1
|
Hojo E, Glaser KJ, Harada-Hayashi A, Le Y, Chen J, Hulshizer TC, Rossman PJ, Noyori S, Roberts N. Feasibility study of the application of magnetic resonance elastography (MRE) to measure oral posture related changes in stiffness of zygomaticus major muscle. Magn Reson Imaging 2024; 111:196-201. [PMID: 38723783 DOI: 10.1016/j.mri.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/20/2024] [Accepted: 05/06/2024] [Indexed: 05/24/2024]
Abstract
PURPOSE Development of a technique for measuring the mechanical properties of zygomaticus major (ZM) may aid advances in clinical treatments for correcting abnormal oral posture. The objective of this work was to demonstrate the feasibility of measuring the stiffness of ZM using an MR elastography technique that incorporates a custom local driver and a phase-gradient (PG) inversion. METHODS 2D MRE investigations were performed for 3 healthy subjects using a vibration frequency of 90 Hz to test the prediction that the stiffness of ZM would be greater in the mouth-open compared to the mouth-closed position. MRE wave images were acquired along the long axis of ZM and processed using a 2D spatial-temporal directional filter applied in the direction of wave propagation along the long axis of the muscle. Stiffness measurements were obtained by applying the PG technique to a 1D-profile drawn in the phase image of the first harmonic of the wave images and a one-tailed paired t-test was used to compare the ZM stiffness between the two mouth postures (p < 0.05). RESULTS The mean stiffness and standard deviation (SD) of ZM across the three participants in the mouth-closed and mouth-open postures was 6.75 kPa (SD 3.36 kPa) and 15.5 kPa (SD 5.15 kPa), respectively. Changes of ZM stiffness were significantly greater in the mouth-open than the mouth-closed posture (p = 0.038). CONCLUSION The feasibility of using the PG MRE technique to measure stiffness changes in a small muscle such as ZM for different mouth postures has been demonstrated. Further investigations are required in a larger cohort of participants to investigate the sensitivity and reproducibility of the technique for potential clinical application as well as in health and beauty related studies.
Collapse
Affiliation(s)
- Emi Hojo
- Centre for Reproductive Health (CRH), Institute for Regeneration and Repair (IRR), 4-5 Little France Drive, Edinburgh EH16 4UU, UK; Department of Radiology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Kevin J Glaser
- Department of Radiology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Ayako Harada-Hayashi
- Rohto Pharmaceutical Company, 1-8-1, Tatsumi-nishi, Ikunoku, Osaka 544-8666, Japan
| | - Yuan Le
- Department of Radiology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Jun Chen
- Department of Radiology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA; Department of Radiology, Nanjing Drum Tower Hospital, 321 Zhongshan Rd, Gulou, Nanjing, Jiangsu 210008, China; Resoundant, Inc., 421 1st Ave SW, Rochester, MN, USA
| | - Thomas C Hulshizer
- Department of Radiology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Phillip J Rossman
- Department of Radiology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Sachiko Noyori
- Rohto Pharmaceutical Company, 1-8-1, Tatsumi-nishi, Ikunoku, Osaka 544-8666, Japan
| | - Neil Roberts
- Centre for Reproductive Health (CRH), Institute for Regeneration and Repair (IRR), 4-5 Little France Drive, Edinburgh EH16 4UU, UK.
| |
Collapse
|
3
|
Ishihara Y, Numano T, Ito D, Nishijo H, Takamoto K, Kikuchi J, Konuma S, Oka H. Development of a suitable vibration pad for renal MR elastography. Magn Reson Imaging 2024; 109:120-126. [PMID: 38492785 DOI: 10.1016/j.mri.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/04/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
The aim of this study was to develop a vibration pad suitable for renal MR elastography (MRE). Chronic kidney disease (CKD) is a progressive condition affecting >800 million people worldwide. Renal fibrosis is a common pathological feature of CKD that causes fibrotic regions to be much stiffer than those in normal renal tissues. Therefore, MRE can be used to diagnose CKD because it can image organ stiffness. In MRE, the shear modulus is obtained from the wavelength of the shear waves. Therefore, it is highly important to propagate shear waves with sufficient vibration strength in the tissue. By using a three-dimensional (3D) printer, we created a "Flexible Pad" suitable for renal MRE. The Flexible Pad was placed under the back of the participant in the supine position and deformed in response to the participant's weight, adhering closely to the body surface. Six healthy volunteers participated in this study. Our Flexible Pad allowed for coherent shear waves (clear waves with little scattering and interference) to be efficiently transmitted to the kidney deep-lying tissues in the abdomen. The shear moduli of the kidney (n = 6) were 8.95 ± 0.84 kPa in the right kidney and 9.70 ± 0.99 kPa in the left kidney. Our results indicate that using our Flexible Pad for renal MRE can provide a more reliable measurement of renal shear modulus.
Collapse
Affiliation(s)
- Yoshito Ishihara
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10, Higashiogu, Arakawa-ku, Tokyo 116-8551, Japan
| | - Tomokazu Numano
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10, Higashiogu, Arakawa-ku, Tokyo 116-8551, Japan.
| | - Daiki Ito
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10, Higashiogu, Arakawa-ku, Tokyo 116-8551, Japan; Office of Radiation Technology, Keio University Hospital, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hisao Nishijo
- Department of Sport and Health Sciences, Faculty of Human Sciences, University of East Asia, 2-1, Ichinomiya Gakuen-cho, Shimonoseki-shi, Yamaguchi 751-8503, Japan
| | - Koichi Takamoto
- Department of Sport and Health Sciences, Faculty of Human Sciences, University of East Asia, 2-1, Ichinomiya Gakuen-cho, Shimonoseki-shi, Yamaguchi 751-8503, Japan
| | - Jo Kikuchi
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10, Higashiogu, Arakawa-ku, Tokyo 116-8551, Japan
| | - Shota Konuma
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10, Higashiogu, Arakawa-ku, Tokyo 116-8551, Japan
| | - Hiromu Oka
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10, Higashiogu, Arakawa-ku, Tokyo 116-8551, Japan
| |
Collapse
|
4
|
Hayashi D, Roemer FW, Tol JL, Heiss R, Crema MD, Jarraya M, Rossi I, Luna A, Guermazi A. Emerging Quantitative Imaging Techniques in Sports Medicine. Radiology 2023; 308:e221531. [PMID: 37552087 DOI: 10.1148/radiol.221531] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
This article describes recent advances in quantitative imaging of musculoskeletal extremity sports injuries, citing the existing literature evidence and what additional evidence is needed to make such techniques applicable to clinical practice. Compositional and functional MRI techniques including T2 mapping, diffusion tensor imaging, and sodium imaging as well as contrast-enhanced US have been applied to quantify pathophysiologic processes and biochemical compositions of muscles, tendons, ligaments, and cartilage. Dual-energy and/or spectral CT has shown potential, particularly for the evaluation of osseous and ligamentous injury (eg, creation of quantitative bone marrow edema maps), which is not possible with standard single-energy CT. Recent advances in US technology such as shear-wave elastography or US tissue characterization as well as MR elastography enable the quantification of mechanical, elastic, and physical properties of tissues in muscle and tendon injuries. The future role of novel imaging techniques such as photon-counting CT remains to be established. Eventual prediction of return to play (ie, the time needed for the injury to heal sufficiently so that the athlete can get back to playing their sport) and estimation of risk of repeat injury is desirable to help guide sports physicians in the treatment of their patients. Additional values of quantitative analyses, as opposed to routine qualitative analyses, still must be established using prospective longitudinal studies with larger sample sizes.
Collapse
Affiliation(s)
- Daichi Hayashi
- From the Department of Radiology, Tufts Medical Center, Tufts University School of Medicine, Boston, Mass (D.H.); Quantitative Imaging Center, Department of Radiology, Boston University School of Medicine, Boston, Mass (D.H., F.W.R., M.D.C., A.G.); Department of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (F.W.R., R.H.); University of Amsterdam Academic Center for Evidence-based Sports Medicine, Amsterdam, the Netherlands (J.L.T.); Institute of Sports Imaging, French National Institute of Sports, Paris, France (M.D.C.); Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass (M.J.); Centro Rossi, Buenos Aires, Argentina (I.R.); Department of Radiology, HT Medica, Jaén, Spain (A.L.); and Department of Radiology, VA Boston Healthcare System, Boston University School of Medicine, 1400 VFW Parkway, Suite 1B105, West Roxbury, MA 02132 (A.G.)
| | - Frank W Roemer
- From the Department of Radiology, Tufts Medical Center, Tufts University School of Medicine, Boston, Mass (D.H.); Quantitative Imaging Center, Department of Radiology, Boston University School of Medicine, Boston, Mass (D.H., F.W.R., M.D.C., A.G.); Department of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (F.W.R., R.H.); University of Amsterdam Academic Center for Evidence-based Sports Medicine, Amsterdam, the Netherlands (J.L.T.); Institute of Sports Imaging, French National Institute of Sports, Paris, France (M.D.C.); Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass (M.J.); Centro Rossi, Buenos Aires, Argentina (I.R.); Department of Radiology, HT Medica, Jaén, Spain (A.L.); and Department of Radiology, VA Boston Healthcare System, Boston University School of Medicine, 1400 VFW Parkway, Suite 1B105, West Roxbury, MA 02132 (A.G.)
| | - Johannes L Tol
- From the Department of Radiology, Tufts Medical Center, Tufts University School of Medicine, Boston, Mass (D.H.); Quantitative Imaging Center, Department of Radiology, Boston University School of Medicine, Boston, Mass (D.H., F.W.R., M.D.C., A.G.); Department of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (F.W.R., R.H.); University of Amsterdam Academic Center for Evidence-based Sports Medicine, Amsterdam, the Netherlands (J.L.T.); Institute of Sports Imaging, French National Institute of Sports, Paris, France (M.D.C.); Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass (M.J.); Centro Rossi, Buenos Aires, Argentina (I.R.); Department of Radiology, HT Medica, Jaén, Spain (A.L.); and Department of Radiology, VA Boston Healthcare System, Boston University School of Medicine, 1400 VFW Parkway, Suite 1B105, West Roxbury, MA 02132 (A.G.)
| | - Rafael Heiss
- From the Department of Radiology, Tufts Medical Center, Tufts University School of Medicine, Boston, Mass (D.H.); Quantitative Imaging Center, Department of Radiology, Boston University School of Medicine, Boston, Mass (D.H., F.W.R., M.D.C., A.G.); Department of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (F.W.R., R.H.); University of Amsterdam Academic Center for Evidence-based Sports Medicine, Amsterdam, the Netherlands (J.L.T.); Institute of Sports Imaging, French National Institute of Sports, Paris, France (M.D.C.); Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass (M.J.); Centro Rossi, Buenos Aires, Argentina (I.R.); Department of Radiology, HT Medica, Jaén, Spain (A.L.); and Department of Radiology, VA Boston Healthcare System, Boston University School of Medicine, 1400 VFW Parkway, Suite 1B105, West Roxbury, MA 02132 (A.G.)
| | - Michel D Crema
- From the Department of Radiology, Tufts Medical Center, Tufts University School of Medicine, Boston, Mass (D.H.); Quantitative Imaging Center, Department of Radiology, Boston University School of Medicine, Boston, Mass (D.H., F.W.R., M.D.C., A.G.); Department of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (F.W.R., R.H.); University of Amsterdam Academic Center for Evidence-based Sports Medicine, Amsterdam, the Netherlands (J.L.T.); Institute of Sports Imaging, French National Institute of Sports, Paris, France (M.D.C.); Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass (M.J.); Centro Rossi, Buenos Aires, Argentina (I.R.); Department of Radiology, HT Medica, Jaén, Spain (A.L.); and Department of Radiology, VA Boston Healthcare System, Boston University School of Medicine, 1400 VFW Parkway, Suite 1B105, West Roxbury, MA 02132 (A.G.)
| | - Mohamed Jarraya
- From the Department of Radiology, Tufts Medical Center, Tufts University School of Medicine, Boston, Mass (D.H.); Quantitative Imaging Center, Department of Radiology, Boston University School of Medicine, Boston, Mass (D.H., F.W.R., M.D.C., A.G.); Department of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (F.W.R., R.H.); University of Amsterdam Academic Center for Evidence-based Sports Medicine, Amsterdam, the Netherlands (J.L.T.); Institute of Sports Imaging, French National Institute of Sports, Paris, France (M.D.C.); Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass (M.J.); Centro Rossi, Buenos Aires, Argentina (I.R.); Department of Radiology, HT Medica, Jaén, Spain (A.L.); and Department of Radiology, VA Boston Healthcare System, Boston University School of Medicine, 1400 VFW Parkway, Suite 1B105, West Roxbury, MA 02132 (A.G.)
| | - Ignacio Rossi
- From the Department of Radiology, Tufts Medical Center, Tufts University School of Medicine, Boston, Mass (D.H.); Quantitative Imaging Center, Department of Radiology, Boston University School of Medicine, Boston, Mass (D.H., F.W.R., M.D.C., A.G.); Department of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (F.W.R., R.H.); University of Amsterdam Academic Center for Evidence-based Sports Medicine, Amsterdam, the Netherlands (J.L.T.); Institute of Sports Imaging, French National Institute of Sports, Paris, France (M.D.C.); Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass (M.J.); Centro Rossi, Buenos Aires, Argentina (I.R.); Department of Radiology, HT Medica, Jaén, Spain (A.L.); and Department of Radiology, VA Boston Healthcare System, Boston University School of Medicine, 1400 VFW Parkway, Suite 1B105, West Roxbury, MA 02132 (A.G.)
| | - Antonio Luna
- From the Department of Radiology, Tufts Medical Center, Tufts University School of Medicine, Boston, Mass (D.H.); Quantitative Imaging Center, Department of Radiology, Boston University School of Medicine, Boston, Mass (D.H., F.W.R., M.D.C., A.G.); Department of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (F.W.R., R.H.); University of Amsterdam Academic Center for Evidence-based Sports Medicine, Amsterdam, the Netherlands (J.L.T.); Institute of Sports Imaging, French National Institute of Sports, Paris, France (M.D.C.); Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass (M.J.); Centro Rossi, Buenos Aires, Argentina (I.R.); Department of Radiology, HT Medica, Jaén, Spain (A.L.); and Department of Radiology, VA Boston Healthcare System, Boston University School of Medicine, 1400 VFW Parkway, Suite 1B105, West Roxbury, MA 02132 (A.G.)
| | - Ali Guermazi
- From the Department of Radiology, Tufts Medical Center, Tufts University School of Medicine, Boston, Mass (D.H.); Quantitative Imaging Center, Department of Radiology, Boston University School of Medicine, Boston, Mass (D.H., F.W.R., M.D.C., A.G.); Department of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (F.W.R., R.H.); University of Amsterdam Academic Center for Evidence-based Sports Medicine, Amsterdam, the Netherlands (J.L.T.); Institute of Sports Imaging, French National Institute of Sports, Paris, France (M.D.C.); Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass (M.J.); Centro Rossi, Buenos Aires, Argentina (I.R.); Department of Radiology, HT Medica, Jaén, Spain (A.L.); and Department of Radiology, VA Boston Healthcare System, Boston University School of Medicine, 1400 VFW Parkway, Suite 1B105, West Roxbury, MA 02132 (A.G.)
| |
Collapse
|
7
|
Ito D, Numano T, Ueki T, Habe T, Maeno T, Takamoto K, Igarashi K, Maharjan S, Mizuhara K, Nishijo H. Magnetic resonance elastography of the supraspinatus muscle: A preliminary study on test-retest repeatability and wave quality with different frequencies and image filtering. Magn Reson Imaging 2020; 71:27-36. [PMID: 32325234 DOI: 10.1016/j.mri.2020.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 04/13/2020] [Accepted: 04/13/2020] [Indexed: 12/17/2022]
Abstract
The purpose of this study was to determine an optimal condition (vibration frequency and image filtering) for stiffness estimation with high accuracy and stiffness measurement with high repeatability in magnetic resonance elastography (MRE) of the supraspinatus muscle. Nine healthy volunteers underwent two MRE exams separated by at least a 30 min break, on the same day. MRE acquisitions were performed with a gradient-echo type multi-echo MR sequence at 75, 100, and 125 Hz pneumatic vibration. Wave images were processed by a bandpass filter or filter combining bandpass and directional filters (bandpass-directional filter). An observer specified the region of interest (ROI) on clear wave propagation in the supraspinatus muscle, within which the observer measured the stiffness. This study assessed wave image quality according to two indices, as a substitute for the assessment of the accuracy of the stiffness estimation. One is the size of the clear wave propagation area (ROI size used to measure the stiffness) and the other is the qualitative stiffness resolution score in that area. These measurements made by the observer were repeated twice at least one month apart after each MRE exam. This study assessed the intra-examiner and observer repeatability of the stiffness value, ROI size and resolution score in each combination of vibration frequency and image filter. Repeatability of the data was analyzed using the intraclass correlation coefficient (ICC) and 95% limits-of-agreement (LOA) in Bland-Altman analysis. The analyses on intra-examiner and observer repeatability of stiffness indicated that the ICC and 95% LOA were not varied greatly depending on vibration frequency and image filter (intra-examiner repeatability, ICC range, 0.79 to 0.88; 95% LOA range, ±23.95 to ±32.42%, intra-observer repeatability, ICC range, 0.98 to 1.00; 95% LOA range, ±5.10 to ±10.99%). In the analyses on intra-examiner repeatability of ROI size, ICCs were rather low (ranging from: 0.03 to 0.69) while 95% LOA was large in all the combinations of vibration frequency and image filter (ranging from: ±62.66 to ±83.33%). In the analyses on intra-observer repeatability of ROI size, ICCs were sufficiently high in the total combination of vibration frequency and image filter (ranging from 0.80 to 0.87) while the 95% LOAs were better (lower) in the bandpass-directional filter than the bandpass filter (bandpass directional filter vs. bandpass filter, ±28.81 vs. ±54.83% at 75 Hz; ±25.63 vs. ±37.83% at 100 Hz; ±34.51 vs. ±43.36% at 125 Hz). In the analyses on intra-examiner and observer repeatability of resolution score, the mean difference (bias) between the two exams (or observations) was significantly low and there was almost no difference across all the combinations of vibration frequency and image filter (range of bias: -0.11-0.11 and -0.17-0.00, respectively). Additionally, effects of vibration frequency and image filter on wave image quality (ROI size and resolution score) were assessed separately in each exam. Both mean ROI size and resolution score in the bandpass-directional filter were larger than those in the bandpass filter. Among the data in the bandpass-directional filter, mean ROI size was larger at 75 and 100 Hz, and mean resolution score was larger at 100 and 125 Hz. Taking into consideration with the results of repeatability and wave image quality, the present results suggest that optimal vibration frequency and image filter for MRE of the supraspinatus muscles is 100 Hz and bandpass-directional filter, respectively.
Collapse
Affiliation(s)
- Daiki Ito
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10, Higashiogu, Arakawa-ku, Tokyo 116-8551, Japan; Office of Radiation Technology, Keio University Hospital, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Health Research Institute, National Institute of Advanced Industrial Science and Technology, 1-2-1, Namiki, Tsukuba-shi, Ibaraki 305-8564, Japan
| | - Tomokazu Numano
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10, Higashiogu, Arakawa-ku, Tokyo 116-8551, Japan; Health Research Institute, National Institute of Advanced Industrial Science and Technology, 1-2-1, Namiki, Tsukuba-shi, Ibaraki 305-8564, Japan.
| | - Takamichi Ueki
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10, Higashiogu, Arakawa-ku, Tokyo 116-8551, Japan
| | - Tetsushi Habe
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10, Higashiogu, Arakawa-ku, Tokyo 116-8551, Japan; Office of Radiation Technology, Keio University Hospital, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Toshiki Maeno
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10, Higashiogu, Arakawa-ku, Tokyo 116-8551, Japan
| | - Kouichi Takamoto
- Department of Sport and Health Sciences, Faculty of Human Sciences, University of East Asia, 2-1, Ichinomiyagakuen-cho, Shimonoseki-shi, Yamaguchi 751-8503, Japan; System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630, Sugitani, Toyama 930-0194, Japan
| | - Keisuke Igarashi
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10, Higashiogu, Arakawa-ku, Tokyo 116-8551, Japan
| | - Surendra Maharjan
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10, Higashiogu, Arakawa-ku, Tokyo 116-8551, Japan
| | - Kazuyuki Mizuhara
- Health Research Institute, National Institute of Advanced Industrial Science and Technology, 1-2-1, Namiki, Tsukuba-shi, Ibaraki 305-8564, Japan; Department of Mechanical Engineering, Tokyo Denki University, 5, Senju Asahicho, Adachi-ku, Tokyo 120-8551, Japan
| | - Hisao Nishijo
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630, Sugitani, Toyama 930-0194, Japan
| |
Collapse
|