1
|
Duarte JMN. Concentrations of glutamate and N-acetylaspartate detected by magnetic resonance spectroscopy in the rat hippocampus correlate with hippocampal-dependent spatial memory performance. Front Mol Neurosci 2024; 17:1458070. [PMID: 39219740 PMCID: PMC11362093 DOI: 10.3389/fnmol.2024.1458070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Magnetic resonance spectroscopy (MRS) has been employed to investigate brain metabolite concentrations in vivo, and they vary during neuronal activation, across brain activity states, or upon disease with neurological impact. Whether resting brain metabolites correlate with functioning in behavioral tasks remains to be demonstrated in any of the widely used rodent models. This study tested the hypothesis that, in the absence of neurological disease or injury, the performance in a hippocampal-dependent memory task is correlated with the hippocampal levels of metabolites that are mainly synthesized in neurons, namely N-acetylaspartate (NAA), glutamate and GABA. Experimentally naïve rats were tested for hippocampal-dependent spatial memory performance by measuring spontaneous alternation in the Y-maze, followed by anatomical magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) in the hippocampus and cortex. Memory performance correlated with hippocampal concentrations of NAA (p = 0.024) and glutamate (p = 0.014) but not GABA. Concentrations of glutamate in the cortex also correlated with spatial memory (p = 0.035). In addition, memory performance was also correlated with the relative volume of the hippocampus (p = 0.041). Altogether, this exploratory study suggests that levels of the neuronal maker NAA and the main excitatory neurotransmitter glutamate are associated with physiological functional capacity.
Collapse
Affiliation(s)
- João M. N. Duarte
- Diabetes and Brain Function Unit, Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|
2
|
Grønbæk-Thygesen M, Hartmann-Petersen R. Cellular and molecular mechanisms of aspartoacylase and its role in Canavan disease. Cell Biosci 2024; 14:45. [PMID: 38582917 PMCID: PMC10998430 DOI: 10.1186/s13578-024-01224-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/24/2024] [Indexed: 04/08/2024] Open
Abstract
Canavan disease is an autosomal recessive and lethal neurological disorder, characterized by the spongy degeneration of the white matter in the brain. The disease is caused by a deficiency of the cytosolic aspartoacylase (ASPA) enzyme, which catalyzes the hydrolysis of N-acetyl-aspartate (NAA), an abundant brain metabolite, into aspartate and acetate. On the physiological level, the mechanism of pathogenicity remains somewhat obscure, with multiple, not mutually exclusive, suggested hypotheses. At the molecular level, recent studies have shown that most disease linked ASPA gene variants lead to a structural destabilization and subsequent proteasomal degradation of the ASPA protein variants, and accordingly Canavan disease should in general be considered a protein misfolding disorder. Here, we comprehensively summarize the molecular and cell biology of ASPA, with a particular focus on disease-linked gene variants and the pathophysiology of Canavan disease. We highlight the importance of high-throughput technologies and computational prediction tools for making genotype-phenotype predictions as we await the results of ongoing trials with gene therapy for Canavan disease.
Collapse
Affiliation(s)
- Martin Grønbæk-Thygesen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200N, Copenhagen, Denmark.
| | - Rasmus Hartmann-Petersen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200N, Copenhagen, Denmark.
| |
Collapse
|
3
|
Gong T, Hui SCN, Zöllner HJ, Britton M, Song Y, Chen Y, Gudmundson AT, Hupfeld KE, Davies-Jenkins CW, Murali-Manohar S, Porges EC, Oeltzschner G, Chen W, Wang G, Edden RAE. Neurometabolic timecourse of healthy aging. Neuroimage 2022; 264:119740. [PMID: 36356822 PMCID: PMC9902072 DOI: 10.1016/j.neuroimage.2022.119740] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/20/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022] Open
Abstract
PURPOSE The neurometabolic timecourse of healthy aging is not well-established, in part due to diversity of quantification methodology. In this study, a large structured cross-sectional cohort of male and female subjects throughout adulthood was recruited to investigate neurometabolic changes as a function of age, using consensus-recommended magnetic resonance spectroscopy quantification methods. METHODS 102 healthy volunteers, with approximately equal numbers of male and female participants in each decade of age from the 20s, 30s, 40s, 50s, and 60s, were recruited with IRB approval. MR spectroscopic data were acquired on a 3T MRI scanner. Metabolite spectra were acquired using PRESS localization (TE=30 ms; 96 transients) in the centrum semiovale (CSO) and posterior cingulate cortex (PCC). Water-suppressed spectra were modeled using the Osprey algorithm, employing a basis set of 18 simulated metabolite basis functions and a cohort-mean measured macromolecular spectrum. Pearson correlations were conducted to assess relationships between metabolite concentrations and age for each voxel; Spearman correlations were conducted where metabolite distributions were non-normal. Paired t-tests were run to determine whether metabolite concentrations differed between the PCC and CSO. Finally, robust linear regressions were conducted to assess both age and sex as predictors of metabolite concentrations in the PCC and CSO and separately, to assess age, signal-noise ratio, and full width half maximum (FWHM) linewidth as predictors of metabolite concentrations. RESULTS Data from four voxels were excluded (2 ethanol; 2 unacceptably large lipid signal). Statistically-significant age*metabolite Pearson correlations were observed for tCho (r(98)=0.33, p<0.001), tCr (r(98)=0.60, p<0.001), and mI (r(98)=0.32, p=0.001) in the CSO and for NAAG (r(98)=0.26, p=0.008), tCho(r(98)=0.33, p<0.001), tCr (r(98)=0.39, p<0.001), and Gln (r(98)=0.21, p=0.034) in the PCC. Spearman correlations for non-normal variables revealed a statistically significant correlation between sI and age in the CSO (r(86)=0.26, p=0.013). No significant correlations were seen between age and tNAA, NAA, Glx, Glu, GSH, PE, Lac, or Asp in either region (all p>0.20). Age associations for tCho, tCr, mI and sI in the CSO and for NAAG, tCho, and tCr in the PCC remained when controlling for sex in robust regressions. CSO NAAG and Asp, as well as PCC tNAA, sI, and Lac were higher in women; PCC Gln was higher in men. When including an age*sex interaction term in robust regression models, a significant age*sex interaction was seen for tCho (F(1,96)=11.53, p=0.001) and GSH (F(1,96)=7.15, p=0.009) in the CSO and tCho (F(1,96)=9.17, p=0.003), tCr (F(1,96)=9.59, p=0.003), mI (F(1,96)=6.48, p=0.012), and Lac (F(1,78)=6.50, p=0.016) in the PCC. In all significant interactions, metabolite levels increased with age in females, but not males. There was a significant positive correlation between linewidth and age. Age relationships with tCho, tCr, and mI in the CSO and tCho, tCr, mI, and sI in the PCC were significant after controlling for linewidth and FWHM in robust regressions. CONCLUSION The primary (correlation) results indicated age relationships for tCho, tCr, mI, and sI in the CSO and for NAAG, tCho, tCr, and Gln in the PCC, while no age correlations were found for tNAA, NAA, Glx, Glu, GSH, PE, Lac, or Asp in either region. Our results provide a normative foundation for future work investigating the neurometabolic time course of healthy aging using MRS.
Collapse
Affiliation(s)
- Tao Gong
- Departments of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Departments of Radiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
| | - Steve C N Hui
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States of America
| | - Helge J Zöllner
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States of America
| | - Mark Britton
- Center for Cognitive Aging and Memory, University of Florida, Gainesville, FL, United States of America; McKnight Brain Research Foundation, University of Florida, FL, United States of America; Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, United States of America
| | - Yulu Song
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States of America
| | - Yufan Chen
- Departments of Radiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
| | - Aaron T Gudmundson
- Department of Neurobiology and Behavior, University of California, Irvine, CA, United States of America
| | - Kathleen E Hupfeld
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States of America
| | - Christopher W Davies-Jenkins
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States of America
| | - Saipavitra Murali-Manohar
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States of America
| | - Eric C Porges
- Center for Cognitive Aging and Memory, University of Florida, Gainesville, FL, United States of America; McKnight Brain Research Foundation, University of Florida, FL, United States of America; Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, United States of America
| | - Georg Oeltzschner
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States of America
| | | | - Guangbin Wang
- Departments of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Departments of Radiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China.
| | - Richard A E Edden
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States of America
| |
Collapse
|
4
|
Metabolite differences in the medial prefrontal cortex in schizophrenia patients with and without persistent auditory verbal hallucinations: a 1H MRS study. Transl Psychiatry 2022; 12:116. [PMID: 35322015 PMCID: PMC8943150 DOI: 10.1038/s41398-022-01866-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/19/2022] [Accepted: 02/24/2022] [Indexed: 11/08/2022] Open
Abstract
Studies of schizophrenia (SCZ) have associated auditory verbal hallucinations (AVH) with structural and functional abnormalities in frontal cortex, especially medial prefrontal cortex (mPFC). Although abnormal prefrontal network connectivity associated with language production has been studied extensively, the relationship between mPFC dysfunction (highly relevant to the pathophysiology of SCZ) and AVH has been rarely investigated. In this study, proton magnetic resonance spectroscopy was used to measure metabolite levels in the mPFC in 61 SCZ patients with persistent AVH (pAVH), 53 SCZ patients without AVH (non-AVH), and 59 healthy controls (HC). The pAVH group showed significantly lower levels of N-acetyl-aspartate + N-acetyl-aspartyl-glutamate (tNAA) and glutamate + glutamine (Glx), compared with the non-AVH (tNAA: p = 0.022, Glx: p = 0.012) and HC (tNAA: p = 0.001, Glx: p = 0.001) groups. No difference was found in the levels of tNAA and Glx between non-AVH and HC. The levels of tNAA and Glx in the mPFC was negatively correlated with the severity of pAVH (tNAA: r = -0.24, p = 0.014; Glx: r = -0.30, p = 0.002). In conclusion, pAVH in SCZ patients might be related to decreased levels of tNAA and Glx in the mPFC, indicating that tNAA or Glx might play a key role in the pathogenesis of pAVH.
Collapse
|
5
|
Ren J, Malloy CR, Sherry AD. 31 P-MRS of the healthy human brain at 7 T detects multiple hexose derivatives of uridine diphosphate glucose. NMR IN BIOMEDICINE 2021; 34:e4511. [PMID: 33772915 DOI: 10.1002/nbm.4511] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
Nucleotide sugars are required for the synthesis of glycoproteins and glycolipids, which play crucial roles in many cellular functions such as cell communication and immune responses. Uridine diphosphate-glucose (UDP-Glc) was previously believed to be the only nucleotide sugar detectable in brain by 31 P-MRS. Using spectra of high SNR and high resolution acquired at 7 T, we showed that multiple nucleotide sugars are coexistent in brain and can be measured simultaneously. In addition to UDP-Glc, these also include UDP-galactose (UDP-Gal), -N-acetyl-glucosamine (UDP-GlcNAc) and -N-acetyl-galactosamine (UDP-GalNAc), collectively denoted as UDP(G). Coexistence of these UDP(G) species is evident from a quartet-like multiplet at -9.8 ppm (M-9.8 ), which is a common feature seen across a wide age range (24-64 years). Lineshape fitting of M-9.8 allows an evaluation of all four UDP(G) components, which further aids in analysis of a mixed signal at -8.2 ppm (M-8.2 ) for deconvolution of NAD+ and NADH. For a group of seven young healthy volunteers, the concentrations of UDP(G) species were 0.04 ± 0.01 mM for UDP-Gal, 0.07 ± 0.03 mM for UDP-Glc, 0.06 ± 0.02 mM for UDP-GalNAc and 0.08 ± 0.03 mM for UDP-GlcNA, in reference to ATP (2.8 mM). The combined concentration of all UDP(G) species (average 0.26 ± 0.06 mM) was similar to the pooled concentration of NAD+ and NADH (average 0.27 ± 0.06 mM, with a NAD+ /NADH ratio of 6.7 ± 2.1), but slightly lower than previously found in an older cohort (0.31 mM). The in vivo NMR analysis of UDP-sugar composition is consistent with those from tissue extracts by other modalities in the literature. Given that glycosylation is dependent on the availability of nucleotide sugars, assaying multiple nucleotide sugars may provide valuable insights into potential aberrant glycosylation, which has been implicated in certain diseases such as cancer and Alzheimer's disease.
Collapse
Affiliation(s)
- Jimin Ren
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Craig R Malloy
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- VA North Texas Health Care System, Dallas, Texas, USA
| | - A Dean Sherry
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Chemistry, University of Texas at Dallas, Richardson, Texas, USA
| |
Collapse
|
6
|
Manzhurtsev A, Menschchikov P, Yakovlev A, Ublinskiy M, Bozhko O, Kupriyanov D, Akhadov T, Varfolomeev S, Semenova N. 3T MEGA-PRESS study of N-acetyl aspartyl glutamate and N-acetyl aspartate in activated visual cortex. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2021; 34:555-568. [PMID: 33591453 DOI: 10.1007/s10334-021-00912-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To measure N-acetyl aspartyl glutamate (NAAG) and N-acetyl aspartate (NAA) concentrations in visual cortex activated by a continuous stimulation in a 3 T field. METHODS NAAG and NAA spectra were obtained with MEGA-PRESS pulse sequence (TE/TR = 140/2000 ms; δONNAAG/δOFFNAAG = 4.61/4.15 ppm; δONNAA/δOFFNAA = 4.84/4.38 ppm) in 14 healthy volunteers at rest and upon stimulation by a radial checkerboard flickering at a frequency of 8 Hz. Spectra of all subjects were frequency and phase aligned and then averaged. Additionally, to obtain the time-dependency data, spectra were divided into time sections of 64 s each. The intensities of NAA, NAAG and lactate + macromolecular (Lac + MM) signals were defined by integration of the real part of spectra. The heights of the central resonance of NAAG and NAA signals were measured. RESULTS The NAAG and NAA concentrations, measured with 2.5% and 0.5% error, respectively, were unaffected by visual activation. A significant increase in the Lac + MM signal by ~ 12% is clearly observed. No stimulation-induced time dependency was found for NAAG or NAA, while the increase in Lac + MM was gradual. The concentration values in visual cortex are in good agreement with the 7 T MRS measurements: [NAAG] = 1.55 mM, [NAA] = 11.95 mM. CONCLUSION The MEGA-PRESS pulse sequence together with the spectral preprocessing techniques allowed to demonstrate that the concentrations of NAAG and NAA in the visual cortex remain constant during continuous visual stimulation within the margin of error. An increase in the lactate signal intensity signifies the activation of the anaerobic glycolysis in activated visual cortex.
Collapse
Affiliation(s)
- Andrei Manzhurtsev
- Clinical and Research Institute of Emergency Pediatric Surgery and Trauma, Bol´shaya Polyanka St. 22, 119180, Moscow, Russian Federation. .,Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina St. 4, 119334, Moscow, Russian Federation. .,Moscow State University, Leninskie Gory st., 1, 119991, Moscow, Russian Federation.
| | - Petr Menschchikov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina St. 4, 119334, Moscow, Russian Federation.,LLC Philips Healthcare, 13, Sergeya Makeeva St., 123022, Moscow, Russian Federation
| | - Alexei Yakovlev
- Clinical and Research Institute of Emergency Pediatric Surgery and Trauma, Bol´shaya Polyanka St. 22, 119180, Moscow, Russian Federation.,Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina St. 4, 119334, Moscow, Russian Federation.,Semenov Institute of Chemical Physics, Russian Academy of Sciences, Kosygina St. 4, 119334, Moscow, Russian Federation
| | - Maxim Ublinskiy
- Clinical and Research Institute of Emergency Pediatric Surgery and Trauma, Bol´shaya Polyanka St. 22, 119180, Moscow, Russian Federation.,Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina St. 4, 119334, Moscow, Russian Federation
| | - Olga Bozhko
- Clinical and Research Institute of Emergency Pediatric Surgery and Trauma, Bol´shaya Polyanka St. 22, 119180, Moscow, Russian Federation
| | - Dmitrii Kupriyanov
- LLC Philips Healthcare, 13, Sergeya Makeeva St., 123022, Moscow, Russian Federation
| | - Tolib Akhadov
- Clinical and Research Institute of Emergency Pediatric Surgery and Trauma, Bol´shaya Polyanka St. 22, 119180, Moscow, Russian Federation
| | - Sergei Varfolomeev
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina St. 4, 119334, Moscow, Russian Federation.,Moscow State University, Leninskie Gory st., 1, 119991, Moscow, Russian Federation
| | - Natalia Semenova
- Clinical and Research Institute of Emergency Pediatric Surgery and Trauma, Bol´shaya Polyanka St. 22, 119180, Moscow, Russian Federation.,Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina St. 4, 119334, Moscow, Russian Federation.,Moscow State University, Leninskie Gory st., 1, 119991, Moscow, Russian Federation.,Semenov Institute of Chemical Physics, Russian Academy of Sciences, Kosygina St. 4, 119334, Moscow, Russian Federation
| |
Collapse
|
7
|
Abstract
RATIONALE Proton magnetic resonance spectroscopy (1H-MRS) is a cross-species neuroimaging technique that can measure concentrations of several brain metabolites, including glutamate and GABA. This non-invasive method has promise in developing centrally acting drugs, as it can be performed repeatedly within-subjects and be used to translate findings from the preclinical to clinical laboratory using the same imaging biomarker. OBJECTIVES This review focuses on the utility of single-voxel 1H-MRS in developing novel glutamatergic or GABAergic drugs for the treatment of psychiatric disorders and includes research performed in rodent models, healthy volunteers and patient cohorts. RESULTS Overall, these studies indicate that 1H-MRS is able to detect the predicted pharmacological effects of glutamatergic or GABAergic drugs on voxel glutamate or GABA concentrations, although there is a shortage of studies examining dose-related effects. Clinical studies have applied 1H-MRS to better understand drug therapeutic mechanisms, including the glutamatergic effects of ketamine in depression and of acamprosate in alcohol dependence. There is an emerging interest in identifying patient subgroups with 'high' or 'low' brain regional 1H-MRS glutamate levels for more targeted drug development, which may require ancillary biomarkers to improve the accuracy of subgroup discrimination. CONCLUSIONS Considerations for future research include the sensitivity of single-voxel 1H-MRS in detecting drug effects, inter-site measurement reliability and the interpretation of drug-induced changes in 1H-MRS metabolites relative to the known pharmacological molecular mechanisms. On-going technological development, in single-voxel 1H-MRS and in related complementary techniques, will further support applications within CNS drug discovery.
Collapse
Affiliation(s)
- Alice Egerton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, UK.
| |
Collapse
|
8
|
Increased Glutamate concentrations during prolonged motor activation as measured using functional Magnetic Resonance Spectroscopy at 3T. Neuroimage 2020; 223:117338. [DOI: 10.1016/j.neuroimage.2020.117338] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 01/20/2023] Open
|
9
|
White TL, Gonsalves MA, Cohen RA, Harris AD, Monnig MA, Walsh EG, Nitenson AZ, Porges EC, Lamb DG, Woods AJ, Borja CB. The neurobiology of wellness: 1H-MRS correlates of agency, flexibility and neuroaffective reserves in healthy young adults. Neuroimage 2020; 225:117509. [PMID: 33127477 PMCID: PMC7869459 DOI: 10.1016/j.neuroimage.2020.117509] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/08/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023] Open
Abstract
Proton magnetic resonance spectroscopy (1H-MRS) is a noninvasive imaging technique that measures the concentration of metabolites in defined areas of the human brain in vivo. The underlying structure of natural metabolism-emotion relationships is unknown. Further, there is a wide range of between-person differences in metabolite concentration in healthy individuals, but the significance of this variation for understanding emotion in healthy humans is unclear. Here we investigated the relationship of two emotional constructs, agency and flexibility, with the metabolites glutamate and glutamine (Glx), N-acetylaspartate (tNAA), choline (Cho), creatine (tCr), and myo-inositol (Ins) in the right dorsal anterior cingulate cortex (dACC) in medically and psychiatrically healthy volunteers (N = 20, 9 female; mean age = 22.8 years, SD = 3.40). The dACC was selected because this region is an integrative hub involved in multiple brain networks of emotion, cognition and behavior. Emotional traits were assessed using the Multidimensional Personality Questionnaire Brief Form (MPQ-BF), an empirically derived self-report instrument with an orthogonal factor structure. Phenotypes evaluated were positive and negative agency (MPQ-BF Social Potency, Aggression), emotional and behavioral flexibility (MPQ-BF Absorption, Control-reversed), and positive and negative affect (MPQ-BF Social Closeness; Stress Reaction, Alienation). The resting concentration of tNAA in the dACC was robustly positively correlated with Absorption (r = +0.56, unadjusted p = .005), moderately positively correlated with Social Potency (r = +0.42, unadjusted p = .03), and robustly negatively correlated with Aggression (r = −0.59, unadjusted p = .003). Absorption and Aggression accounted for substantial variance in tNAA (R2 = 0.31, 0.35; combined R2 = 0.50), and survived correction for multiple comparisons (Holm-Bonferroni adjusted p = .032, 0.021, respectively). dACC Glx and Cho had modest relationships with behavioral flexibility and social affiliation that did not survive this multiple correction, providing effect sizes for future work. Principal Component Analysis (PCA) revealed a three-factor orthogonal solution indicating specific relationships between: 1) Glx and behavioral engagement; 2) Cho and affiliative bonding; and 3) tNAA and a novel dimension that we term neuroaffective reserves. Our results inform the neurobiology of agency and flexibility and lay the groundwork for understanding mechanisms of natural emotion using 1H-MRS.
Collapse
Affiliation(s)
- Tara L White
- Center for Alcohol and Addiction Studies, Brown University, Box G-S121-4, 121 South Main St., Providence, RI 02912, USA; Department of Behavioral and Social Sciences, School of Public Health, Brown University, Providence, RI, USA; Carney Institute for Brain Science, Brown University, Providence, RI, USA.
| | | | - Ronald A Cohen
- Department of Clinical and Health Psychology, Center for Cognitive Aging and Memory, and McKnight Brain Research Foundation, University of Florida, Gainesville, FL, USA
| | - Ashley D Harris
- Department of Radiology, CAIR Program, Alberta Children's Hospital Research Institute, and Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Mollie A Monnig
- Center for Alcohol and Addiction Studies, Brown University, Box G-S121-4, 121 South Main St., Providence, RI 02912, USA
| | - Edward G Walsh
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Adam Z Nitenson
- Neuroscience Graduate Program, Brown University, Providence, RI, USA
| | - Eric C Porges
- Department of Clinical and Health Psychology, Center for Cognitive Aging and Memory, and McKnight Brain Research Foundation, University of Florida, Gainesville, FL, USA
| | - Damon G Lamb
- Department of Psychiatry, and Center for Cognitive Aging and Memory, McKnight Brain Research Foundation, University of Florida, Gainesville, FL, USA; Center for Neuropsychological Studies, Department of Neurology, University of Florida College of Medicine, Gainesville, FL, USA; Brain Rehabilitation Research Center, Malcom Randall Veterans Affairs Medical Center, Gainesville, FL, USA
| | - Adam J Woods
- Department of Clinical and Health Psychology, Center for Cognitive Aging and Memory, and McKnight Brain Research Foundation, University of Florida, Gainesville, FL, USA
| | - Cara B Borja
- Neuroscience Graduate Program, Brown University, Providence, RI, USA
| |
Collapse
|
10
|
Yakovlev A, Manzhurtsev A, Menshchikov P, Ublinskiy M, Bozhko O, Akhadov T, Semenova N. The Effect of Visual Stimulation on GABA and Macromolecule Levels in the Human Brain in vivo. Biophysics (Nagoya-shi) 2020. [DOI: 10.1134/s0006350920010248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
11
|
Liachenko S, Ramu J. Sex differences in the effect of acute administration of nicotine on MRS-measured metabolic profile of the rat brain. Neurosci Res 2019; 157:51-57. [PMID: 31381938 DOI: 10.1016/j.neures.2019.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/19/2019] [Accepted: 07/30/2019] [Indexed: 10/26/2022]
Abstract
Women are less able to stop smoking than men. Elucidation of sex differences in the tobacco addiction could facilitate personalized treatment. Specialized brain reward systems are controlling the behavior through reinforcement using specific neuromediators. Using non-invasive magnetic resonance spectroscopy (MRS) to ascertain addiction/harm biomarkers could lead to better management of public health through advancements in regulatory and translational research. Proton MRS was used to monitor changes of specific neurometabolites in hippocampus (HC), nucleus accumbens (NAC), and anterior cingulate cortex (ACC) of rats of both sexes after single intraperitoneal injection of nicotine. At the baseline, male rats showed higher level of GABA, taurine, N-acetyl aspartate, and creatine in HC, and taurine in NAC. Also, there were stronger correlations between neurometabolites in females than in males at the baseline. Nicotine administration changed taurine, GABA, myo-inositol, choline, and N-acetyl aspartate in HC, and taurine in NAC. Significant interactions between time, treatment, and sex were detected for taurine and choline in HC. The number of inter-metabolite correlations increased significantly in ACC and decreased in NAC and HC in females after nicotine administration, while in males it was unchanged. There are distinct sex differences in neurometabolic profiles at the baseline and after acute nicotine administration. Nicotine changes inter-metabolite correlations in females more than in males.
Collapse
Affiliation(s)
- Serguei Liachenko
- Division of Neurotoxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, 72079, USA.
| | - Jaivijay Ramu
- Division of Neurotoxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, 72079, USA
| |
Collapse
|
12
|
Costigan AG, Umla-Runge K, Evans CJ, Hodgetts CJ, Lawrence AD, Graham KS. Neurochemical correlates of scene processing in the precuneus/posterior cingulate cortex: A multimodal fMRI and 1 H-MRS study. Hum Brain Mapp 2019; 40:2884-2898. [PMID: 30865358 PMCID: PMC6563468 DOI: 10.1002/hbm.24566] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/07/2018] [Accepted: 02/15/2019] [Indexed: 12/18/2022] Open
Abstract
Precuneus/posterior cingulate cortex (PCu/PCC) are key components of a midline network, activated during rest but also in tasks that involve construction of scene or situation models. Despite growing interest in PCu/PCC functional alterations in disease and disease risk, the underlying neurochemical modulators of PCu/PCC's task‐evoked activity are largely unstudied. Here, a multimodal imaging approach was applied to investigate whether interindividual differences in PCu/PCC fMRI activity, elicited during perceptual discrimination of scene stimuli, were correlated with local brain metabolite levels, measured during resting‐state 1H‐MRS. Forty healthy young adult participants completed an fMRI perceptual odd‐one‐out task for scenes, objects and faces. 1H‐MRS metabolites N‐acetyl‐aspartate (tNAA), glutamate (Glx) and γ‐amino‐butyric acid (GABA+) were quantified via PRESS and MEGA‐PRESS scans in a PCu/PCC voxel and an occipital (OCC) control voxel. Whole brain fMRI revealed a cluster in right dorsal PCu/PCC that showed a greater BOLD response to scenes versus faces and objects. When extracted from an independently defined PCu/PCC region of interest, scene activity (vs. faces and objects and also vs. baseline) was positively correlated with PCu/PCC, but not OCC, tNAA. A voxel‐wise regression analysis restricted to the PCu/PCC 1H‐MRS voxel area identified a significant PCu/PCC cluster, confirming the positive correlation between scene‐related BOLD activity and PCu/PCC tNAA. There were no correlations between PCu/PCC activity and Glx or GABA+ levels. These results demonstrate, for the first time, that scene activity in PCu/PCC is linked to local tNAA levels, identifying a neurochemical influence on interindividual differences in the task‐driven activity of a key brain hub.
Collapse
Affiliation(s)
- Alison G Costigan
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Wales, UK
| | - Katja Umla-Runge
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Wales, UK
| | - C John Evans
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Wales, UK
| | - Carl J Hodgetts
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Wales, UK
| | - Andrew D Lawrence
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Wales, UK
| | - Kim S Graham
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Wales, UK
| |
Collapse
|
13
|
1H MR spectroscopy of the motor cortex immediately following transcranial direct current stimulation at 7 Tesla. PLoS One 2018; 13:e0198053. [PMID: 30157179 PMCID: PMC6114283 DOI: 10.1371/journal.pone.0198053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/26/2018] [Indexed: 11/19/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) is a form of non-invasive brain stimulation that may modulate cortical excitability, metabolite concentration, and human behaviour. The supplementary motor area (SMA) has been largely ignored as a potential target for tDCS neurorehabilitation but is an important region in motor compensation after brain injury with strong efferent connections to the primary motor cortex (M1). The objective of this work was to measure tissue metabolite changes in the human motor cortex immediately following tDCS. We hypothesized that bihemispheric tDCS would change levels of metabolites involved in neuromodulation including N-acetylaspartate (NAA), glutamate (Glu), and creatine (tCr). In this single-blind, randomized, cross-over study, fifteen healthy adults aged 21–60 participated in two 7T MRI sessions, to identify changes in metabolite concentrations by magnetic resonance spectroscopy. Immediately after 20 minutes of tDCS, there were no significant changes in metabolite levels or metabolite ratios comparing tDCS to sham. However there was a trend toward increased NAA/tCr concentration (p = 0.08) in M1 under the stimulating cathode. There was a strong, positive correlation between the change in the absolute concentration of NAA and the change in the absolute concentration of tCr (p<0.001) suggesting an effect of tDCS. Both NAA and creatine are important markers of neurometabolism. Our findings provide novel insight into the modulation of neural metabolites in the motor cortex immediately following application of bihemispheric tDCS.
Collapse
|
14
|
Cerebral quantification of N-acetyl aspartate, aspartate, and glutamate levels in local structures of the human brain using J-editing of 1H magnetic resonance spectra in vivo. Russ Chem Bull 2018. [DOI: 10.1007/s11172-018-2119-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Baslow MH. Chasing N-acetyl-L-aspartate, a shiny NMR object in the brain. NMR IN BIOMEDICINE 2018; 31:e3895. [PMID: 29369428 DOI: 10.1002/nbm.3895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 06/07/2023]
Affiliation(s)
- Morris H Baslow
- Center for Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| |
Collapse
|
16
|
Woodcock EA, Anand C, Khatib D, Diwadkar VA, Stanley JA. Working Memory Modulates Glutamate Levels in the Dorsolateral Prefrontal Cortex during 1H fMRS. Front Psychiatry 2018; 9:66. [PMID: 29559930 PMCID: PMC5845718 DOI: 10.3389/fpsyt.2018.00066] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/19/2018] [Indexed: 12/15/2022] Open
Abstract
Glutamate is involved in excitatory neurotransmission and metabolic processes related to brain function. Previous studies using proton functional magnetic resonance spectroscopy (1H fMRS) have demonstrated elevated cortical glutamate levels by 2-4% during visual and motor stimulation, relative to periods of no stimulation. Here, we extended this approach to working memory cognitive task performance, which has been consistently associated with dorsolateral prefrontal cortex (dlPFC) activation. Sixteen healthy adult volunteers completed a continuous visual fixation "rest" task followed by a letter 2-back working memory task during 1H fMRS acquisition of the left dlPFC, which encompassed Brodmann areas 45 and 46 over a 4.5-cm3 volume. Using a 100% automated fitting procedure integrated with LCModel, raw spectra were eddy current-, phase-, and shift-corrected prior to quantification resulting in a 32s temporal resolution or 8 averages per spectra. Task compliance was high (95 ± 11% correct) and the mean Cramer-Rao Lower Bound of glutamate was 6.9 ± 0.9%. Relative to continuous passive visual fixation, left dlPFC glutamate levels were significantly higher by 2.7% (0.32 mmol/kg wet weight) during letter 2-back performance. Elevated dlPFC glutamate levels reflect increased metabolic activity and excitatory neurotransmission driven by working memory-related cognitive demands. These results provide the first in vivo demonstration of elevated dlPFC glutamate levels during working memory.
Collapse
Affiliation(s)
- Eric A. Woodcock
- Brain Imaging Research Division, Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Chaitali Anand
- Brain Imaging Research Division, Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Dalal Khatib
- Brain Imaging Research Division, Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Vaibhav A. Diwadkar
- Brain Imaging Research Division, Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Jeffrey A. Stanley
- Brain Imaging Research Division, Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
17
|
Niddam DM, Lai KL, Tsai SY, Lin YR, Chen WT, Fuh JL, Wang SJ. Neurochemical changes in the medial wall of the brain in chronic migraine. Brain 2017; 141:377-390. [DOI: 10.1093/brain/awx331] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 10/18/2017] [Indexed: 12/21/2022] Open
Affiliation(s)
- David M Niddam
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan
- Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Kuan-Lin Lai
- Department of Neurology, The Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Neurology, Taipei Municipal Gandau Hospital. Taipei, Taiwan
| | - Shang-Yueh Tsai
- Graduate Institute of Applied Physics, National Chengchi University, Taipei, Taiwan
- Research Center for Mind, Brain and Learning, National Chengchi University, Taipei, Taiwan
| | - Yi-Ru Lin
- Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Wei-Ta Chen
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan
- Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Neurology, The Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jong-Ling Fuh
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan
- Department of Neurology, The Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Shuu-Jiun Wang
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan
- Department of Neurology, The Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| |
Collapse
|
18
|
Medial Frontal Lobe Neurochemistry in Autism Spectrum Disorder is Marked by Reduced N-Acetylaspartate and Unchanged Gamma-Aminobutyric Acid and Glutamate + Glutamine Levels. J Autism Dev Disord 2017; 48:1467-1482. [PMID: 29177616 DOI: 10.1007/s10803-017-3406-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
19
|
Elevated Choline-Containing Compound Levels in Rapid Cycling Bipolar Disorder. Neuropsychopharmacology 2017; 42:2252-2258. [PMID: 28220797 PMCID: PMC5603812 DOI: 10.1038/npp.2017.39] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/30/2017] [Accepted: 02/04/2017] [Indexed: 12/16/2022]
Abstract
Previous studies have found increased levels of choline-containing compounds (ie, glycerophosphocholine plus phosphocholine (GPC+PC)) in bipolar disorder using in vivo proton magnetic resonance spectroscopy (1H MRS), especially in bipolar I disorder (BD-I). Increased levels of GPC+PC suggest alterations in the membrane phospholipids metabolism in bipolar disorder. Rapid cycling (RC) bipolar disorder is considered as a severe course of bipolar disorder, but it is unclear whether rapid cycling bipolar disorder is linked to highly altered membrane phospholipid metabolism. The purpose of this study was to investigate whether the regional extent of elevated GPC+PC were greater in BD-I patients with rapid cycling compared to BD-I patients without rapid cycling and healthy controls. Using a multi-voxel 1H MRS approach at 3 Tesla with high spatial resolution and absolute quantification, GPC+PC levels from the anterior cingulate cortex (ACC), caudate and putamen of 16 RC BD-I, 34 non-RC BD-I and 44 healthy controls were assessed. We found significantly elevated GPC+PC levels in ACC, putamen and caudate of RC BD-I patients compared to healthy controls (P<0.005) and in ACC compared to non-RC BD-I patients (P<0.05). These results suggest greater alteration of membrane phospholipid metabolisms in rapid cycling BD-I compared to non-rapid-cycling BD-I.
Collapse
|
20
|
|
21
|
Harris AD, Saleh MG, Edden RAE. Edited 1 H magnetic resonance spectroscopy in vivo: Methods and metabolites. Magn Reson Med 2017; 77:1377-1389. [PMID: 28150876 PMCID: PMC5352552 DOI: 10.1002/mrm.26619] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 12/30/2016] [Accepted: 12/30/2016] [Indexed: 12/13/2022]
Abstract
The Proton magnetic resonance (1 H-MRS) spectrum contains information about the concentration of tissue metabolites within a predefined region of interest (a voxel). The conventional spectrum in some cases obscures information about less abundant metabolites due to limited separation and complex splitting of the metabolite peaks. One method to detect these metabolites is to reduce the complexity of the spectrum using editing. This review provides an overview of the one-dimensional editing methods available to interrogate these obscured metabolite peaks. These methods include sequence optimizations, echo-time averaging, J-difference editing methods (single BASING, dual BASING, and MEGA-PRESS), constant-time PRESS, and multiple quantum filtering. It then provides an overview of the brain metabolites whose detection can benefit from one or more of these editing approaches, including ascorbic acid, γ-aminobutyric acid, lactate, aspartate, N-acetyl aspartyl glutamate, 2-hydroxyglutarate, glutathione, glutamate, glycine, and serine. Magn Reson Med 77:1377-1389, 2017. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Ashley D Harris
- Department of Radiology, University of Calgary, Calgary, AB T2N 1N4, Canada
- Child and Adolescent Imaging Research (CAIR) Program, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T3B 6A9, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Muhammad G Saleh
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| |
Collapse
|
22
|
Kanaan AS, Gerasch S, García-García I, Lampe L, Pampel A, Anwander A, Near J, Möller HE, Müller-Vahl K. Pathological glutamatergic neurotransmission in Gilles de la Tourette syndrome. Brain 2016; 140:218-234. [DOI: 10.1093/brain/aww285] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/31/2016] [Accepted: 09/12/2016] [Indexed: 11/13/2022] Open
|
23
|
Baslow MH, Cain CK, Sears R, Wilson DA, Bachman A, Gerum S, Guilfoyle DN. Stimulation-induced transient changes in neuronal activity, blood flow and N-acetylaspartate content in rat prefrontal cortex: a chemogenetic fMRS-BOLD study. NMR IN BIOMEDICINE 2016; 29:1678-1687. [PMID: 27696530 PMCID: PMC5123928 DOI: 10.1002/nbm.3629] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 08/11/2016] [Accepted: 08/29/2016] [Indexed: 06/01/2023]
Abstract
Brain activation studies in humans have shown the dynamic nature of neuronal N-acetylaspartate (NAA) and N-acetylaspartylglutamate (NAAG) based on changes in their MRS signals in response to stimulation. These studies demonstrated that upon visual stimulation there was a focal increase in cerebral blood flow (CBF) and a decrease in NAA or in the total of NAA and NAAG signals in the visual cortex, and that these changes were reversed upon cessation of stimulation. In the present study we have developed an animal model in order to explore the relationships between brain stimulation, neuronal activity, CBF and NAA. We use "designer receptor exclusively activated by designer drugs" (DREADDs) technology for site-specific neural activation, a local field potential electrophysiological method for measurement of changes in the rate of neuronal activity, functional MRS for measurement of changes in NAA and a blood oxygenation level-dependent (BOLD) MR technique for evaluating changes in CBF. We show that stimulation of the rat prefrontal cortex using DREADDs results in the following: (i) an increase in level of neuronal activity; (ii) an increase in BOLD and (iii) a decrease in the NAA signal. These findings show for the first time the tightly coupled relationships between stimulation, neuron activity, CBF and NAA dynamics in brain, and also provide the first demonstration of the novel inverse stimulation-NAA phenomenon in an animal model.
Collapse
Affiliation(s)
- Morris H. Baslow
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY, 10962, USA
| | - Christopher K. Cain
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY, 10962, USA
- Department of Child & Adolescent Psychiatry, New York University Langone School of Medicine, 560 1 Avenue, New York, NY, 10016, USA
| | - Robert Sears
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY, 10962, USA
- Department of Child & Adolescent Psychiatry, New York University Langone School of Medicine, 560 1 Avenue, New York, NY, 10016, USA
- Department of Neuroscience & Physiology, New York University Langone School of Medicine, 560 1 Avenue, New York, NY, 10016, USA
| | - Donald A. Wilson
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY, 10962, USA
- Department of Child & Adolescent Psychiatry, New York University Langone School of Medicine, 560 1 Avenue, New York, NY, 10016, USA
- Department of Neuroscience & Physiology, New York University Langone School of Medicine, 560 1 Avenue, New York, NY, 10016, USA
| | - Alvin Bachman
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY, 10962, USA
| | - Scott Gerum
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY, 10962, USA
| | - David N. Guilfoyle
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY, 10962, USA
| |
Collapse
|
24
|
Oeltzschner G, Puts NAJ, Chan KL, Boer VO, Barker PB, Edden RAE. Dual-volume excitation and parallel reconstruction for J-difference-edited MR spectroscopy. Magn Reson Med 2016; 77:16-22. [PMID: 27851878 DOI: 10.1002/mrm.26536] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/20/2016] [Accepted: 10/10/2016] [Indexed: 12/30/2022]
Abstract
PURPOSE To develop J-difference editing with parallel reconstruction in accelerated multivoxel (PRIAM) for simultaneous measurement in two separate brain regions of γ-aminobutyric acid (GABA) or glutathione. METHODS PRIAM separates signals from two simultaneously excited voxels using receiver-coil sensitivity profiles. PRIAM was implemented into Mescher-Garwood (MEGA) edited experiments at 3 Tesla (T), and validated by acquiring dual-voxel MEGA-PRIAM (and compared with conventional single-voxel MEGA-PRESS) spectra from a GABA/glutathione phantom, and 11 healthy participants. RESULTS MEGA-PRIAM effectively separated phantom spectra with ∼3-4% between-voxel contamination. GABA and glutathione measurements agreed well with those obtained using single-voxel MEGA-PRESS (mean difference was below 2% in GABA levels, and below 7% in glutathione levels). In vivo, GABA- and glutathione-edited spectra were successfully reconstructed with a mean in vivo g-factor of 1.025 (typical voxel-center separation: 7-8 cm). MEGA-PRIAM experiments showed higher signal-to-noise ratio than sequential single-voxel experiments of the same total duration (mean improvement 1.38 ± 0.24). CONCLUSIONS Simultaneous acquisition of J-difference-edited GABA or glutathione spectra from two voxels is feasible at 3 T. MEGA-PRIAM increases data acquisition rates compared with MEGA-PRESS by a factor of 2. Magn Reson Med, 2016. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Georg Oeltzschner
- Russell H. Morgan Department of Radiology and Radiological Science, the Johns Hopkins University School of Medicine, Baltimore, MD, USA.,F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Nicolaas A J Puts
- Russell H. Morgan Department of Radiology and Radiological Science, the Johns Hopkins University School of Medicine, Baltimore, MD, USA.,F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Kimberly L Chan
- Russell H. Morgan Department of Radiology and Radiological Science, the Johns Hopkins University School of Medicine, Baltimore, MD, USA.,F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA.,Department of Biomedical Engineering, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vincent O Boer
- Hvidovre Hospital, Danish Research Center for Magnetic Resonance, Hvidovre, Denmark
| | - Peter B Barker
- Russell H. Morgan Department of Radiology and Radiological Science, the Johns Hopkins University School of Medicine, Baltimore, MD, USA.,F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, the Johns Hopkins University School of Medicine, Baltimore, MD, USA.,F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| |
Collapse
|
25
|
Chan KL, Puts NAJ, Schär M, Barker PB, Edden RAE. HERMES: Hadamard encoding and reconstruction of MEGA-edited spectroscopy. Magn Reson Med 2016; 76:11-9. [PMID: 27089868 DOI: 10.1002/mrm.26233] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/01/2016] [Accepted: 03/10/2016] [Indexed: 12/25/2022]
Abstract
PURPOSE To investigate a novel Hadamard-encoded spectral editing scheme and evaluate its performance in simultaneously quantifying N-acetyl aspartate (NAA) and N-acetyl aspartyl glutamate (NAAG) at 3 Tesla. METHODS Editing pulses applied according to a Hadamard encoding scheme allow the simultaneous acquisition of multiple metabolites. The method, called HERMES (Hadamard Encoding and Reconstruction of MEGA-Edited Spectroscopy), was optimized to detect NAA and NAAG simultaneously using density-matrix simulations and validated in phantoms at 3T. In vivo data were acquired in the centrum semiovale of 12 normal subjects. The NAA:NAAG concentration ratio was determined by modeling in vivo data using simulated basis functions. Simulations were also performed for potentially coedited molecules with signals within the detected NAA/NAAG region. RESULTS Simulations and phantom experiments show excellent segregation of NAA and NAAG signals into the intended spectra, with minimal crosstalk. Multiplet patterns show good agreement between simulations and phantom and in vivo data. In vivo measurements show that the relative peak intensities of the NAA and NAAG spectra are consistent with a NAA:NAAG concentration ratio of 4.22:1 in good agreement with literature. Simulations indicate some coediting of aspartate and glutathione near the detected region (editing efficiency: 4.5% and 78.2%, respectively, for the NAAG reconstruction and 5.1% and 19.5%, respectively, for the NAA reconstruction). CONCLUSION The simultaneous and separable detection of two otherwise overlapping metabolites using HERMES is possible at 3T. Magn Reson Med 76:11-19, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kimberly L Chan
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F. M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA.,Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nicolaas A J Puts
- F. M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA.,Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael Schär
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Peter B Barker
- F. M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA.,Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Richard A E Edden
- F. M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA.,Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|