parameters [pre-(T1pre) and post-contrast (T1hb) Gd-EOB-DTPA], SI based parameters [relative enhancement (RE), liver-to-muscle-ratio (LMR), liver-to-spleen-ratio (LSR)] and 99mTc-GSA scintigraphy blood clearance index (HH15)] for Child-Pugh classification. Pearson's correlation was used for comparisons among T1-relaxation-time parameters, SI-based parameters, HH15 and ICG. RESULTS A significant difference was obtained for Child-Pugh classification with T1hb, ΔT1, all SI based parameters and HH15. T1hb had the highest AUC followed by RE, LMR, LSR, ΔT1, HH15 and T1pre. The correlation coefficients with HH15 were T1pre 0.22, T1hb 0.53, ΔT1 -0.38 of T1 relaxation parameters; RE -0.44, LMR -0.45, LSR -0.43 of SI-based parameters. T1hb was highest for correlation with HH15. The correlation coefficients with ICG were T1pre 0.29, T1hb 0.64, ΔT1 -0.42 of T1 relaxation parameters; RE -0.50, LMR -0.61, LSR -0.58 of SI-based parameters; 0.64 of HH15. Both T1hb and HH15 were highest for correlation with ICG. CONCLUSION T1 relaxation time at post-contrast of Gd-EOB-DTPA (T1hb) was strongly correlated with ICG clearance and moderately correlated HH15 with 99mTc-GSA. T1hb has the potential to provide robust parameter of liver functional reserve.
Collapse
Affiliation(s)
- Masataka Nakagawa
- Department of Diagnostic Radiology, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuoku, Kumamoto, 860-8556, Japan
| | - Tomohiro Namimoto
- Department of Diagnostic Radiology, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuoku, Kumamoto, 860-8556, Japan.
| | - Kie Shimizu
- Department of Diagnostic Radiology, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuoku, Kumamoto, 860-8556, Japan
| | - Kosuke Morita
- Department of Diagnostic Radiology, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuoku, Kumamoto, 860-8556, Japan
| | - Fumi Sakamoto
- Department of Diagnostic Radiology, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuoku, Kumamoto, 860-8556, Japan
| | - Seitaro Oda
- Department of Diagnostic Radiology, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuoku, Kumamoto, 860-8556, Japan
| | - Takeshi Nakaura
- Department of Diagnostic Radiology, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuoku, Kumamoto, 860-8556, Japan
| | - Daisuke Utsunomiya
- Department of Diagnostic Radiology, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuoku, Kumamoto, 860-8556, Japan
| | - Shinya Shiraishi
- Department of Diagnostic Radiology, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuoku, Kumamoto, 860-8556, Japan
| | - Yasuyuki Yamashita
- Department of Diagnostic Radiology, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuoku, Kumamoto, 860-8556, Japan
| |
Collapse
|
35
|
Tian B, Liu R, Chen S, Chen L, Liu F, Jia G, Dong Y, Li J, Chen H, Lu J. Mannose-coated gadolinium liposomes for improved magnetic resonance imaging in acute pancreatitis. Int J Nanomedicine 2017; 12:1127-1141. [PMID: 28260882 PMCID: PMC5325132 DOI: 10.2147/ijn.s123290] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background Acute pancreatitis (AP) is an acute inflammatory condition of the pancreas. The symptoms, treatment, and prognosis of mild and severe AP are different, and severe AP is a potentially life-threatening disease with a high incidence of complications and high mortality rate. Thus, it is urgent to develop an effective approach to reliably discriminate between mild and severe AP. Methods We have developed novel gadolinium-diethylenetriaminepentaacetic (Gd-DTPA)-loaded mannosylated liposomes (named thereafter M-Gd-NL) that preferably target macrophages in AP. The targeting ability of M-Gd-NL toward macrophages in AP and its ability to discriminate between mild and severe AP were evaluated. Results The liposomes were of desired particle size (~100 nm), Gd-DTPA encapsulation efficiency (~85%), and stability. M-Gd-NL and non-targeted Gd-DTPA-loaded liposomes (Gd-NL) exhibited increased relaxivity compared with Gd-DTPA. Compared with Gd-NL and Gd-DTPA, M-Gd-NL showed increased uptake in macrophages, resulting in increased T1 imaging ability both in vitro (macrophage cell line) and in vivo (severe AP model). Importantly, M-Gd-NL had the ability to discriminate between mild and severe AP, as reflected by a significantly higher T1 magnetic resonance imaging signal in severe AP than in mild AP. M-Gd-NL did not show severe organ toxicity in rats. Conclusion Our data suggest that M-Gd-NL had enhanced magnetic resonance imaging ability by targeting macrophages in AP and good ability to discriminate between mild and severe AP. We believe that M-Gd-NL could shed new light on the diagnosis of AP in the near future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Huaiwen Chen
- Center of Clinical and Translational Medicine, Shanghai Changhai Hospital, The Second Military Medical University; Sunlipo Biotech Research Center for Nanomedicine, Shanghai, People's Republic of China
| | | |
Collapse
|
36
|
Unal E, Idilman IS, Karçaaltıncaba M. Multiparametric or practical quantitative liver MRI: towards millisecond, fat fraction, kilopascal and function era. Expert Rev Gastroenterol Hepatol 2017; 11:167-182. [PMID: 27937040 DOI: 10.1080/17474124.2017.1271710] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
New advances in liver magnetic resonance imaging (MRI) may enable diagnosis of unseen pathologies by conventional techniques. Normal T1 (550-620 ms for 1.5 T and 700-850 ms for 3 T), T2, T2* (>20 ms), T1rho (40-50 ms) mapping, proton density fat fraction (PDFF) (≤5%) and stiffness (2-3kPa) values can enable differentiation of a normal liver from chronic liver and diffuse diseases. Gd-EOB-DTPA can enable assessment of liver function by using postcontrast hepatobiliary phase or T1 reduction rate (normally above 60%). T1 mapping can be important for the assessment of fibrosis, amyloidosis and copper overload. T1rho mapping is promising for the assessment of liver collagen deposition. PDFF can allow objective treatment assessment in NAFLD and NASH patients. T2 and T2* are used for iron overload determination. MR fingerprinting may enable single slice acquisition and easy implementation of multiparametric MRI and follow-up of patients. Areas covered: T1, T2, T2*, PDFF and stiffness, diffusion weighted imaging, intravoxel incoherent motion imaging (ADC, D, D* and f values) and function analysis are reviewed. Expert commentary: Multiparametric MRI can enable biopsyless diagnosis and more objective staging of diffuse liver disease, cirrhosis and predisposing diseases. A comprehensive approach is needed to understand and overcome the effects of iron, fat, fibrosis, edema, inflammation and copper on MR relaxometry values in diffuse liver disease.
Collapse
Affiliation(s)
- Emre Unal
- a Liver Imaging Team, Department of Radiology , Hacettepe University School of Medicine , Ankara , Turkey
- b Department of Radiology , Zonguldak Ataturk State Hospital , Zonguldak , Turkey
| | - Ilkay Sedakat Idilman
- a Liver Imaging Team, Department of Radiology , Hacettepe University School of Medicine , Ankara , Turkey
- c Department of Radiology , Ankara Ataturk Education and Research Hospital , Ankara , Turkey
| | - Muşturay Karçaaltıncaba
- a Liver Imaging Team, Department of Radiology , Hacettepe University School of Medicine , Ankara , Turkey
| |
Collapse
|
37
|
Ba-Ssalamah A, Bastati N, Wibmer A, Fragner R, Hodge JC, Trauner M, Herold CJ, Bashir MR, Van Beers BE. Hepatic gadoxetic acid uptake as a measure of diffuse liver disease: Where are we? J Magn Reson Imaging 2016; 45:646-659. [PMID: 27862590 DOI: 10.1002/jmri.25518] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/05/2016] [Indexed: 02/06/2023] Open
Abstract
MRI has emerged as the most comprehensive noninvasive diagnostic tool for focal liver lesions and diffuse hepatobiliary disorders. The introduction of hepatobiliary contrast agents, most notably gadoxetic acid (GA), has expanded the role of MRI, particularly in the functional imaging of chronic liver diseases, such as nonalcoholic fatty liver disease (NAFLD). GA-enhanced MRI (GA-MRI) may help to distinguish between the two subgroups of NAFLD, simple steatosis and nonalcoholic steatohepatitis. Furthermore, GA-MRI can be used to stage fibrosis and cirrhosis, predict liver transplant graft survival, and preoperatively estimate the risk of liver failure should major resection be undertaken. The amount of GA uptake can be estimated, using static images, by the relative liver enhancement, hepatic uptake index, and relaxometry of T1-mapping during the hepatobiliary phase. On the contrary, the hepatic extraction fraction and liver perfusion can be measured on dynamic imaging. Importantly, there is currently no clear consensus as to which of these MR-derived parameters is the most suitable for assessing liver dysfunction. This review article aims to describe the current role of GA-enhanced MRI in quantifying liver function, primarily in diffuse hepatobiliary disorders. LEVEL OF EVIDENCE 3 J. Magn. Reson. Imaging 2017;45:646-659.
Collapse
Affiliation(s)
- Ahmed Ba-Ssalamah
- Department of Biomedical Imaging and Image-guided Therapy, Medical University Vienna, Austria
| | - Nina Bastati
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, General Hospital of Vienna (AKH), Austria
| | - Andreas Wibmer
- Department of Biomedical Imaging and Image-guided Therapy, Medical University Vienna, Austria
| | - Romana Fragner
- Department of Biomedical Imaging and Image-guided Therapy, Medical University Vienna, Austria
| | - Jacqueline C Hodge
- Department of Biomedical Imaging and Image-guided Therapy, Medical University Vienna, Austria
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, General Hospital of Vienna (AKH), Austria
| | - Christian J Herold
- Department of Biomedical Imaging and Image-guided Therapy, Medical University Vienna, Austria
| | - Mustafa R Bashir
- Department of Radiology and Center for Advanced Magnetic Resonance Development, Duke University Medical Center, Durham, North Carolina, USA.,Center for Advanced Magnetic Resonance Development, Duke University Medical Center, Durham, North Carolina, USA
| | - Bernard E Van Beers
- Laboratory of Imaging Biomarkers, UMR 1149, INSERM - University Paris Diderot and Department of Radiology, University Hospital Paris Nord - Beaujon, France
| |
Collapse
|
38
|
Yang L, Ding Y, Rao S, Chen C, Wu L, Sheng R, Fu C, Zeng M. Staging liver fibrosis in chronic hepatitis B with T 1 relaxation time index on gadoxetic acid-enhanced MRI: Comparison with aspartate aminotransferase-to-platelet ratio index and FIB-4. J Magn Reson Imaging 2016; 45:1186-1194. [PMID: 27563840 DOI: 10.1002/jmri.25440] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 08/08/2016] [Indexed: 12/17/2022] Open
Abstract
PURPOSE To assess the accuracy of the T1 relaxation time index on gadoxetic acid-enhanced magnetic resonance imaging (MRI) for staging liver fibrosis in chronic hepatitis B (CHB), in comparison and combination with the aspartate aminotransferase-to-platelet ratio index (APRI) and fibrosis-4 (FIB-4). MATERIALS AND METHODS A retrospective study of gadoxetic acid-enhanced T1 mapping and serum biochemical tests was performed on 126 CHB patients who underwent gadoxetic acid-enhanced 1.5T MRI, and the histological score used as the gold standard. The reduction rate of T1 relaxation time before and 20 minutes after gadoxetic acid injection (ΔT1 , ΔR1%), the contrast uptake rate (KHep ), APRI, and FIB-4 were calculated. The diagnostic efficacy of ΔT1 , ΔR1%, KHep , APRI, and FIB-4 for predicting stage 2 or greater (≥S2), stage 3 or greater (≥S3), and stage 4 (S4) was compared. RESULTS ΔT1 (r = -0.513, P < 0.001), ΔR1% (r = -0.626, P < 0.001), KHep (r = -0.527, P < 0.001), APRI (r = 0.519, P < 0.001), and FIB-4 (r = 0.476, P < 0.001) correlated significantly with fibrosis stages. Areas under the curves (AUCs) of ΔR1% for detecting ≥S2, ≥S3, and S4 were 0.849, 0.827, and 0.809, which were greater than that of APRI (0.763, 0.745, 0.787) and FIB-4 (0.727, 0.738, 0.772), but significant difference was found only in discriminating ≥S2 between ΔR1% and FIB-4 (P = 0.027). The combination of all five indices performed best, with AUC, sensitivity, and specificity of 0.860, 87.21%, and 72.50% for diagnosing ≥S2, 0.878, 82.81%, and 85.48% for ≥S3, and 0.867, 80.00%, and 83.95% for S4. CONCLUSION The gadoxetic acid-enhanced T1 relaxation time index appears to be superior to APRI and FIB-4 for predicting hepatic fibrosis. The combined use of gadoxetic acid-enhanced T1 mapping, APRI, and FIB-4 may be more reliable for staging liver fibrosis in CHB. LEVEL OF EVIDENCE 4 J. Magn. Reson. Imaging 2017;45:1186-1194.
Collapse
Affiliation(s)
- Li Yang
- Department of Radiology, Shanghai Institute of Medical Imaging, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Ying Ding
- Department of Radiology, Shanghai Institute of Medical Imaging, Zhongshan Hospital, Fudan University, Shanghai, P.R. China.,Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Shengxiang Rao
- Department of Radiology, Shanghai Institute of Medical Imaging, Zhongshan Hospital, Fudan University, Shanghai, P.R. China.,Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Caizhong Chen
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Lifang Wu
- Department of Radiology, Shanghai Institute of Medical Imaging, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Ruofan Sheng
- Department of Radiology, Shanghai Institute of Medical Imaging, Zhongshan Hospital, Fudan University, Shanghai, P.R. China.,Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Caixia Fu
- Siemens Healthcare, Shanghai, P.R. China
| | - Mengsu Zeng
- Department of Radiology, Shanghai Institute of Medical Imaging, Zhongshan Hospital, Fudan University, Shanghai, P.R. China.,Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| |
Collapse
|
39
|
Non-focal liver signal abnormalities on hepatobiliary phase of gadoxetate disodium-enhanced MR imaging: a review and differential diagnosis. Abdom Radiol (NY) 2016; 41:1399-410. [PMID: 26907715 DOI: 10.1007/s00261-016-0685-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Gadoxetate disodium (Gd-EOB-DTPA) is a linear, non-ionic paramagnetic MR contrast agent with combined extracellular and hepatobiliary properties commonly used for several liver indications. Although gadoxetate disodium is commonly used for detection and characterization of focal lesions, a spectrum of diffuse disease processes can affect the hepatobiliary phase of imaging (i.e., when contrast accumulates within the hepatocytes). Non-focal signal abnormalities during the hepatobiliary phase can be seen with multiple disease processes such as deposition disorders, infiltrating tumors, vascular diseases, and post-treatment changes. The purpose of this paper is to review the different processes which result in non-focal signal alteration during the hepatobiliary phase and to describe imaging patterns that may order a differential diagnosis and facilitate patient management.
Collapse
|