1
|
Zheng L, Yang C, Sheng R, Rao S, Wu L, Zeng M, Dai Y. Characterization of Microvascular Invasion in Hepatocellular Carcinoma Using Computational Modeling of Interstitial Fluid Pressure and Velocity. J Magn Reson Imaging 2023; 58:1366-1374. [PMID: 36762823 DOI: 10.1002/jmri.28644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Most solid tumors show increased interstitial fluid pressure (IFP), and this increased IFP is an obstacle to treatment. A noninvasive model for measuring IFP in hepatocellular carcinoma (HCC) is an unresolved issue. PURPOSE To develop a noninvasive model to measure IFP and interstitial fluid velocity (IFV) in HCC and to characterize the microvascular invasion (MVI) status by using this model. STUDY TYPE Retrospective. POPULATION A total of 97 HCC patients (mean age 57.6 ± 10.9 years, 77.3% males), 53 of them with MVI and 44 of them without MVI. FIELD STRENGTH/SEQUENCE A 3-T, three-dimensional spoiled gradient-recalled echo. ASSESSMENT MVI was defined as microscopic vascular invasion of small vessels within the peritumoral liver tissue. The volumes of interest (VOIs) were manually delineated and enclosed the tumor lesion and healthy liver parenchyma, respectively. The extended Tofts model (ETM) was used to estimate permeability parameters from all the VOIs. Subsequently, the continuity partial differential equation (PDE) was implemented and IFP and IFV were acquired. STATISTICAL TESTS Wilcoxon signed-ranks tests, histogram analysis, Mann-Whitney U test, Fisher's exact test, least absolute shrinkage and selection operator (LASSO) logistic regression, receiver operating characteristic (ROC) curve analysis with the area under the curve (AUC), Youden index, DeLong test, and Benjamini-Hochberg correction. A P value <0.05 was considered statistically significant. RESULTS The HCC lesions exhibited elevated IFP and reduced IFV. There were no significant differences in any measured demographic and clinical features between the MVI-positive and MVI-negative groups, except for tumor size. Nine IFP histogram analysis-derived parameters and seven IFV histogram analysis-derived parameters could be used to characterize the MVI status. LASSO regression selected five features: IFP maximum, IFP 10th percentile, IFP 90th percentile, IFV SD, and IFV 10th percentile. The combination of these features showed the highest AUC (0.781) and specificity (77.3%). DATA CONCLUSION A noninvasive IFP and IFV measurement model for HCC was developed. Specific IFP- and IFV-derived parameters exhibited significant association with the MVI status. EVIDENCE LEVEL 3. TECHNICAL EFFICACY Stage 2.
Collapse
Affiliation(s)
- Liyun Zheng
- Shanghai Institute of Medical Imaging, Shanghai, China
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chun Yang
- Shanghai Institute of Medical Imaging, Shanghai, China
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ruofan Sheng
- Shanghai Institute of Medical Imaging, Shanghai, China
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shengxiang Rao
- Shanghai Institute of Medical Imaging, Shanghai, China
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lifang Wu
- Shanghai Institute of Medical Imaging, Shanghai, China
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mengsu Zeng
- Shanghai Institute of Medical Imaging, Shanghai, China
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yongming Dai
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
- MR Collaboration, Central Research Institute, United Imaging Healthcare, Shanghai, China
| |
Collapse
|
2
|
Assessment of MRI to estimate metastatic dissemination risk and prometastatic effects of chemotherapy. NPJ Breast Cancer 2022; 8:101. [PMID: 36056005 PMCID: PMC9440218 DOI: 10.1038/s41523-022-00463-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 07/11/2022] [Indexed: 11/10/2022] Open
Abstract
Metastatic dissemination in breast cancer is regulated by specialized intravasation sites called “tumor microenvironment of metastasis” (TMEM) doorways, composed of a tumor cell expressing the actin-regulatory protein Mena, a perivascular macrophage, and an endothelial cell, all in stable physical contact. High TMEM doorway number is associated with an increased risk of distant metastasis in human breast cancer and mouse models of breast carcinoma. Here, we developed a novel magnetic resonance imaging (MRI) methodology, called TMEM Activity-MRI, to detect TMEM-associated vascular openings that serve as the portal of entry for cancer cell intravasation and metastatic dissemination. We demonstrate that TMEM Activity-MRI correlates with primary tumor TMEM doorway counts in both breast cancer patients and mouse models, including MMTV-PyMT and patient-derived xenograft models. In addition, TMEM Activity-MRI is reduced in mouse models upon treatment with rebastinib, a specific and potent TMEM doorway inhibitor. TMEM Activity-MRI is an assay that specifically measures TMEM-associated vascular opening (TAVO) events in the tumor microenvironment, and as such, can be utilized in mechanistic studies investigating molecular pathways of cancer cell dissemination and metastasis. Finally, we demonstrate that TMEM Activity-MRI increases upon treatment with paclitaxel in mouse models, consistent with prior observations that chemotherapy enhances TMEM doorway assembly and activity in human breast cancer. Our findings suggest that TMEM Activity-MRI is a promising precision medicine tool for localized breast cancer that could be used as a non-invasive test to determine metastatic risk and serve as an intermediate pharmacodynamic biomarker to monitor therapeutic response to agents that block TMEM doorway-mediated dissemination.
Collapse
|
3
|
Backhaus P, Büther F, Wachsmuth L, Frohwein L, Buchholz R, Karst U, Schäfers K, Hermann S, Schäfers M, Faber C. Toward precise arterial input functions derived from DCE-MRI through a novel extracorporeal circulation approach in mice. Magn Reson Med 2020; 84:1404-1415. [PMID: 32077523 DOI: 10.1002/mrm.28214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 01/20/2020] [Accepted: 01/23/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE Dynamic contrast-enhanced MRI can be used in pharmacokinetic models to quantify functional parameters such as perfusion and permeability. However, precise quantification in preclinical models is challenged by the difficulties to dynamically measure the true arterial blood contrast agent concentration. We propose a novel approach toward a precise and experimentally feasible method to derive the arterial input function from DCE-MRI in mice. METHODS Arterial blood was surgically shunted from the femoral artery to the tail vein and led through an extracorporeal circulation that resided on the head of brain tumor-bearing mice inside the FOV of a 9.4T MRI scanner. Dynamic 3D-FLASH scanning was performed after injection of gadobutrol with an effective resolution of 0.175 × 0.175 × 1 mm and a temporal resolution of 4 seconds. Pharmacokinetic modeling was performed using the extended Tofts and two-compartment exchange model. RESULTS Arterial input functions measured inside the extracorporeal circulation showed little noise, small interindividual variance, and typical curve shapes. Ex vivo and mass spectrometry validation measurements documented the influence of shunt flow velocity and hematocrit on estimation of contrast agent concentrations. Modeling of tumors and muscles allowed fitting of the recorded dynamic concentrations, resulting in quantitative plausible parameters. CONCLUSION The extracorporeal circulation allows deriving the contrast agent dynamics in arterial blood with high robustness and at acceptable experimental effort from DCE-MRI, previously not achievable in mice. It sets the basis for quantitative precise pharmacokinetic modeling in small animals to enhance the translatability of preclinical DCE-MRI measurements to patients.
Collapse
Affiliation(s)
- Philipp Backhaus
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany.,European Institute for Molecular Imaging, University of Münster, Münster, Germany.,Translational Research Imaging Center, Department of Clinical Radiology, University Hospital Münster, Münster, Germany
| | - Florian Büther
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany.,European Institute for Molecular Imaging, University of Münster, Münster, Germany
| | - Lydia Wachsmuth
- Translational Research Imaging Center, Department of Clinical Radiology, University Hospital Münster, Münster, Germany
| | - Lynn Frohwein
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany.,European Institute for Molecular Imaging, University of Münster, Münster, Germany
| | - Rebecca Buchholz
- Department of Analytical Chemistry, University of Münster, Münster, Germany
| | - Uwe Karst
- Department of Analytical Chemistry, University of Münster, Münster, Germany.,DFG EXC 1003 Cluster of Excellence "Cells in Motion", University of Münster, Münster, Germany
| | - Klaus Schäfers
- European Institute for Molecular Imaging, University of Münster, Münster, Germany.,DFG EXC 1003 Cluster of Excellence "Cells in Motion", University of Münster, Münster, Germany
| | - Sven Hermann
- European Institute for Molecular Imaging, University of Münster, Münster, Germany.,DFG EXC 1003 Cluster of Excellence "Cells in Motion", University of Münster, Münster, Germany
| | - Michael Schäfers
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany.,European Institute for Molecular Imaging, University of Münster, Münster, Germany.,DFG EXC 1003 Cluster of Excellence "Cells in Motion", University of Münster, Münster, Germany
| | - Cornelius Faber
- Translational Research Imaging Center, Department of Clinical Radiology, University Hospital Münster, Münster, Germany.,DFG EXC 1003 Cluster of Excellence "Cells in Motion", University of Münster, Münster, Germany
| |
Collapse
|
4
|
Li X, Wu S, Li D, Yu T, Zhu H, Song Y, Meng L, Fan H, Xie L. Intravoxel Incoherent Motion Combined With Dynamic Contrast-Enhanced Perfusion MRI of Early Cervical Carcinoma: Correlations Between Multimodal Parameters and HIF-1α Expression. J Magn Reson Imaging 2019; 50:918-929. [PMID: 30648775 DOI: 10.1002/jmri.26604] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 12/12/2022] Open
Affiliation(s)
- Xiangsheng Li
- Department of Radiology; Air Force General Hospital, People's Liberation Army; Beijing China
| | - Shandong Wu
- Imaging Research Division Department of Radiology, Biomedical Informatics, and Bioengineering; University of Pittsburgh; Pittsburgh Pennsylvania USA
| | - Dechang Li
- Department of Pathology; Air Force General Hospital, People's Liberation Army; Beijing China
| | - Tao Yu
- Department of Medical Imaging; Cancer Hospital of China Medical University; Liaoning Cancer Hospital & Institute; Shenyang Liaoning Province China
| | - Hongxian Zhu
- Department of Radiology; Air Force General Hospital, People's Liberation Army; Beijing China
| | - Yunlong Song
- Department of Radiology; Air Force General Hospital, People's Liberation Army; Beijing China
| | - Limin Meng
- Department of Radiology; Air Force General Hospital, People's Liberation Army; Beijing China
| | - Hongxia Fan
- Department of Radiology; Air Force General Hospital, People's Liberation Army; Beijing China
| | - Lizhi Xie
- Department of MR Research; GE Healthcare; Beijing China
| |
Collapse
|
5
|
Li W, Quan YY, Li Y, Lu L, Cui M. Monitoring of tumor vascular normalization: the key points from basic research to clinical application. Cancer Manag Res 2018; 10:4163-4172. [PMID: 30323672 PMCID: PMC6175544 DOI: 10.2147/cmar.s174712] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Tumor vascular normalization alleviates hypoxia in the tumor microenvironment, reduces the degree of malignancy, and increases the efficacy of traditional therapy. However, the time window for vascular normalization is narrow; therefore, how to determine the initial and final points of the time window accurately is a key factor in combination therapy. At present, the gold standard for detecting the normalization of tumor blood vessels is histological staining, including tumor perfusion, microvessel density (MVD), vascular morphology, and permeability. However, this detection method is almost unrepeatable in the same individual and does not dynamically monitor the trend of the time window; therefore, finding a relatively simple and specific monitoring index has important clinical significance. Imaging has long been used to assess changes in tumor blood vessels and tumor changes caused by the oxygen environment in clinical practice; some preclinical and clinical research studies demonstrate the feasibility to assess vascular changes, and some new methods were in preclinical research. In this review, we update the most recent insights of evaluating tumor vascular normalization.
Collapse
Affiliation(s)
- Wei Li
- Department of General Surgery, Zhuhai People's Hospital, Jinan University, Zhuhai, Guangdong, People's Republic of China,
| | - Ying-Yao Quan
- Department of Precision Medical Center, Zhuhai People's Hospital, Jinan University, Zhuhai, Guangdong, People's Republic of China
| | - Yong Li
- Department of Intervention, Zhuhai People's Hospital, Jinan University, Zhuhai, Guangdong, People's Republic of China,
| | - Ligong Lu
- Department of Intervention, Zhuhai People's Hospital, Jinan University, Zhuhai, Guangdong, People's Republic of China,
| | - Min Cui
- Department of General Surgery, Zhuhai People's Hospital, Jinan University, Zhuhai, Guangdong, People's Republic of China,
| |
Collapse
|
6
|
Kim J, Kim E, Euceda LR, Meyer DE, Langseth K, Bathen TF, Moestue SA, Huuse EM. Multiparametric characterization of response to anti-angiogenic therapy using USPIO contrast-enhanced MRI in combination with dynamic contrast-enhanced MRI. J Magn Reson Imaging 2017; 47:1589-1600. [DOI: 10.1002/jmri.25898] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/03/2017] [Indexed: 12/28/2022] Open
Affiliation(s)
- Jana Kim
- Department of Circulation and Medical Imaging; NTNU - Norwegian University of Science and Technology; Trondheim Norway
- Department of Radiology and Nuclear Medicine; St. Olavs Hospital, Trondheim University Hospital; Trondheim Norway
| | - Eugene Kim
- Department of Circulation and Medical Imaging; NTNU - Norwegian University of Science and Technology; Trondheim Norway
- Department of Radiology and Nuclear Medicine; St. Olavs Hospital, Trondheim University Hospital; Trondheim Norway
| | - Leslie R. Euceda
- Department of Circulation and Medical Imaging; NTNU - Norwegian University of Science and Technology; Trondheim Norway
| | - Dan E. Meyer
- Biosciences Technology Organization, GE Global Research Center; Niskayuna NY United States
| | | | - Tone F. Bathen
- Department of Circulation and Medical Imaging; NTNU - Norwegian University of Science and Technology; Trondheim Norway
| | - Siver A. Moestue
- Department of Circulation and Medical Imaging; NTNU - Norwegian University of Science and Technology; Trondheim Norway
- Department of Laboratory Medicine, Women's and Children's Health; NTNU - Norwegian University of Science and Technology; Trondheim Norway
| | - Else Marie Huuse
- Department of Circulation and Medical Imaging; NTNU - Norwegian University of Science and Technology; Trondheim Norway
- Department of Radiology and Nuclear Medicine; St. Olavs Hospital, Trondheim University Hospital; Trondheim Norway
| |
Collapse
|