1
|
Liang J, Feng J, Lin Z, Wei J, Luo X, Wang QM, He B, Chen H, Ye Y. Research on prognostic risk assessment model for acute ischemic stroke based on imaging and multidimensional data. Front Neurol 2023; 14:1294723. [PMID: 38192576 PMCID: PMC10773779 DOI: 10.3389/fneur.2023.1294723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/30/2023] [Indexed: 01/10/2024] Open
Abstract
Accurately assessing the prognostic outcomes of patients with acute ischemic stroke and adjusting treatment plans in a timely manner for those with poor prognosis is crucial for intervening in modifiable risk factors. However, there is still controversy regarding the correlation between imaging-based predictions of complications in acute ischemic stroke. To address this, we developed a cross-modal attention module for integrating multidimensional data, including clinical information, imaging features, treatment plans, prognosis, and complications, to achieve complementary advantages. The fused features preserve magnetic resonance imaging (MRI) characteristics while supplementing clinical relevant information, providing a more comprehensive and informative basis for clinical diagnosis and treatment. The proposed framework based on multidimensional data for activity of daily living (ADL) scoring in patients with acute ischemic stroke demonstrates higher accuracy compared to other state-of-the-art network models, and ablation experiments confirm the effectiveness of each module in the framework.
Collapse
Affiliation(s)
- Jiabin Liang
- Postgraduate Cultivation Base of Guangzhou University of Chinese Medicine, Panyu Central Hospital, Guangzhou, China
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, China
- Medical Imaging Institute of Panyu, Guangzhou, China
| | - Jie Feng
- Radiology Department of Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhijie Lin
- Laboratory for Intelligent Information Processing, Guangdong University of Technology, Guangzhou, China
| | - Jinbo Wei
- Postgraduate Cultivation Base of Guangzhou University of Chinese Medicine, Panyu Central Hospital, Guangzhou, China
| | - Xun Luo
- Kerry Rehabilitation Medicine Research Institute, Shenzhen, China
| | - Qing Mei Wang
- Stroke Biological Recovery Laboratory, Spaulding Rehabilitation Hospital, Teaching Affiliate of Harvard Medical School, Charlestown, MA, United States
| | - Bingjie He
- Panyu Health Management Center, Guangzhou, China
| | - Hanwei Chen
- Postgraduate Cultivation Base of Guangzhou University of Chinese Medicine, Panyu Central Hospital, Guangzhou, China
- Medical Imaging Institute of Panyu, Guangzhou, China
- Panyu Health Management Center, Guangzhou, China
| | - Yufeng Ye
- Postgraduate Cultivation Base of Guangzhou University of Chinese Medicine, Panyu Central Hospital, Guangzhou, China
- Medical Imaging Institute of Panyu, Guangzhou, China
| |
Collapse
|
2
|
A Deep Learning Approach for Detecting Stroke from Brain CT Images Using OzNet. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120783. [PMID: 36550989 PMCID: PMC9774129 DOI: 10.3390/bioengineering9120783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/01/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022]
Abstract
A brain stroke is a life-threatening medical disorder caused by the inadequate blood supply to the brain. After the stroke, the damaged area of the brain will not operate normally. As a result, early detection is crucial for more effective therapy. Computed tomography (CT) images supply a rapid diagnosis of brain stroke. However, while doctors are analyzing each brain CT image, time is running fast. This circumstance may lead to result in a delay in treatment and making errors. Therefore, we targeted the utilization of an efficient artificial intelligence algorithm in stroke detection. In this paper, we designed hybrid algorithms that include a new convolution neural networks (CNN) architecture called OzNet and various machine learning algorithms for binary classification of real brain stroke CT images. When we classified the dataset with OzNet, we acquired successful performance. However, for this target, we combined it with a minimum Redundancy Maximum Relevance (mRMR) method and Decision Tree (DT), k-Nearest Neighbors (kNN), Linear Discriminant Analysis (LDA), Naïve Bayes (NB), and Support Vector Machines (SVM). In addition, 4096 significant features were obtained from the fully connected layer of OzNet, and we reduced the dimension of features from 4096 to 250 using the mRMR method. Finally, we utilized these machine learning algorithms to classify important features. As a result, OzNet-mRMR-NB was an excellent hybrid algorithm and achieved an accuracy of 98.42% and AUC of 0.99 to detect stroke from brain CT images.
Collapse
|
3
|
Cui L, Fan Z, Yang Y, Liu R, Wang D, Feng Y, Lu J, Fan Y. Deep Learning in Ischemic Stroke Imaging Analysis: A Comprehensive Review. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2456550. [PMID: 36420096 PMCID: PMC9678444 DOI: 10.1155/2022/2456550] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/27/2022] [Accepted: 10/20/2022] [Indexed: 09/15/2023]
Abstract
Ischemic stroke is a cerebrovascular disease with a high morbidity and mortality rate, which poses a serious challenge to human health and life. Meanwhile, the management of ischemic stroke remains highly dependent on manual visual analysis of noncontrast computed tomography (CT) or magnetic resonance imaging (MRI). However, artifacts and noise of the equipment as well as the radiologist experience play a significant role on diagnostic accuracy. To overcome these defects, the number of computer-aided diagnostic (CAD) methods for ischemic stroke is increasing substantially during the past decade. Particularly, deep learning models with massive data learning capabilities are recognized as powerful auxiliary tools for the acute intervention and guiding prognosis of ischemic stroke. To select appropriate interventions, facilitate clinical practice, and improve the clinical outcomes of patients, this review firstly surveys the current state-of-the-art deep learning technology. Then, we summarized the major applications in acute ischemic stroke imaging, particularly in exploring the potential function of stroke diagnosis and multimodal prognostication. Finally, we sketched out the current problems and prospects.
Collapse
Affiliation(s)
- Liyuan Cui
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zhiyuan Fan
- Centre of Intelligent Medical Technology and Equipment, Binjiang Institute of Zhejiang University, Hangzhou, Zhejiang, China
| | - Yingjian Yang
- School of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Rui Liu
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Dajiang Wang
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yingying Feng
- School of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Jiahui Lu
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yifeng Fan
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Agnostic multimodal brain anomalies detection using a novel single-structured framework for better patient diagnosis and therapeutic planning in clinical oncology. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Kumar R, Aggarwal Y, Kumar Nigam V. Heart rate dynamics in the prediction of coronary artery disease and myocardial infarction using artificial neural network and support vector machine. J Appl Biomed 2022; 20:70-79. [PMID: 35727124 DOI: 10.32725/jab.2022.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 06/16/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Atherosclerosis leads to coronary artery disease (CAD) and myocardial infarction (MI), a major cause of morbidity and mortality worldwide. The computer-aided prognosis of atherosclerotic events with the electrocardiogram (ECG) derived heart rate variability (HRV) can be a robust method in the prognosis of atherosclerosis events. METHODS A total of 70 male subjects aged 55 ± 5 years participated in the study. The lead-II ECG was recorded and sampled at 200 Hz. The tachogram was obtained from the ECG signal and used to extract twenty-five HRV features. The one-way Analysis of variance (ANOVA) test was performed to find the significant differences between the CAD, MI, and control subjects. Features were used in the training and testing of a two-class artificial neural network (ANN) and support vector machine (SVM). RESULTS The obtained results revealed depressed HRV under atherosclerosis. Accuracy of 100% was obtained in classifying CAD and MI subjects from the controls using ANN. Accuracy was 99.6% with SVM, and in the classification of CAD from MI subjects using SVM and ANN, 99.3% and 99.0% accuracy was obtained respectively. CONCLUSIONS Depressed HRV has been suggested to be a marker in the identification of atherosclerotic events. The good accuracy observed in classification between control, CAD, and MI subjects, revealed it to be a non-invasive cost-effective approach in the prognosis of atherosclerotic events.
Collapse
Affiliation(s)
- Rahul Kumar
- Birla Institute of Technology, Department of Bioengineering and Biotechnology, Mesra, Ranchi, Jharkhand, India
| | - Yogender Aggarwal
- Birla Institute of Technology, Department of Bioengineering and Biotechnology, Mesra, Ranchi, Jharkhand, India
| | - Vinod Kumar Nigam
- Birla Institute of Technology, Department of Bioengineering and Biotechnology, Mesra, Ranchi, Jharkhand, India
| |
Collapse
|
6
|
Bento M, Fantini I, Park J, Rittner L, Frayne R. Deep Learning in Large and Multi-Site Structural Brain MR Imaging Datasets. Front Neuroinform 2022; 15:805669. [PMID: 35126080 PMCID: PMC8811356 DOI: 10.3389/fninf.2021.805669] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/27/2021] [Indexed: 12/22/2022] Open
Abstract
Large, multi-site, heterogeneous brain imaging datasets are increasingly required for the training, validation, and testing of advanced deep learning (DL)-based automated tools, including structural magnetic resonance (MR) image-based diagnostic and treatment monitoring approaches. When assembling a number of smaller datasets to form a larger dataset, understanding the underlying variability between different acquisition and processing protocols across the aggregated dataset (termed “batch effects”) is critical. The presence of variation in the training dataset is important as it more closely reflects the true underlying data distribution and, thus, may enhance the overall generalizability of the tool. However, the impact of batch effects must be carefully evaluated in order to avoid undesirable effects that, for example, may reduce performance measures. Batch effects can result from many sources, including differences in acquisition equipment, imaging technique and parameters, as well as applied processing methodologies. Their impact, both beneficial and adversarial, must be considered when developing tools to ensure that their outputs are related to the proposed clinical or research question (i.e., actual disease-related or pathological changes) and are not simply due to the peculiarities of underlying batch effects in the aggregated dataset. We reviewed applications of DL in structural brain MR imaging that aggregated images from neuroimaging datasets, typically acquired at multiple sites. We examined datasets containing both healthy control participants and patients that were acquired using varying acquisition protocols. First, we discussed issues around Data Access and enumerated the key characteristics of some commonly used publicly available brain datasets. Then we reviewed methods for correcting batch effects by exploring the two main classes of approaches: Data Harmonization that uses data standardization, quality control protocols or other similar algorithms and procedures to explicitly understand and minimize unwanted batch effects; and Domain Adaptation that develops DL tools that implicitly handle the batch effects by using approaches to achieve reliable and robust results. In this narrative review, we highlighted the advantages and disadvantages of both classes of DL approaches, and described key challenges to be addressed in future studies.
Collapse
Affiliation(s)
- Mariana Bento
- Electrical and Software Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Calgary Image Processing and Analysis Centre, Foothills Medical Centre, Calgary, AB, Canada
- *Correspondence: Mariana Bento
| | - Irene Fantini
- School of Electrical and Computer Engineering, University of Campinas, Campinas, Brazil
| | - Justin Park
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Calgary Image Processing and Analysis Centre, Foothills Medical Centre, Calgary, AB, Canada
- Radiology and Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Leticia Rittner
- School of Electrical and Computer Engineering, University of Campinas, Campinas, Brazil
| | - Richard Frayne
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Calgary Image Processing and Analysis Centre, Foothills Medical Centre, Calgary, AB, Canada
- Radiology and Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Seaman Family MR Research Centre, Foothills Medical Centre, Calgary, AB, Canada
| |
Collapse
|
7
|
Inamdar MA, Raghavendra U, Gudigar A, Chakole Y, Hegde A, Menon GR, Barua P, Palmer EE, Cheong KH, Chan WY, Ciaccio EJ, Acharya UR. A Review on Computer Aided Diagnosis of Acute Brain Stroke. SENSORS (BASEL, SWITZERLAND) 2021; 21:8507. [PMID: 34960599 PMCID: PMC8707263 DOI: 10.3390/s21248507] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/05/2021] [Accepted: 12/09/2021] [Indexed: 01/01/2023]
Abstract
Amongst the most common causes of death globally, stroke is one of top three affecting over 100 million people worldwide annually. There are two classes of stroke, namely ischemic stroke (due to impairment of blood supply, accounting for ~70% of all strokes) and hemorrhagic stroke (due to bleeding), both of which can result, if untreated, in permanently damaged brain tissue. The discovery that the affected brain tissue (i.e., 'ischemic penumbra') can be salvaged from permanent damage and the bourgeoning growth in computer aided diagnosis has led to major advances in stroke management. Abiding to the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines, we have surveyed a total of 177 research papers published between 2010 and 2021 to highlight the current status and challenges faced by computer aided diagnosis (CAD), machine learning (ML) and deep learning (DL) based techniques for CT and MRI as prime modalities for stroke detection and lesion region segmentation. This work concludes by showcasing the current requirement of this domain, the preferred modality, and prospective research areas.
Collapse
Affiliation(s)
- Mahesh Anil Inamdar
- Department of Mechatronics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India;
| | - Udupi Raghavendra
- Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India; (A.G.); (Y.C.)
| | - Anjan Gudigar
- Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India; (A.G.); (Y.C.)
| | - Yashas Chakole
- Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India; (A.G.); (Y.C.)
| | - Ajay Hegde
- Department of Neurosurgery, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, India; (A.H.); (G.R.M.)
| | - Girish R. Menon
- Department of Neurosurgery, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, India; (A.H.); (G.R.M.)
| | - Prabal Barua
- School of Management & Enterprise, University of Southern Queensland, Toowoomba, QLD 4350, Australia;
- Faculty of Engineering and Information Technology, University of Technology, Sydney, NSW 2007, Australia
- Cogninet Brain Team, Cogninet Australia, Sydney, NSW 2010, Australia
| | - Elizabeth Emma Palmer
- School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2052, Australia;
| | - Kang Hao Cheong
- Science, Mathematics and Technology Cluster, Singapore University of Technology and Design, Singapore 487372, Singapore;
| | - Wai Yee Chan
- Department of Biomedical Imaging, Research Imaging Centre, University of Malaya, Kuala Lumpur 59100, Malaysia;
| | - Edward J. Ciaccio
- Department of Medicine, Columbia University, New York, NY 10032, USA;
| | - U. Rajendra Acharya
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia;
- School of Engineering, Ngee Ann Polytechnic, Singapore 599489, Singapore
- Department of Biomedical Engineering, School of Science and Technology, SUSS University, Singapore 599491, Singapore
- Department of Biomedical Informatics and Medical Engineering, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
8
|
Sirsat MS, Fermé E, Câmara J. Machine Learning for Brain Stroke: A Review. J Stroke Cerebrovasc Dis 2020; 29:105162. [DOI: 10.1016/j.jstrokecerebrovasdis.2020.105162] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/08/2020] [Accepted: 07/11/2020] [Indexed: 12/29/2022] Open
|