1
|
Hansen AF, Høiem TS, Selnaes KM, Bofin AM, Størkersen Ø, Bertilsson H, Wright AJ, Giskeødegård GF, Bathen TF, Rye MB, Tessem MB. Prediction of recurrence from metabolites and expression of TOP2A and EZH2 in prostate cancer patients treated with radiotherapy. NMR IN BIOMEDICINE 2023; 36:e4694. [PMID: 35032074 DOI: 10.1002/nbm.4694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 11/17/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The dual upregulation of TOP2A and EZH2 gene expression has been proposed as a biomarker for recurrence in prostate cancer patients to be treated with radical prostatectomy. A low tissue level of the metabolite citrate has additionally been connected to aggressive disease and recurrence in this patient group. However, for radiotherapy prostate cancer patients, few prognostic biomarkers have been suggested. The main aim of this study was to use an integrated tissue analysis to evaluate metabolites and expression of TOP2A and EZH2 as predictors for recurrence among radiotherapy patients. METHODS From 90 prostate cancer patients (56 received neoadjuvant hormonal treatment), 172 transrectal ultrasound-guided (TRUS) biopsies were collected prior to radiotherapy. Metabolic profiles were acquired from fresh frozen TRUS biopsies using high resolution-magic angle spinning MRS. Histopathology and immunohistochemistry staining for TOP2A and EZH2 were performed on TRUS biopsies containing cancer cells (n = 65) from 46 patients, where 24 of these patients (n = 31 samples) received hormonal treatment. Eleven radical prostatectomy cohorts of a total of 2059 patients were used for validation in a meta-analysis. RESULTS Among radiotherapy patients with up to 11 years of follow-up, a low level of citrate was found to predict recurrence, p = 0.001 (C-index = 0.74). Citrate had a higher predictive ability compared with individual clinical variables, highlighting its strength as a potential biomarker for recurrence. The dual upregulation of TOP2A and EZH2 was suggested as a biomarker for recurrence, particularly for patients not receiving neoadjuvant hormonal treatment, p = 0.001 (C-index = 0.84). While citrate was a statistically significant biomarker independent of hormonal treatment status, the current study indicated a potential of glutamine, glutamate and choline as biomarkers for recurrence among patients receiving neoadjuvant hormonal treatment, and glucose among patients not receiving neoadjuvant hormonal treatment. CONCLUSION Using an integrated approach, our study shows the potential of citrate and the dual upregulation of TOP2A and EZH2 as biomarkers for recurrence among radiotherapy patients.
Collapse
Affiliation(s)
- Ailin Falkmo Hansen
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, NTNU, Trondheim, Norway
| | - Therese Stork Høiem
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - Kirsten Margrete Selnaes
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Anna Mary Bofin
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU, Trondheim, Norway
| | - Øystein Størkersen
- Department of Pathology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Helena Bertilsson
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
- Department of Surgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Alan J Wright
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Guro Fanneløb Giskeødegård
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, NTNU, Trondheim, Norway
| | - Tone Frost Bathen
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - Morten Beck Rye
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU, Trondheim, Norway
- Department of Surgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - May-Britt Tessem
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
- Department of Surgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
2
|
Julià-Sapé M, Candiota AP, Arús C. Cancer metabolism in a snapshot: MRS(I). NMR IN BIOMEDICINE 2019; 32:e4054. [PMID: 30633389 DOI: 10.1002/nbm.4054] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 11/02/2018] [Accepted: 11/05/2018] [Indexed: 06/09/2023]
Abstract
The contribution of MRS(I) to the in vivo evaluation of cancer-metabolism-derived metrics, mostly since 2016, is reviewed here. Increased carbon consumption by tumour cells, which are highly glycolytic, is now being sampled by 13 C magnetic resonance spectroscopic imaging (MRSI) following the injection of hyperpolarized [1-13 C] pyruvate (Pyr). Hot-spots of, mostly, increased lactate dehydrogenase activity or flow between Pyr and lactate (Lac) have been seen with cancer progression in prostate (preclinical and in humans), brain and pancreas (both preclinical) tumours. Therapy response is usually signalled by decreased Lac/Pyr 13 C-labelled ratio with respect to untreated or non-responding tumour. For therapeutic agents inducing tumour hypoxia, the 13 C-labelled Lac/bicarbonate ratio may be a better metric than the Lac/Pyr ratio. 31 P MRSI may sample intracellular pH changes from brain tumours (acidification upon antiangiogenic treatment, basification at fast proliferation and relapse). The steady state tumour metabolome pattern is still in use for cancer evaluation. Metrics used for this range from quantification of single oncometabolites (such as 2-hydroxyglutarate in mutant IDH1 glial brain tumours) to selected metabolite ratios (such as total choline to N-acetylaspartate (plain ratio or CNI index)) or the whole 1 H MRSI(I) pattern through pattern recognition analysis. These approaches have been applied to address different questions such as tumour subtype definition, following/predicting the response to therapy or defining better resection or radiosurgery limits.
Collapse
Affiliation(s)
- Margarida Julià-Sapé
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Spain
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
| | - Ana Paula Candiota
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Spain
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
| | - Carles Arús
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Spain
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
| |
Collapse
|
3
|
Tayari N, Obels J, Kobus T, Scheenen TWJ, Heerschap A. Simple and broadly applicable automatic quality control for 3D 1 H MR spectroscopic imaging data of the prostate. Magn Reson Med 2018; 81:2887-2895. [PMID: 30506721 DOI: 10.1002/mrm.27616] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/13/2018] [Accepted: 10/31/2018] [Indexed: 12/17/2022]
Abstract
PURPOSE Quality control (QC) is a prerequisite for clinical MR spectroscopic imaging (MRSI) to avoid that bad spectra hamper data interpretation. The aim of this work was to present a simple automatic QC for prostate 1 H MRSI that can handle data obtained with different commonly used pulse sequences, echo times, field strengths, and MR platforms. METHODS A QC method was developed with a ratio (Qratio) where the numerator and the denominator are functions of several signal heights, logically combined for their positive or negative contribution to spectral quality. This Qratio was tested on 4 data sets obtained at 1.5, 3, and 7T, with and without endorectal coil and different localization sequences and echo times. Spectra of 25,248 voxels in 26 prostates were labeled as acceptable or unacceptable by MRS experts as gold standard. A threshold value was determined for Qratio from a subset of voxels, labeled in consensus by 4 experts, for an optimal accuracy to separate spectra. RESULTS Applying this Qratio threshold to the remaining test voxels, an automatic separation of good and bad spectra was possible with an accuracy of 0.88, similar to manual separation between the 2 classes. Qratio values were used to generate maps representing spectral quality on a binary or continuous scale. CONCLUSION Automated QC of prostate 1 H MRSI by Qratio is fast, simple, easily transferable and more practical than supervised feature extraction methods and therefore easy to integrate into different clinical MR systems. Moreover, quality maps can be generated to read the reliability of spectra in each voxel.
Collapse
Affiliation(s)
- Nassim Tayari
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jiri Obels
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Thiele Kobus
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tom W J Scheenen
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Arend Heerschap
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
4
|
Esmaeili M, Tayari N, Scheenen T, Elschot M, Sandsmark E, Bertilsson H, Heerschap A, Selnæs KM, Bathen TF. Simultaneous 18F-fluciclovine Positron Emission Tomography and Magnetic Resonance Spectroscopic Imaging of Prostate Cancer. Front Oncol 2018; 8:516. [PMID: 30498693 PMCID: PMC6249271 DOI: 10.3389/fonc.2018.00516] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/22/2018] [Indexed: 11/26/2022] Open
Abstract
Purpose: To investigate the associations of metabolite levels derived from magnetic resonance spectroscopic imaging (MRSI) and 18F-fluciclovine positron emission tomography (PET) with prostate tissue characteristics. Methods: In a cohort of 19 high-risk prostate cancer patients that underwent simultaneous PET/MRI, we evaluated the diagnostic performance of MRSI and PET for discrimination of aggressive cancer lesions from healthy tissue and benign lesions. Data analysis comprised calculations of correlations of mean standardized uptake values (SUVmean), maximum SUV (SUVmax), and the MRSI-derived ratio of (total choline + spermine + creatine) to citrate (CSC/C). Whole-mount histopathology was used as gold standard. Results: The results showed a moderate significant correlation between both SUVmean and SUVmax with CSC/C ratio. Conclusions: We demonstrated that the simultaneous acquisition of 18F-fluciclovine PET and MRSI with an integrated PET/MRI system is feasible and a combination of these imaging modalities has potential to improve the diagnostic sensitivity and specificity of prostate cancer lesions.
Collapse
Affiliation(s)
- Morteza Esmaeili
- Deparment of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Nassim Tayari
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Tom Scheenen
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Mattijs Elschot
- Deparment of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Elise Sandsmark
- Deparment of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Helena Bertilsson
- Department of Surgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.,Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Arend Heerschap
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Kirsten M Selnæs
- Deparment of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Tone F Bathen
- Deparment of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
5
|
Abstract
Magnetic resonance spectroscopy (MRS) can be performed in vivo using commercial MRI systems to obtain biochemical information about tissues and cancers. Applications in brain, prostate and breast aid lesion detection and characterisation (differential diagnosis), treatment planning and response assessment. Multi-centre clinical trials have been performed in all these tissues. Single centre studies have been performed in many other tissues including cervix, uterus, musculoskeletal and liver. While generally MRS is used to study endogenous metabolites it has also been used in drug studies, for example those that include 19F as part of their structure. Recently the hyperpolarisation of compounds enriched with 13C such as [1-13C] pyruvate has been demonstrated in animal models and now in preliminary clinical studies, permitting the monitoring of biochemical processes with unprecedented sensitivity. This review briefly introduces the underlying methods and then discusses the current status of these applications.
Collapse
Affiliation(s)
- Geoffrey S Payne
- University Hospitals Southampton NHS Foundation Trust, Tremona Road, Southampton SO16 6YD, United Kingdom
| |
Collapse
|
6
|
Braadland PR, Giskeødegård G, Sandsmark E, Bertilsson H, Euceda LR, Hansen AF, Guldvik IJ, Selnæs KM, Grytli HH, Katz B, Svindland A, Bathen TF, Eri LM, Nygård S, Berge V, Taskén KA, Tessem MB. Ex vivo metabolic fingerprinting identifies biomarkers predictive of prostate cancer recurrence following radical prostatectomy. Br J Cancer 2017; 117:1656-1664. [PMID: 28972967 PMCID: PMC5729443 DOI: 10.1038/bjc.2017.346] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/18/2017] [Accepted: 09/01/2017] [Indexed: 12/21/2022] Open
Abstract
Background: Robust biomarkers that identify prostate cancer patients with high risk of recurrence will improve personalised cancer care. In this study, we investigated whether tissue metabolites detectable by high-resolution magic angle spinning magnetic resonance spectroscopy (HR-MAS MRS) were associated with recurrence following radical prostatectomy. Methods: We performed a retrospective ex vivo study using HR-MAS MRS on tissue samples from 110 radical prostatectomy specimens obtained from three different Norwegian cohorts collected between 2002 and 2010. At the time of analysis, 50 patients had experienced prostate cancer recurrence. Associations between metabolites, clinicopathological variables, and recurrence-free survival were evaluated using Cox proportional hazards regression modelling, Kaplan–Meier survival analyses and concordance index (C-index). Results: High intratumoural spermine and citrate concentrations were associated with longer recurrence-free survival, whereas high (total-choline+creatine)/spermine (tChoCre/Spm) and higher (total-choline+creatine)/citrate (tChoCre/Cit) ratios were associated with shorter time to recurrence. Spermine concentration and tChoCre/Spm were independently associated with recurrence in multivariate Cox proportional hazards modelling after adjusting for clinically relevant risk factors (C-index: 0.769; HR: 0.72; P=0.016 and C-index: 0.765; HR: 1.43; P=0.014, respectively). Conclusions: Spermine concentration and tChoCre/Spm ratio in prostatectomy specimens were independent prognostic markers of recurrence. These metabolites can be noninvasively measured in vivo and may thus offer predictive value to establish preoperative risk assessment nomograms.
Collapse
Affiliation(s)
- Peder R Braadland
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, PO Box 4953 Nydalen, Oslo 0424, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo 0313, Norway
| | - Guro Giskeødegård
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, Postboks 8905, Trondheim 7491, Norway
| | - Elise Sandsmark
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, Postboks 8905, Trondheim 7491, Norway
| | - Helena Bertilsson
- St Olavs Hospital, Trondheim University Hospital, Trondheim 7030, Norway.,Department of Cancer Research and Molecular Medicine, Faculty of Medicine, NTNU - Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Leslie R Euceda
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, Postboks 8905, Trondheim 7491, Norway
| | - Ailin F Hansen
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, Postboks 8905, Trondheim 7491, Norway
| | - Ingrid J Guldvik
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, PO Box 4953 Nydalen, Oslo 0424, Norway
| | - Kirsten M Selnæs
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, Postboks 8905, Trondheim 7491, Norway
| | - Helene H Grytli
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, PO Box 4953 Nydalen, Oslo 0424, Norway
| | - Betina Katz
- Department of Pathology, Oslo University Hospital, Oslo 0424, Norway
| | - Aud Svindland
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo 0313, Norway.,Department of Pathology, Oslo University Hospital, Oslo 0424, Norway
| | - Tone F Bathen
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, Postboks 8905, Trondheim 7491, Norway
| | - Lars M Eri
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo 0313, Norway.,Department of Urology, Oslo University Hospital, Oslo 0424, Norway
| | - Ståle Nygård
- Bioinformatics Core Facility, Institute for Medical Informatics, Oslo University Hospital, Oslo 0424, Norway
| | - Viktor Berge
- Department of Urology, Oslo University Hospital, Oslo 0424, Norway
| | - Kristin A Taskén
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, PO Box 4953 Nydalen, Oslo 0424, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo 0313, Norway
| | - May-Britt Tessem
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, Postboks 8905, Trondheim 7491, Norway
| |
Collapse
|
7
|
Cabarrus MC, Westphalen AC. Multiparametric magnetic resonance imaging of the prostate-a basic tutorial. Transl Androl Urol 2017; 6:376-386. [PMID: 28725579 PMCID: PMC5503950 DOI: 10.21037/tau.2017.01.06] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer is the second most common cause of cancer related death in the United States and the most commonly diagnosed malignancy in men. In general, prostate cancer is slow growing, though there is a broad spectrum of disease that may be indolent, or aggressive and rapidly progressive. Screening for prostate is controversial and complicated by lack of specificity and over diagnosis of clinically insignificant cancer. Imaging has played a role in diagnosis of prostate cancer, primarily through systemic transrectal ultrasound (TRUS) guided biopsy. While TRUS guided biopsy radically changed prostate cancer diagnosis, it still remains limited by low resolution, poor tissue characterization, relatively low sensitivity and positive predictive value. Advances in multiparametric magnetic resonance imaging (mpMRI) have allowed more accurate detection, localization, and staging as well as aiding in the role of active surveillance (AS). The use of mpMRI for the evaluation of prostate cancer has increased dramatically and this trend is likely to continue as the technique is rapidly improving and its applications expand. The purpose of this article is to review the basic principles of mpMRI of the prostate and its clinical applications, which will be reviewed in greater detail in subsequent chapters of this issue.
Collapse
Affiliation(s)
- Miguel C Cabarrus
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Antonio C Westphalen
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA.,Department of Urology, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
8
|
Jang WS, Yoon CY, Kim KH, Kang YJ, Shin SJ, Cho NH, Lee JY, Cho KS, Ham WS, Rha KH, Hong SJ, Choi YD. Prognostic Significance of Vas Deferens Invasion After Radical Prostatectomy in Patients with Pathological Stage T3b Prostate Cancer. Ann Surg Oncol 2016; 24:1143-1149. [PMID: 27796593 DOI: 10.1245/s10434-016-5653-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND Seminal vesicle invasion (SVI) is associated with adverse clinical outcomes in prostate cancer (PCa) patients. Despite its anatomical similarity and close proximity to the seminal vesicle, the prognostic significance of vas deferens invasion (VDI) by PCa has not been elucidated. For these reasons, we investigated the impact of VDI on the oncological outcome of pT3b PCa in association with SVI. METHODS We retrospectively reviewed the medical records of 3359 patients who had undergone a radical prostatectomy at our institution between January 2000 and December 2014 for PCa. Patients who received neoadjuvant or adjuvant treatment (radiation, androgen deprivation therapy, or both) and those without adequate medical records were excluded. A Kaplan-Meier analysis was performed to analyze biochemical recurrence-free survival (BCRFS), and a Cox regression model was used to test the influence of VDI on biochemical recurrence (BCR). RESULTS Of 350 patients with pathologically confirmed SVI (pT3b), 87 (24.9%) had VDI, while the remaining 263 patients (75.1%) had isolated SVI. Compared with SVI patients without VDI, SVI patients with VDI were noted to have a significantly worse 5-year BCRFS (25.1 vs. 17.1%, respectively). VDI was a significant predictor of BCR in multivariate Cox regression analysis (hazard ratio 1.39, 95% confidence interval 1.02-1.90; p = 0.039). CONCLUSIONS Our results shows that the prognosis of PCa with SVI might be further stratified by VDI status, thus suggesting the role of VDI either as a surrogate for poor prognosis or as a determinant for adjuvant therapy.
Collapse
Affiliation(s)
- Won Sik Jang
- Department of Urology, Urological Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Cheol Yong Yoon
- Department of Urology, Urological Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Ki Hong Kim
- Department of Urology, Urological Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Yong Jin Kang
- Department of Urology, Urological Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Su-Jin Shin
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Nam Hoon Cho
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Joo Yong Lee
- Department of Urology, Urological Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Kang Su Cho
- Department of Urology, Urological Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Won Sik Ham
- Department of Urology, Urological Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Koon Ho Rha
- Department of Urology, Urological Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Sung Joon Hong
- Department of Urology, Urological Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Young Deuk Choi
- Department of Urology, Urological Science Institute, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|