1
|
Torres-Lopez VM, Rovenolt GE, Olcese AJ, Garcia GE, Chacko SM, Robinson A, Gaiser E, Acosta J, Herman AL, Kuohn LR, Leary M, Soto AL, Zhang Q, Fatima S, Falcone GJ, Payabvash MS, Sharma R, Struck AF, Sheth KN, Westover MB, Kim JA. Development and Validation of a Model to Identify Critical Brain Injuries Using Natural Language Processing of Text Computed Tomography Reports. JAMA Netw Open 2022; 5:e2227109. [PMID: 35972739 PMCID: PMC9382443 DOI: 10.1001/jamanetworkopen.2022.27109] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 06/20/2022] [Indexed: 12/17/2022] Open
Abstract
Importance Clinical text reports from head computed tomography (CT) represent rich, incompletely utilized information regarding acute brain injuries and neurologic outcomes. CT reports are unstructured; thus, extracting information at scale requires automated natural language processing (NLP). However, designing new NLP algorithms for each individual injury category is an unwieldy proposition. An NLP tool that summarizes all injuries in head CT reports would facilitate exploration of large data sets for clinical significance of neuroradiological findings. Objective To automatically extract acute brain pathological data and their features from head CT reports. Design, Setting, and Participants This diagnostic study developed a 2-part named entity recognition (NER) NLP model to extract and summarize data on acute brain injuries from head CT reports. The model, termed BrainNERD, extracts and summarizes detailed brain injury information for research applications. Model development included building and comparing 2 NER models using a custom dictionary of terms, including lesion type, location, size, and age, then designing a rule-based decoder using NER outputs to evaluate for the presence or absence of injury subtypes. BrainNERD was evaluated against independent test data sets of manually classified reports, including 2 external validation sets. The model was trained on head CT reports from 1152 patients generated by neuroradiologists at the Yale Acute Brain Injury Biorepository. External validation was conducted using reports from 2 outside institutions. Analyses were conducted from May 2020 to December 2021. Main Outcomes and Measures Performance of the BrainNERD model was evaluated using precision, recall, and F1 scores based on manually labeled independent test data sets. Results A total of 1152 patients (mean [SD] age, 67.6 [16.1] years; 586 [52%] men), were included in the training set. NER training using transformer architecture and bidirectional encoder representations from transformers was significantly faster than spaCy. For all metrics, the 10-fold cross-validation performance was 93% to 99%. The final test performance metrics for the NER test data set were 98.82% (95% CI, 98.37%-98.93%) for precision, 98.81% (95% CI, 98.46%-99.06%) for recall, and 98.81% (95% CI, 98.40%-98.94%) for the F score. The expert review comparison metrics were 99.06% (95% CI, 97.89%-99.13%) for precision, 98.10% (95% CI, 97.93%-98.77%) for recall, and 98.57% (95% CI, 97.78%-99.10%) for the F score. The decoder test set metrics were 96.06% (95% CI, 95.01%-97.16%) for precision, 96.42% (95% CI, 94.50%-97.87%) for recall, and 96.18% (95% CI, 95.151%-97.16%) for the F score. Performance in external institution report validation including 1053 head CR reports was greater than 96%. Conclusions and Relevance These findings suggest that the BrainNERD model accurately extracted acute brain injury terms and their properties from head CT text reports. This freely available new tool could advance clinical research by integrating information in easily gathered head CT reports to expand knowledge of acute brain injury radiographic phenotypes.
Collapse
Affiliation(s)
| | | | - Angelo J. Olcese
- Department of Neurology, Yale University, New Haven, Connecticut
| | | | - Sarah M. Chacko
- Department of Neurology, Yale University, New Haven, Connecticut
| | - Amber Robinson
- Department of Neurology, Yale University, New Haven, Connecticut
| | - Edward Gaiser
- Department of Neurology, Yale University, New Haven, Connecticut
| | - Julian Acosta
- Department of Neurology, Yale University, New Haven, Connecticut
| | - Alison L. Herman
- Department of Neurology, Yale University, New Haven, Connecticut
| | - Lindsey R. Kuohn
- Department of Neurology, Yale University, New Haven, Connecticut
| | - Megan Leary
- Department of Neurology, Yale University, New Haven, Connecticut
| | | | - Qiang Zhang
- Department of Neurology, Yale University, New Haven, Connecticut
| | - Safoora Fatima
- Department of Neurology, University of Wisconsin, Madison
| | - Guido J. Falcone
- Department of Neurology, Yale University, New Haven, Connecticut
| | | | - Richa Sharma
- Department of Neurology, Yale University, New Haven, Connecticut
| | - Aaron F. Struck
- Department of Neurology, University of Wisconsin, Madison
- William S Middleton Veterans Hospital, Madison, Wisconsin
| | - Kevin N. Sheth
- Department of Neurology, Yale University, New Haven, Connecticut
| | | | - Jennifer A. Kim
- Department of Neurology, Yale University, New Haven, Connecticut
| |
Collapse
|
2
|
Huang C, Yin C. A coronary artery CTA segmentation approach based on deep learning. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2022; 30:245-259. [PMID: 34957947 DOI: 10.3233/xst-211063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Presence of plaque and coronary artery stenosis are the main causes of coronary heart disease. Detection of plaque and coronary artery segmentation have become the first choice in detecting coronary artery disease. The purpose of this study is to investigate a new method for plaque detection and automatic segmentation and diagnosis of coronary arteries and to test its feasibility of applying to clinical medical image diagnosis. A multi-model fusion coronary CT angiography (CTA) vessel segmentation method is proposed based on deep learning. The method includes three network layer models namely, an original 3-dimensional full convolutional network (3D FCN) and two networks that embed the attention gating (AG) model in the original 3D FCN. Then, the prediction results of the three networks are merged by using the majority voting algorithm and thus the final prediction result of the networks is obtained. In the post-processing stage, the level set function is used to further iteratively optimize the results of network fusion prediction. The JI (Jaccard index) and DSC (Dice similarity coefficient) scores are calculated to evaluate accuracy of blood vessel segmentations. Applying to a CTA dataset of 20 patients, accuracy of coronary blood vessel segmentation using FCN, FCN-AG1, FCN-AG2 network and the fusion method are tested. The average values of JI and DSC of using the first three networks are (0.7962, 0.8843), (0.8154, 0.8966) and (0.8119, 0.8936), respectively. When using new fusion method, average JI and DSC of segmentation results increase to (0.8214, 0.9005), which are better than the best result of using FCN, FCN-AG1 and FCN-AG2 model independently.
Collapse
Affiliation(s)
- Caiyun Huang
- School of Information and Mechanical Engineering, Hunan International Economics University, Changsha, China
| | - Changhua Yin
- Hunan Winmeter Energy Technology Co., Ltd, Changsha, China
| |
Collapse
|
3
|
Song J, Zhang Z. Magnetic Resonance Imaging Segmentation via Weighted Level Set Model Based on Local Kernel Metric and Spatial Constraint. ENTROPY 2021; 23:e23091196. [PMID: 34573821 PMCID: PMC8465562 DOI: 10.3390/e23091196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 12/30/2022]
Abstract
Magnetic resonance imaging (MRI) segmentation is a fundamental and significant task since it can guide subsequent clinic diagnosis and treatment. However, images are often corrupted by defects such as low-contrast, noise, intensity inhomogeneity, and so on. Therefore, a weighted level set model (WLSM) is proposed in this study to segment inhomogeneous intensity MRI destroyed by noise and weak boundaries. First, in order to segment the intertwined regions of brain tissue accurately, a weighted neighborhood information measure scheme based on local multi information and kernel function is designed. Then, the membership function of fuzzy c-means clustering is used as the spatial constraint of level set model to overcome the sensitivity of level set to initialization, and the evolution of level set function can be adaptively changed according to different tissue information. Finally, the distance regularization term in level set function is replaced by a double potential function to ensure the stability of the energy function in the evolution process. Both real and synthetic MRI images can show the effectiveness and performance of WLSM. In addition, compared with several state-of-the-art models, segmentation accuracy and Jaccard similarity coefficient obtained by WLSM are increased by 0.0586, 0.0362 and 0.1087, 0.0703, respectively.
Collapse
Affiliation(s)
- Jianhua Song
- College of Physics and Information Engineering, Minnan Normal University, Zhangzhou 363000, China
- Correspondence:
| | - Zhe Zhang
- Electronic Engineering College, Heilongjiang University, Harbin 150080, China;
| |
Collapse
|
4
|
Badoual A, Romani L, Unser M. Active Subdivision Surfaces for the Semiautomatic Segmentation of Biomedical Volumes. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2021; 30:5739-5753. [PMID: 34129498 DOI: 10.1109/tip.2021.3087947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We present a new family of active surfaces for the semiautomatic segmentation of volumetric objects in 3D biomedical images. We represent our deformable model by a subdivision surface encoded by a small set of control points and generated through a geometric refinement process. The subdivision operator confers important properties to the surface such as smoothness, reproduction of desirable shapes and interpolation of the control points. We deform the subdivision surface through the minimization of suitable gradient-based and region-based energy terms that we have designed for that purpose. In addition, we provide an easy way to combine these energies with convolutional neural networks. Our active subdivision surface satisfies the property of multiresolution, which allows us to adopt a coarse-to-fine optimization strategy. This speeds up the computations and decreases its dependence on initialization compared to singleresolution active surfaces. Performance evaluations on both synthetic and real biomedical data show that our active subdivision surface is robust in the presence of noise and outperforms current state-of-the-art methods. In addition, we provide a software that gives full control over the active subdivision surface via an intuitive manipulation of the control points.
Collapse
|
5
|
Ge L, Chen Y, Yan C, Zhao P, Zhang P, A R, Liu J. Study Progress of Radiomics With Machine Learning for Precision Medicine in Bladder Cancer Management. Front Oncol 2019; 9:1296. [PMID: 31850202 PMCID: PMC6892826 DOI: 10.3389/fonc.2019.01296] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/08/2019] [Indexed: 02/05/2023] Open
Abstract
Bladder cancer is a fatal cancer that happens in the genitourinary tract with quite high morbidity and mortality annually. The high level of recurrence rate ranging from 50 to 80% makes bladder cancer one of the most challenging and costly diseases to manage. Faced with various problems in existing methods, a recently emerging concept for the measurement of imaging biomarkers and extraction of quantitative features called "radiomics" shows great potential in the application of detection, grading, and follow-up management of bladder cancer. Furthermore, machine-learning (ML) algorithms on the basis of "big data" are fueling the powers of radiomics for bladder cancer monitoring in the era of precision medicine. Currently, the usefulness of the novel combination of radiomics and ML has been demonstrated by a large number of successful cases. It possesses outstanding strengths including non-invasiveness, low cost, and high efficiency, which may serve as a revolution to tumor assessment and emancipate workforce. However, for the extensive clinical application in the future, more efforts should be made to break down the limitations caused by technology deficiencies, inherent problems during the process of radiomic analysis, as well as the quality of present studies.
Collapse
Affiliation(s)
- Lingling Ge
- West China Hospital, Sichuan University, Chengdu, China
| | - Yuntian Chen
- Radiological Department, West China Hospital, Sichuan University, Chengdu, China
| | - Chunyi Yan
- West China Hospital, Sichuan University, Chengdu, China
| | - Pan Zhao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Peng Zhang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Runa A
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, China
| | - Jiaming Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Automated Segmentation of Colorectal Tumor in 3D MRI Using 3D Multiscale Densely Connected Convolutional Neural Network. JOURNAL OF HEALTHCARE ENGINEERING 2019; 2019:1075434. [PMID: 30838121 PMCID: PMC6374810 DOI: 10.1155/2019/1075434] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/05/2019] [Accepted: 01/13/2019] [Indexed: 12/15/2022]
Abstract
The main goal of this work is to automatically segment colorectal tumors in 3D T2-weighted (T2w) MRI with reasonable accuracy. For such a purpose, a novel deep learning-based algorithm suited for volumetric colorectal tumor segmentation is proposed. The proposed CNN architecture, based on densely connected neural network, contains multiscale dense interconnectivity between layers of fine and coarse scales, thus leveraging multiscale contextual information in the network to get better flow of information throughout the network. Additionally, the 3D level-set algorithm was incorporated as a postprocessing task to refine contours of the network predicted segmentation. The method was assessed on T2-weighted 3D MRI of 43 patients diagnosed with locally advanced colorectal tumor (cT3/T4). Cross validation was performed in 100 rounds by partitioning the dataset into 30 volumes for training and 13 for testing. Three performance metrics were computed to assess the similarity between predicted segmentation and the ground truth (i.e., manual segmentation by an expert radiologist/oncologist), including Dice similarity coefficient (DSC), recall rate (RR), and average surface distance (ASD). The above performance metrics were computed in terms of mean and standard deviation (mean ± standard deviation). The DSC, RR, and ASD were 0.8406 ± 0.0191, 0.8513 ± 0.0201, and 2.6407 ± 2.7975 before postprocessing, and these performance metrics became 0.8585 ± 0.0184, 0.8719 ± 0.0195, and 2.5401 ± 2.402 after postprocessing, respectively. We compared our proposed method to other existing volumetric medical image segmentation baseline methods (particularly 3D U-net and DenseVoxNet) in our segmentation tasks. The experimental results reveal that the proposed method has achieved better performance in colorectal tumor segmentation in volumetric MRI than the other baseline techniques.
Collapse
|
7
|
Palani D, Venkatalakshmi K. An IoT Based Predictive Modelling for Predicting Lung Cancer Using Fuzzy Cluster Based Segmentation and Classification. J Med Syst 2018; 43:21. [PMID: 30564924 DOI: 10.1007/s10916-018-1139-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/09/2018] [Indexed: 01/22/2023]
Abstract
In this paper, we propose a new Internet of Things (IoT) based predictive modelling by using fuzzy cluster based augmentation and classification for predicting the lung cancer disease through continuous monitoring and also to improve the healthcare by providing medical instructions. Here, the fuzzy clustering method is used and which is based on transition region extraction for effective image segmentation. Moreover, Fuzzy C-Means Clustering algorithm is used to categorize the transitional region features from the feature of lung cancer image. In this work, Otsu thresholding method is used for extracting the transition region from lung cancer image. Moreover, the right edge image and the morphological thinning operation are used for enhancing the performance of segmentation. In addition, the morphological cleaning and the image region filling operations are performed over an edge lung cancer image for getting the object regions. In addition, we also propose a new incremental classification algorithm which combines the existing Association Rule Mining (ARM), the standard Decision Tree (DT) with temporal features and the CNN. The experiments have been conducted by using the standard images that are collected from database and the current health data which are collected from patient through IoT devices. The results proved that the performance of the proposed prediction model which is able to achieve the better accuracy when it is compared with other existing prediction model.
Collapse
Affiliation(s)
- D Palani
- Department of Electronics and Communication Engineering, University College of Engineering Villupuram, Villupuram, Tamilnadu, 605103, India.
| | - K Venkatalakshmi
- Department of Electronics and Communication Engineering, University College of Engineering Tindivanam, Tindivanam, Tamilnadu, 604001, India
| |
Collapse
|
8
|
Gupta A, Mallick P, Sharma O, Gupta R, Duggal R. PCSeg: Color model driven probabilistic multiphase level set based tool for plasma cell segmentation in multiple myeloma. PLoS One 2018; 13:e0207908. [PMID: 30540767 PMCID: PMC6291116 DOI: 10.1371/journal.pone.0207908] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 11/08/2018] [Indexed: 02/03/2023] Open
Abstract
Plasma cell segmentation is the first stage of a computer assisted automated diagnostic tool for multiple myeloma (MM). Owing to large variability in biological cell types, a method for one cell type cannot be applied directly on the other cell types. In this paper, we present PCSeg Tool for plasma cell segmentation from microscopic medical images. These images were captured from bone marrow aspirate slides of patients with MM. PCSeg has a robust pipeline consisting of a pre-processing step, the proposed modified multiphase level set method followed by post-processing steps including the watershed and circular Hough transform to segment clusters of cells of interest and to remove unwanted cells. Our modified level set method utilizes prior information about the probability densities of regions of interest (ROIs) in the color spaces and provides a solution to the minimal-partition problem to segment ROIs in one of the level sets of a two-phase level set formulation. PCSeg tool is tested on a number of microscopic images and provides good segmentation results on single cells as well as efficient segmentation of plasma cell clusters.
Collapse
Affiliation(s)
- Anubha Gupta
- SBILab, Department of ECE, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), New Delhi, India
- * E-mail:
| | - Pramit Mallick
- Department of Computer Science, Courant Institute of Mathematical Sciences, New York University, New York City, New York, United States of America
| | - Ojaswa Sharma
- Department of CSE, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), New Delhi, India
| | - Ritu Gupta
- Laboratory Oncology Unit, Dr. B. R.A. IRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Rahul Duggal
- SBILab, Department of ECE, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), New Delhi, India
| |
Collapse
|
9
|
Maolood IY, Al-Salhi YEA, Lu S. Thresholding for Medical Image Segmentation for Cancer using Fuzzy Entropy with Level Set Algorithm. Open Med (Wars) 2018; 13:374-383. [PMID: 30211320 PMCID: PMC6132127 DOI: 10.1515/med-2018-0056] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/07/2018] [Indexed: 11/15/2022] Open
Abstract
In this study, an effective means for detecting cancer region through different types of medical image segmentation are presented and explained. We proposed a new method for cancer segmentation on the basis of fuzzy entropy with a level set (FELs) thresholding. The proposed method was successfully utilized to segment cancer images and then efficiently performed the segmentation of test ultrasound image, brain MRI, and dermoscopy image compared with algorithms proposed in previous studies. Results showed an excellent performance of the proposed method in detecting cancer image segmentation in terms of accuracy, precision, specificity, and sensitivity measures.
Collapse
Affiliation(s)
- Ismail Yaqub Maolood
- School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | | | - Songfeng Lu
- School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.,Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518063, China
| |
Collapse
|