1
|
Expert Panel on Cardiac Imaging, Roberts J, Hanneman K, Rajiah PS, Ahmad S, Avery R, Brown WM, El-Sherief AH, Hsu JY, de Rosen VL, Lin F, Panjrath G, Renapurkar RD, White JA, Bolen MA. ACR Appropriateness Criteria® Suspected and Known Heart Failure: 2024 Update. J Am Coll Radiol 2025; 22:S424-S439. [PMID: 40409892 DOI: 10.1016/j.jacr.2025.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 05/25/2025]
Abstract
Heart failure (HF) is a prevalent and complex clinical syndrome with no single reference standard diagnostic test. Imaging has a supportive role in patients with suspected and known HF, including initial imaging assessment of an adult with suspected HF, but without history of HF, including evaluation of pulmonary edema and detection of left ventricular dysfunction (Variant 1). In adults with established diagnosis of HF but unknown etiology, imaging also has an important role in the assessment of the underlying disease process, including ischemic and nonischemic etiologies (Variant 2). In the course of continuing care for adult patients with an established diagnosis of HF without new symptoms, follow-up imaging is performed to assess for longitudinal changes in ventricular function, response to therapy and prognostication (Variant 3). The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision process support the systematic analysis of the medical literature from peer reviewed journals. Established methodology principles such as Grading of Recommendations Assessment, Development, and Evaluation or GRADE are adapted to evaluate the evidence. The RAND/UCLA Appropriateness Method User Manual provides the methodology to determine the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances where peer reviewed literature is lacking or equivocal, experts may be the primary evidentiary source available to formulate a recommendation.
Collapse
Affiliation(s)
| | - James Roberts
- Research Author, St Paul's Hospital and University of British Columbia, Vancouver, British Columbia, Canada
| | - Kate Hanneman
- Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada.
| | | | - Shawn Ahmad
- Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire; American Society of Echocardiography
| | - Ryan Avery
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Commission on Nuclear Medicine and Molecular Imaging
| | - William M Brown
- University of Alabama at Birmingham, Birmingham, Alabama, Primary care physician
| | | | - Joe Y Hsu
- Kaiser Permanente, Los Angeles, California
| | | | - Fay Lin
- Weill Cornell Medicine, New York, New York; Society of Cardiovascular Computed Tomography
| | - Gurusher Panjrath
- George Washington University School of Medicine and Health Sciences, Washington, District of Columbia; American College of Cardiology
| | | | - James A White
- University of Calgary Cummings School of Medicine, Calgary, Alberta, Canada; Society for Cardiovascular Magnetic Resonance
| | | |
Collapse
|
2
|
Malik MK, Kinno M, Liebo M, Yu MD, Syed M. Evolving role of myocardial fibrosis in heart failure with preserved ejection fraction. Front Cardiovasc Med 2025; 12:1573346. [PMID: 40336640 PMCID: PMC12055812 DOI: 10.3389/fcvm.2025.1573346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 04/07/2025] [Indexed: 05/09/2025] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a complex clinical diagnosis with a heterogeneous pathophysiology and clinical presentation. The hallmark of HFpEF is diastolic dysfunction associated with left ventricular remodeling and fibrosis. Myocardial interstitial fibrosis (MIF) occurs as the result of collagen deposition and is dependent on the underlying etiology of heart failure. Detection of MIF can be done by invasive histopathologic sampling or by imaging. More recently, novel biomarkers have been investigated as an alternative tool for not only the detection of MIF but also for the prognostication of patients with HFpEF which may in turn alleviate the need for invasive and expensive imaging in the future.
Collapse
Affiliation(s)
- Muhammad K. Malik
- Department of Internal Medicine, Loyola University Medical Center, Maywood, IL, United States
- Department of Cardiology, Baylor Scott & White, The Heart Hospital, Plano, TX, United States
| | - Menhel Kinno
- Division of Cardiology, Department of Internal Medicine, Loyola University Medical Center, Maywood, IL, United States
- Division of Cardiology, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Max Liebo
- Division of Cardiology, Department of Internal Medicine, Loyola University Medical Center, Maywood, IL, United States
| | - Mingxi D. Yu
- Division of Cardiology, Department of Internal Medicine, Loyola University Medical Center, Maywood, IL, United States
| | - Mushabbar Syed
- Division of Cardiology, Department of Internal Medicine, Loyola University Medical Center, Maywood, IL, United States
| |
Collapse
|
3
|
Helali J, Ramesh K, Brown J, Preciado-Ruiz C, Nguyen T, Silva LT, Ficara A, Wesbey G, Gonzalez JA, Bilchick KC, Salerno M, Robinson AA. Late gadolinium enhancement on cardiac MRI: A systematic review and meta-analysis of prognosis across cardiomyopathies. Int J Cardiol 2025; 419:132711. [PMID: 39515615 DOI: 10.1016/j.ijcard.2024.132711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/12/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Late gadolinium enhancement (LGE) on cardiac MRI has been shown to predict adverse outcomes in a range of cardiac diseases. However, no study has systematically reviewed and analyzed the literature across all cardiac pathologies including rare diseases. METHODS PubMed, EMBASE and Web of Science were searched for studies evaluating the relationship between LGE burden and cardiovascular outcomes. Outcomes included all-cause mortality, MACE, sudden cardiac death, sustained VT or VF, appropriate ICD shock, heart transplant, and heart failure hospitalization. Only studies reporting hazards ratios with LGE as a continuous variable were included. RESULTS Of the initial 8928 studies, 95 studies (23,313 patients) were included across 19 clinical entities. The studies included ischemic cardiomyopathy (7182 patients, 33 studies), hypertrophic cardiomyopathy (5080 patients, 17 studies), non-ischemic cardiomyopathy not otherwise specified (2627 patients, 11 studies), and dilated cardiomyopathy (2345 patients, 14 studies). Among 42 studies that quantified LGE by percent myocardium, a 1 % increase in LGE burden was associated with life-threatening ventricular arrhythmias (LTVA) with a pooled hazard ratio of 1.04 (CI 1.02-1.05), and MACE with a pooled hazard ratio of 1.06 (CI 1.04-1.07). The risk of these events was similar across disease types, with minimal heterogeneity. CONCLUSIONS Despite mechanistic differences in myocardial injury, LGE appears to have a fairly consistent, dose-dependent effect on risk of LTVA, MACE, and mortality. These data can be applied to derive a patient's absolute risk of LTVA, and therefore can be clinically useful in informing decisions on primary prevention ICD implantation irrespective of the disease etiology.
Collapse
Affiliation(s)
- Joshua Helali
- Division of Cardiology, Scripps Clinic, La Jolla, CA, United States of America
| | - Karthik Ramesh
- University of California San Diego School of Medicine, La Jolla, CA, United States of America
| | - John Brown
- Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America
| | | | - Thornton Nguyen
- University of California Riverside, Riverside, CA, United States of America
| | - Livia T Silva
- Division of Cardiology, Scripps Clinic, La Jolla, CA, United States of America; University of California San Diego, La Jolla, CA, United States of America
| | - Austin Ficara
- Division of Cardiology, Scripps Clinic, La Jolla, CA, United States of America
| | - George Wesbey
- Division of Cardiology, Scripps Clinic, La Jolla, CA, United States of America; Department of Radiology, Scripps Clinic, La Jolla, CA, United States of America
| | - Jorge A Gonzalez
- Division of Cardiology, Scripps Clinic, La Jolla, CA, United States of America; Department of Radiology, Scripps Clinic, La Jolla, CA, United States of America
| | - Kenneth C Bilchick
- Department of Cardiovascular Medicine, University of Virginia Health System, Charlottesville, VA, United States of America
| | - Michael Salerno
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Austin A Robinson
- Division of Cardiology, Scripps Clinic, La Jolla, CA, United States of America.
| |
Collapse
|
4
|
Al'Aref SJ, Gautam N, Mansour M, Alqaisi O, Tarun T, Devabhaktuni S, Atreya A, Abete R, Aquaro GD, Baggiano A, Barison A, Bogaert J, Camastra G, Carigi S, Carrabba N, Casavecchia G, Censi S, Cicala G, De Cecco CN, De Lazzari M, Di Giovine G, Calo L, Dobrovie M, Focardi M, Fusini L, Gaibazzi N, Gismondi A, Gravina M, Guglielmo M, Lanzillo C, Lombardi M, Lorenzoni V, Lozano-Torres J, Margonato D, Martini C, Marzo F, Masci PG, Masi A, Moro C, Muscogiuri G, Mushtaq S, Nese A, Palumbo A, Pavon AG, Pedrotti P, Marra MP, Pradella S, Presicci C, Rabbat MG, Raineri C, Rodriguez-Palomares JF, Sbarbati S, Schoepf UJ, Squeri A, Sverzellati N, Symons R, Tat E, Timpani M, Todiere G, Valentini A, Varga-Szemes A, Volpe A, Guaricci AI, Schwitter J, Pontone G. Clinical parameters of death and heart failure hospitalization in biventricular systolic dysfunction assessed via cardiac magnetic resonance. Int J Cardiol 2025; 419:132709. [PMID: 39515617 DOI: 10.1016/j.ijcard.2024.132709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/07/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
AIMS While factors associated with adverse events are well elucidated in setting of isolated left ventricular dysfunction, clinical and imaging-based prognosticators of adverse outcomes are lacking in context of biventricular dysfunction. The purpose of this study was to establish role of clinical variables in prognosis of biventricular heart failure (HF), as assessed by cardiac magnetic resonance imaging. METHODS Study cohort consisted of 840 patients enrolled in DERIVATE registry with coexisting CMR-derived right ventricular (RV) and left ventricular (LV) dysfunction, as defined by RV and LV ejection fractions ≤45 % and ≤ 50 %, respectively. The primary objective was to identify factors associated with adverse long-term outcomes, defined as composite of all-cause death and HF hospitalizations (DHFH). Kaplan-Meir curves were plotted for survival analysis. Cox proportional hazard models were constructed to estimate adjusted hazard ratios (aHRs) and associated 95 % confidence intervals for clinical variables and their correlation with adverse events. RESULTS Mean age was 61.0 years; 83.1 % were male, 26.6 % had diabetes mellitus (DM), and 45.9 % had non-ischemic cardiomyopathy. At median follow-up of 2 years, DHFH occurred in 32.5 % of the cohort. Kaplan-Meir analysis showed higher rate of DHFH in patients with DM (35.2 % vs. 22.6 %, p < 0.001). Multivariate Cox regression analysis showed that DM was independently associated with DHFH (aHR 1.61 [95 % CI: 1.15-2.25]; p = 0.003). Importantly, ACE-inhibitor/ARB usage in patients with DM was associated with significant reduction in DHFH (aHR 0.53 [95 % CI: 0.31-0.90]; p = 0.02). CONCLUSION In patients with biventricular HF, DM was a strong predictor of DHFH, with ACE-inhibitor/ARB usage having cardioprotective effect.
Collapse
Affiliation(s)
- Subhi J Al'Aref
- Department of Medicine, Division of Cardiology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Nitesh Gautam
- Department of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Munthir Mansour
- Department of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Omar Alqaisi
- Department of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Tushar Tarun
- Department of Medicine, Division of Cardiology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Subodh Devabhaktuni
- Department of Medicine, Division of Cardiology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Auras Atreya
- Department of Medicine, Division of Cardiology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Raffaele Abete
- Department of Cardiology, Policlinico di Monza, Monza, Italy
| | - Giovanni Donato Aquaro
- U.O.C. Risonanza Magnetica per Immagini, Fondazione G. Monasterio CNR-Regione Toscana Pisa, Pisa, Italy
| | - Andrea Baggiano
- Centro Cardiologico Monzino IRCCS, Milan, Italy; Cardiovascular Section, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Andrea Barison
- U.O.C. Risonanza Magnetica per Immagini, Fondazione G. Monasterio CNR-Regione Toscana Pisa, Pisa, Italy
| | - Jan Bogaert
- Department of Radiology, University Hospital Leuven, Leuven, Belgium
| | | | - Samuela Carigi
- Department of Cardiology, Infermi Hospital, Rimini, Italy
| | - Nazario Carrabba
- Cardiovascular and Thoracic Department of Careggi Hospital, Florence, Italy
| | - Grazia Casavecchia
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Stefano Censi
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, RA, Italy
| | - Gloria Cicala
- Department of Diagnostic, Parma University Hospital, Via Gramsci, Parma, Italy
| | - Carlo N De Cecco
- Division of Cardiothoracic Imaging, Emory University, Atlanta, GA, USA
| | - Manuel De Lazzari
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health University of Padua Medical School, Padova, Italy
| | | | - Leonardo Calo
- Cardiology Department, Policlinico Casilino, Rome, Italy
| | - Monica Dobrovie
- Department of Radiology, University Hospital Leuven, Leuven, Belgium
| | - Marta Focardi
- Department of Medical Biotechnologies, Division of Cardiology, University of Siena, Siena, Italy
| | - Laura Fusini
- Centro Cardiologico Monzino IRCCS, Milan, Italy; Department of Electronics, Information and Bioengineering, Politecnico di Milano, Italy
| | - Nicola Gaibazzi
- Department of Cardiology, Azienda Ospedaliero- Universitaria, Parma, Italy
| | - Annalaura Gismondi
- Department of Medical Biotechnologies, Division of Cardiology, University of Siena, Siena, Italy
| | - Matteo Gravina
- Department of Radiology, University of Foggia, Foggia, Italy
| | - Marco Guglielmo
- Department of Cardiology, Division of Heart and Lungs, Utrecht University, Utrecht, the Netherlands; Department of Cardiology, Haga Teaching Hospital, The Hague, Netherlands
| | | | - Massimo Lombardi
- Multimodality Cardiac Imaging Section, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | | | - Jordi Lozano-Torres
- Department of Cardiology, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Bellaterra, Spain; CIBER-CV, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | | | - Chiara Martini
- Department of Diagnostic, Parma University Hospital, Via Gramsci, Parma, Italy; Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | - Pier-Giorgio Masci
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Ambra Masi
- De Gasperis' Cardio Center, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Claudio Moro
- Department of Cardiology, ASST Monza, P.O. Desio, Italy
| | - Giuseppe Muscogiuri
- Istituto Auxologico Italiano-IRCCS, Milan, Italy; University of Milan Bicocca, Milan, Italy
| | | | - Alberto Nese
- Dipartimento Neuro-Cardiovascolare, Ospedale Ca' Foncello Treviso, Treviso, Italy
| | - Alessandro Palumbo
- Department of Diagnostic, Parma University Hospital, Via Gramsci, Parma, Italy
| | - Anna Giulia Pavon
- Cardiovascular Department, CMR Center, University Hospital Lausanne, CHUV, Lausanne, Switzerland
| | - Patrizia Pedrotti
- De Gasperis' Cardio Center, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Martina Perazzolo Marra
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health University of Padua Medical School, Padova, Italy
| | | | - Cristina Presicci
- Department of Diagnostic, Parma University Hospital, Via Gramsci, Parma, Italy
| | - Mark G Rabbat
- Division of Cardiology, Loyola University of Chicago, Chicago, IL, USA; Edward Hines Jr. VA Hospital, Hines, IL, United States of America
| | - Claudia Raineri
- Department of Cardiology, Citta` della salute e della Scienza - Ospedale Molinette, Turin, Italy
| | - Jose' F Rodriguez-Palomares
- Department of Cardiology, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Bellaterra, Spain; CIBER-CV, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | | | - U Joseph Schoepf
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Angelo Squeri
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, RA, Italy
| | | | - Rolf Symons
- Department of Radiology, University Hospital Leuven, Leuven, Belgium
| | - Emily Tat
- Division of Cardiology, Loyola University of Chicago, Chicago, IL, USA
| | - Mauro Timpani
- UOC Radiologia, Ospedale "F. Spaziani", Frosinone, Italy
| | - Giancarlo Todiere
- U.O.C. Risonanza Magnetica per Immagini, Fondazione G. Monasterio CNR-Regione Toscana Pisa, Pisa, Italy
| | - Adele Valentini
- Department of Radiology, Fondazione IRCCS Policlinico S.Matteo, Pavia, Italy
| | | | | | - Andrea Igoren Guaricci
- University Cardiology Unit, Interdisciplinary Department of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Juerg Schwitter
- Cardiovascular Department, CMR Center, University Hospital Lausanne, CHUV, Lausanne, Switzerland; Faculty of Biology and Medicine, Lausanne University, UniL, Lausanne, Switzerland; Faculty of Medicine and Biology, University of Lausanne, UniL, Lausanne, Switzerland
| | - Gianluca Pontone
- Centro Cardiologico Monzino IRCCS, Milan, Italy; Dipartimento di Scienze Biomediche, Chirurgiche e Odontoiatriche, University of Milan, Milan, Italy; Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy.
| |
Collapse
|
5
|
Meduri A, Perazzolo A, Marano R, Muciaccia M, Lauriero F, Rovere G, Giarletta L, Moliterno E, Natale L. Cardiac MRI in heart failure with preserved ejection fraction. LA RADIOLOGIA MEDICA 2024; 129:1468-1484. [PMID: 39158816 DOI: 10.1007/s11547-024-01874-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 08/09/2024] [Indexed: 08/20/2024]
Abstract
Patients who have heart failure with preserved ejection fraction (HFpEF) have signs and symptoms of heart failure, yet their ejection fraction remains greater than or equal to 50 percent. Understanding the underlying cause of HFpEF is crucial for accurate diagnosis and effective treatment. This condition can be caused by multiple factors, including ischemic or nonischemic myocardial diseases. HFpEF is often associated with diastolic dysfunction. Cardiac magnetic resonance (CMR) allows for a precise examination of the functional and structural alterations associated with HFpEF through the measurement of volumes and mass, the assessment of systolic and diastolic function, and the analysis of tissue characteristics. We will discuss CMR imaging indicators that are specific to patients with HFpEF and their relation to the disease. These markers can be acquired through both established and emerging methods.
Collapse
Affiliation(s)
- Agostino Meduri
- Department of Radiological and Hematological Sciences, Section of Radiology, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, L.Go Agostino Gemelli 8, 00168, Rome, Italy
| | - Alessio Perazzolo
- Department of Radiological and Hematological Sciences, Section of Radiology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Riccardo Marano
- Department of Radiological and Hematological Sciences, Section of Radiology, Università Cattolica del Sacro Cuore, Rome, Italy.
- Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, L.Go Agostino Gemelli 8, 00168, Rome, Italy.
| | - Massimo Muciaccia
- Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, L.Go Agostino Gemelli 8, 00168, Rome, Italy
| | - Francesco Lauriero
- Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, L.Go Agostino Gemelli 8, 00168, Rome, Italy
| | - Giuseppe Rovere
- Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, L.Go Agostino Gemelli 8, 00168, Rome, Italy
| | - Lorenzo Giarletta
- Department of Radiological and Hematological Sciences, Section of Radiology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Eleonora Moliterno
- Department of Radiological and Hematological Sciences, Section of Radiology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Luigi Natale
- Department of Radiological and Hematological Sciences, Section of Radiology, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, L.Go Agostino Gemelli 8, 00168, Rome, Italy
| |
Collapse
|
6
|
Thamman R, Hosseini N, Dikou ML, Hassan IU, Marchenko O, Abiola O, Grapsa J. Imaging Advances in Heart Failure. Card Fail Rev 2024; 10:e12. [PMID: 39386081 PMCID: PMC11462517 DOI: 10.15420/cfr.2023.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/17/2023] [Indexed: 10/12/2024] Open
Abstract
This paper delves into the significance of imaging in the diagnosis, aetiology and therapeutic guidance of heart failure, aiming to facilitate early referral and improve patient outcomes. Imaging plays a crucial role not only in assessing left ventricular ejection fraction, but also in characterising the underlying cardiac abnormalities and reaching a specific diagnosis. By providing valuable data on cardiac structure, function and haemodynamics, imaging helps diagnose the condition, evaluate haemodynamic status and, consequently, identify the underlying pathophysiological phenotype, as well as stratifying the risk for outcomes. In this article, we provide a comprehensive exploration of these aspects.
Collapse
Affiliation(s)
- Ritu Thamman
- Department of Cardiology, University of Pittsburgh School of MedicinePittsburgh, PA, US
| | | | | | | | | | - Olukayode Abiola
- Department of Cardiology, Lister General HospitalStevenage, Hertfordshire, UK
| | - Julia Grapsa
- Department of Cardiology, St Thomas’ HospitalLondon, UK
| |
Collapse
|
7
|
Tanisha, Amudha C, Raake M, Samuel D, Aggarwal S, Bashir ZMD, Marole KK, Maryam I, Nazir Z. Diagnostic Modalities in Heart Failure: A Narrative Review. Cureus 2024; 16:e67432. [PMID: 39314559 PMCID: PMC11417415 DOI: 10.7759/cureus.67432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2024] [Indexed: 09/25/2024] Open
Abstract
Heart failure (HF) can present acutely or progress over time. It can lead to morbidity and mortality affecting 6.5 million Americans over the age of 20. The HF type is described according to the ejection fraction classification, defined as the percentage of blood volume that exits the left ventricle after myocardial contraction, undergoing ejection into the circulation, also called stroke volume, and is proportional to the ejection fraction. Cardiac catheterization is an invasive procedure to evaluate coronary artery disease leading to HF. Several biomarkers are being studied that could lead to early detection of HF and better symptom management. Testing for various biomarkers in the patient's blood is instrumental in confirming the diagnosis and elucidating the etiology of HF. There are various biomarkers elevated in response to increased myocardial stress and volume overload, including B-type natriuretic peptide (BNP) and its N-terminal prohormone BNP. We explored online libraries such as PubMed, Google Scholar, and Cochrane to find relevant articles. Our narrative review aims to extensively shed light on diagnostic modalities and novel techniques for diagnosing HF.
Collapse
Affiliation(s)
- Tanisha
- Department of Internal Medicine No. 4, O.O. Bogomolets National Medical University, Kyiv, UKR
| | - Chaithanya Amudha
- Department of Medicine and Surgery, Saveetha Medical College and Hospital, Chennai, IND
| | - Mohammed Raake
- Department of Surgery, Annamalai University, Chennai, IND
| | - Dany Samuel
- Department of Radiology, Medical University of Varna, Varna, BGR
| | | | - Zainab M Din Bashir
- Department of Medicine and Surgery, Combined Military Hospital (CMH) Lahore Medical College and Institute of Dentistry, Lahore, PAK
| | - Karabo K Marole
- Department of Medicine and Surgery, St. George's University School of Medicine, St. George's, GRD
| | - Iqra Maryam
- Department of Radiology, Allama Iqbal Medical College, Lahore, PAK
| | - Zahra Nazir
- Department of Internal Medicine, Combined Military Hospital, Quetta, PAK
| |
Collapse
|
8
|
Lin K, Sarnari R, Gordon DZ, Markl M, Carr JC. Radiomics features of the cardiac blood pool to indicate hemodynamic changes in pulmonary hypertension (PH) due to heart failure with preserved ejection fraction (PH-HFpEF). THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING 2024; 40:1501-1509. [PMID: 38801547 DOI: 10.1007/s10554-024-03131-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/04/2024] [Indexed: 05/29/2024]
Abstract
To test the hypothesis that cine MRI-derived radiomics features of the cardiac blood pool can represent hemodynamic characteristics of pulmonary hypertension-heart failure with preserved ejection fraction (PH-HFpEF). Nineteen PH-HFpEF patients (9 male, 57.8 ± 14.7 years) and 19 healthy controls (13 male, 50.3 ± 13.6 years) were enrolled. All participants underwent a cardiac MRI scan. One hundred and seven radiomics features (7 classes) of the blood pool in the left and right ventricles/atrium (LV/RV/LA/RA) were extracted from 4-chamber cine (2D images) at the stages of systole, rapid filling, diastasis, and atrial contraction within a cardiac cycle. For PH-HFpEF patients, features acquired from LV/LA were related to the pulmonary capillary wedge pressure (PCWP); features acquired from RV/RA were related to the mean pulmonary artery pressure (mPAP) using the Pearson correlation coefficient (r). Logistic regression, receiver operating characteristic (ROC) curve and the area under the curve (AUC) were used to test the capability of radiomics features in discriminating 2 subject groups. Features acquired from different chambers at various periods present diverse properties in representing hemodynamic indices of PH-HFpEF. Multiple radiomics features blood pool were significantly related to PCWP and/or mPAP (r: 0.4-0.679, p < 0.05). In addition, multiple features of blood pools acquired at various time points within a cardiac cycle can efficiently discriminate PH-HFpEF from controls (individual AUC: 0.7-0.864). Cine MRI-derived radiomics features of the cardiac blood pool have the potential to characterize hemodynamic abnormalities in the context of PH-HFpEF.
Collapse
Affiliation(s)
- Kai Lin
- Department of Radiology, Northwestern University, 737 N Michigan Avenue, Suite 1600, Chicago, IL 60611, USA.
| | - Roberto Sarnari
- Department of Radiology, Northwestern University, 737 N Michigan Avenue, Suite 1600, Chicago, IL 60611, USA
| | - Daniel Z Gordon
- Department of Radiology, Northwestern University, 737 N Michigan Avenue, Suite 1600, Chicago, IL 60611, USA
| | - Michael Markl
- Department of Radiology, Northwestern University, 737 N Michigan Avenue, Suite 1600, Chicago, IL 60611, USA
| | - James C Carr
- Department of Radiology, Northwestern University, 737 N Michigan Avenue, Suite 1600, Chicago, IL 60611, USA
| |
Collapse
|
9
|
Garg P, Grafton-Clarke C, Matthews G, Swoboda P, Zhong L, Aung N, Thomson R, Alabed S, Demirkiran A, Vassiliou VS, Swift AJ. Sex-specific cardiac magnetic resonance pulmonary capillary wedge pressure. EUROPEAN HEART JOURNAL OPEN 2024; 4:oeae038. [PMID: 38751456 PMCID: PMC11095051 DOI: 10.1093/ehjopen/oeae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/23/2024] [Accepted: 04/28/2024] [Indexed: 05/18/2024]
Abstract
Aims Heart failure (HF) with preserved ejection fraction disproportionately affects women. There are no validated sex-specific tools for HF diagnosis despite widely reported differences in cardiac structure. This study investigates whether sex, as assigned at birth, influences cardiac magnetic resonance (CMR) assessment of left ventricular filling pressure (LVFP), a hallmark of HF agnostic to ejection fraction. Methods and results A derivation cohort of patients with suspected pulmonary hypertension and HF from the Sheffield centre underwent invasive right heart catheterization and CMR within 24 h of each other. A sex-specific CMR model to estimate LVFP, measured as pulmonary capillary wedge pressure (PCWP), was developed using multivariable regression. A validation cohort of patients with confirmed HF from the Leeds centre was used to evaluate for the primary endpoints of HF hospitalization and major adverse cardiovascular events (MACEs). Comparison between generic and sex-specific CMR-derived PCWP was undertaken. A total of 835 (60% female) and 454 (36% female) patients were recruited into the derivation and validation cohorts respectively. A sex-specific model incorporating left atrial volume and left ventricular mass was created. The generic CMR PCWP showed significant differences between males and females (14.7 ± 4 vs. 13 ± 3.0 mmHg, P > 0.001), not present with the sex-specific CMR PCWP (14.1 ± 3 vs. 13.8 mmHg, P = 0.3). The sex-specific, but not the generic, CMR PCWP was associated with HF hospitalization (hazard ratio 3.9, P = 0.0002) and MACE (hazard ratio 2.5, P = 0.001) over a mean follow-up period of 2.4 ± 1.2 years. Conclusion Accounting for sex improves precision and prognostic performance of CMR biomarkers for HF.
Collapse
Affiliation(s)
- Pankaj Garg
- Norwich Medical School, University of East Anglia, Norwich Research Park, Rosalind Franklin Road, Norwich NR4 7UQ, UK
- Department of Cardiology, Norfolk and Norwich University NHS Foundation Trust, Colney Lane, Norwich NR4 7UY, UK
| | - Ciaran Grafton-Clarke
- Norwich Medical School, University of East Anglia, Norwich Research Park, Rosalind Franklin Road, Norwich NR4 7UQ, UK
- Department of Cardiology, Norfolk and Norwich University NHS Foundation Trust, Colney Lane, Norwich NR4 7UY, UK
| | - Gareth Matthews
- Norwich Medical School, University of East Anglia, Norwich Research Park, Rosalind Franklin Road, Norwich NR4 7UQ, UK
- Department of Cardiology, Norfolk and Norwich University NHS Foundation Trust, Colney Lane, Norwich NR4 7UY, UK
| | - Peter Swoboda
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Liang Zhong
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore
- Signature Programme of Cardiovascular Metabolic and Disorders, Duke-NUS Medical School, 8 College Road, Singapore
| | - Nay Aung
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, London, UK
| | - Ross Thomson
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, London, UK
| | - Samer Alabed
- National Institute for Health and Care Research, Sheffield Biomedical Research Centre, Sheffield, UK
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Ahmet Demirkiran
- Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Department of Cardiology, Kocaeli City Hospital, Kocaeli, Turkey
| | - Vassilios S Vassiliou
- Norwich Medical School, University of East Anglia, Norwich Research Park, Rosalind Franklin Road, Norwich NR4 7UQ, UK
- Department of Cardiology, Norfolk and Norwich University NHS Foundation Trust, Colney Lane, Norwich NR4 7UY, UK
| | - Andrew J Swift
- National Institute for Health and Care Research, Sheffield Biomedical Research Centre, Sheffield, UK
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
- INSIGNEO, Institute for in silico Medicine, University of Sheffield, Sheffield, UK
| |
Collapse
|
10
|
Zhang X, Yang S, Hao S, Li J, Qiu M, Chen H, Huang Y. Myocardial fibrosis and prognosis in heart failure with preserved ejection fraction: a pooled analysis of 12 cohort studies. Eur Radiol 2024; 34:1854-1862. [PMID: 37658896 DOI: 10.1007/s00330-023-10218-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/02/2023] [Accepted: 07/15/2023] [Indexed: 09/05/2023]
Abstract
OBJECTIVES Heart failure with preserved ejection fraction (HFpEF) is a syndrome with significant clinical heterogeneity. Myocardial fibrosis has been considered a common pathological process in the development and progress of HFpEF. This study aimed to consolidate data on the prognostic effect of myocardial fibrosis, evaluated by cardiovascular magnetic resonance (CMR) imaging in patients with HFpEF. METHODS Three medical databases were searched for potentially related articles up to February 28, 2023. Cohort studies reporting associations between myocardial fibrosis and risk of all-cause mortality or composite major adverse cardiac outcomes (MACE) were included. Cardiac fibrosis was evaluated by CMR metrics, including late gadolinium enhancement (LGE) or myocardial extracellular volume (ECV). The hazard ratios (HRs) and 95% confidence intervals (CI) of the outcomes for higher myocardial fibrosis were calculated. RESULTS Twelve studies with 2787 patients with HFpEF were included for analysis. After a median follow-up duration of 31.2 months, a higher level of cardiac fibrosis was associated with a significant increase in the risk of MACE (HR = 1.34, 95% CI = 1.14-1.57) and all-cause mortality (HR = 1.74, 95% CI = 1.27-2.39), respectively. Furthermore, the increased risk of outcomes was both observed when cardiac fibrosis was defined according to LGE or ECV, respectively. CONCLUSIONS Higher burden of myocardial fibrosis evaluated by CMR can predict a poor prognosis in patients with HFpEF. Evaluation of LGE or ECV based on CMR could be recommended in these patients for risk stratification and guiding further treatment. CLINICAL RELEVANCE STATEMENT Inclusion of cardiovascular magnetic resonance examination in the diagnostic and risk-evaluation algorithms in patients with heart failure with preserved ejection fraction should be considered in clinical practice and future studies. KEY POINTS • Myocardial fibrosis is a common pathological process in heart failure with preserved ejection fraction. • A higher myocardial fibrosis burden on cardiac magnetic resonance predicts a poor prognosis in patients with heart failure with preserved ejection fraction. • Evaluation of myocardial fibrosis may be useful in patients with heart failure with preserved ejection fraction for risk stratification and treatment guidance.
Collapse
Affiliation(s)
- Xiaojie Zhang
- Department of Cardiology, Shunde Hospital, Southern Medical University (the First People's Hospital of Shunde), Jiazhi Road, Lunjiao Town, Shunde District, Foshan, 528300, China
| | - Shaomin Yang
- Department of Radiology, Lecong Hospital of Shunde, Foshan, China
| | - Shali Hao
- Department of Cardiology, Shunde Hospital, Southern Medical University (the First People's Hospital of Shunde), Jiazhi Road, Lunjiao Town, Shunde District, Foshan, 528300, China
| | - Jiahuan Li
- Department of Cardiology, Shunde Hospital, Southern Medical University (the First People's Hospital of Shunde), Jiazhi Road, Lunjiao Town, Shunde District, Foshan, 528300, China
| | - Min Qiu
- Department of Cardiology, Shunde Hospital, Southern Medical University (the First People's Hospital of Shunde), Jiazhi Road, Lunjiao Town, Shunde District, Foshan, 528300, China
| | - Haixiong Chen
- Department of Radiology, Shunde Hospital, Southern Medical University (the First People's Hospital of Shunde), Jiazhi Road, Lunjiao Town, Shunde District, Foshan, 528300, China.
| | - Yuli Huang
- Department of Cardiology, Shunde Hospital, Southern Medical University (the First People's Hospital of Shunde), Jiazhi Road, Lunjiao Town, Shunde District, Foshan, 528300, China.
- Faculty of Medicine, The George Institute for Global Health, University of New South Wales, Sydney, Australia.
| |
Collapse
|
11
|
Lucà F, Oliva F, Abrignani MG, Di Fusco SA, Gori M, Giubilato S, Ceravolo R, Temporelli PL, Cornara S, Rao CM, Caretta G, Pozzi A, Binaghi G, Maloberti A, Di Nora C, Di Matteo I, Pilleri A, Gelsomino S, Riccio C, Grimaldi M, Colivicchi F, Gulizia MM. Heart Failure with Preserved Ejection Fraction: How to Deal with This Chameleon. J Clin Med 2024; 13:1375. [PMID: 38592244 PMCID: PMC10933980 DOI: 10.3390/jcm13051375] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/11/2024] [Accepted: 02/14/2024] [Indexed: 04/10/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is characterized by a notable heterogeneity in both phenotypic and pathophysiological features, with a growing incidence due to the increase in median age and comorbidities such as obesity, arterial hypertension, and cardiometabolic disease. In recent decades, the development of new pharmacological and non-pharmacological options has significantly impacted outcomes, improving clinical status and reducing mortality. Moreover, a more personalized and accurate therapeutic management has been demonstrated to enhance the quality of life, diminish hospitalizations, and improve overall survival. Therefore, assessing the peculiarities of patients with HFpEF is crucial in order to obtain a better understanding of this disorder. Importantly, comorbidities have been shown to influence symptoms and prognosis, and, consequently, they should be carefully addressed. In this sense, it is mandatory to join forces with a multidisciplinary team in order to achieve high-quality care. However, HFpEF remains largely under-recognized and under-treated in clinical practice, and the diagnostic and therapeutic management of these patients remains challenging. The aim of this paper is to articulate a pragmatic approach for patients with HFpEF focusing on the etiology, diagnosis, and treatment of HFpEF.
Collapse
Affiliation(s)
- Fabiana Lucà
- Cardiology Department, Grande Ospedale Metropolitano, 89129 Reggio Calabria, Italy
| | - Fabrizio Oliva
- Cardiology Department De Gasperis Cardio Center, Niguarda Hospital, 20162 Milan, Italy (A.M.)
| | | | | | - Mauro Gori
- Cardiovascular Department, Azienda Ospedaliera Papa Giovanni XXIII Hospital, 24127 Bergamo, Italy
| | - Simona Giubilato
- Cardiology Department, Ospedale Lamezia Terme, 88046 Catanzaro, Italy
| | - Roberto Ceravolo
- Cardiac Rehabilitation Unitof Maugeri, IRCCS, 28010 Gattico-Veruno, Italy
| | | | - Stefano Cornara
- Arrhytmia Unit, Division of Cardiology, Ospedale San Paolo, Azienda Sanitaria Locale 2, 17100 Savona, Italy;
| | | | - Giorgio Caretta
- Levante Ligure Sant’Andrea Hospital, ASL 5 Liguria, 19121 La Spezia, Italy
| | - Andrea Pozzi
- Cardiology Division, Valduce Hospital, 22100 Como, Italy
| | - Giulio Binaghi
- Department of Cardiology, Azienda Ospedaliera Brotzu, 09134 Cagliari, Italy
| | - Alessandro Maloberti
- Cardiology Department De Gasperis Cardio Center, Niguarda Hospital, 20162 Milan, Italy (A.M.)
| | - Concetta Di Nora
- Department of Cardiothoracic Science, Azienda Sanitaria UniversitariaIntegrata di Udine, 33100 Udine, Italy
| | - Irene Di Matteo
- Cardiology Department De Gasperis Cardio Center, Niguarda Hospital, 20162 Milan, Italy (A.M.)
| | - Anna Pilleri
- Department of Cardiology, Azienda Ospedaliera Brotzu, 09134 Cagliari, Italy
| | - Sandro Gelsomino
- Cardiovascular Research Institute, Maastricht University, 6229 HX Maastricht, The Netherlands
| | - Carmine Riccio
- Cardiovascular Department, Sant’Anna e San Sebastiano Hospital, 81100 Caserta, Italy
| | - Massimo Grimaldi
- Department of Cardiology, General Regional Hospital “F. Miulli”, 70021 Bari, Italy
| | - Furio Colivicchi
- Cardiology Department, San Filippo Neri Hospital, ASL Roma 1, 00135 Rome, Italy
| | | |
Collapse
|
12
|
Pavía-López AA, Magaña-Serrano JA, Cigarroa-López JA, Chávez-Mendoza A, Mayorga-Butrón JL, Araiza-Garaygordobil D, Ivey-Miranda JB, Méndez-Machado GF, González-Godínez H, Aguilera-Mora LF, Jordán-Ríos A, Olmos-Domínguez L, Olalde-Román MJ, Miranda-Malpica EM, Vázquez-Ortiz Z, Rayo-Chávez J, Mendoza AA, Márquez-Murillo MF, Chávez-Leal SA, Gabriel AÁS, Silva-García MA, Pacheco-Bouthiller AD, Aldrete-Velazco JA, Guizar-Sánchez CA, Gaxiola-López E, Guerra-López A, Figueiras-Graillet L, Sánchez-Miranda G, Mendoza-Zavala GH, Aceves-García M, Chávez-Negrete A, Arroyo-Hernández M, Montaño-Velázquez BB, Romero-Moreno LF, Baquero-Hoyos MM, Velasco-Hidalgo L, Rodríguez-Lozano AL, Aguilar-Gómez NE, Rodríguez-Vega M, Cossío-Aranda JE. Clinical practice guidelines for diagnostic and treatment of the chronic heart failure. ARCHIVOS DE CARDIOLOGIA DE MEXICO 2024; 94:1-74. [PMID: 38648647 PMCID: PMC11160508 DOI: 10.24875/acm.m24000095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 04/25/2024] Open
Abstract
Chronic heart failure continues to be one of the main causes of impairment in the functioning and quality of life of people who suffer from it, as well as one of the main causes of mortality in our country and around the world. Mexico has a high prevalence of risk factors for developing heart failure, such as high blood pressure, diabetes, and obesity, which makes it essential to have an evidence-based document that provides recommendations to health professionals involved in the diagnosis and treatment of these patients. This document establishes the clinical practice guide (CPG) prepared at the initiative of the Mexican Society of Cardiology (SMC) in collaboration with the Iberic American Agency for the Development and Evaluation of Health Technologies, with the purpose of establishing recommendations based on the best available evidence and agreed upon by an interdisciplinary group of experts. This document complies with international quality standards, such as those described by the US Institute of Medicine (IOM), the National Institute of Clinical Excellence (NICE), the Intercollegiate Network for Scottish Guideline Development (SIGN) and the Guidelines International Network (G-I-N). The Guideline Development Group was integrated in a multi-collaborative and interdisciplinary manner with the support of methodologists with experience in systematic literature reviews and the development of CPG. A modified Delphi panel methodology was developed and conducted to achieve an adequate level of consensus in each of the recommendations contained in this CPG. We hope that this document contributes to better clinical decision making and becomes a reference point for clinicians who manage patients with chronic heart failure in all their clinical stages and in this way, we improve the quality of clinical care, improve their quality of life and reducing its complications.
Collapse
Affiliation(s)
- Abel A. Pavía-López
- Coordinador de las Guías Mexicanas de Práctica Clínica de la Sociedad Mexicana de Cardiología, Centro Médico ABC, Ciudad de México, México
| | - José A. Magaña-Serrano
- Jefe de la División de Insuficiencia Cardiaca y Trasplante, Hospital Asociación Mexicana de Insuficiencia Cardiaca, Hospital de Cardiología, Centro Médico Nacional Siglo XXI, Ciudad de México, México
- Presidente de la Asociación Mexicana de Insuficiencia Cardiaca, Ciudad de México, México
| | - José A. Cigarroa-López
- Jefe de la Clínica de Insuficiencia Cardiaca y Trasplante, Hospital de Cardiología, Centro Médico Nacional Siglo XXI, Ciudad de México, México
| | - Adolfo Chávez-Mendoza
- Jefe de la Clínica de Insuficiencia Cardiaca Hospital de Día, Hospital de Cardiología, Centro Médico Nacional Siglo XXI, Ciudad de México, México
| | - José L. Mayorga-Butrón
- Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México, México
- Unidad de Posgrado, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
- Ibero American Agency for Development & Assessment of Health Technologies
| | - Diego Araiza-Garaygordobil
- Adscrito a la Unidad Coronaria, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | - Juan B. Ivey-Miranda
- Adscrito a la Clínica de Insuficiencia Cardiaca Avanzada y Trasplante, Hospital de Cardiología, Centro Médico Nacional Siglo XXI, Ciudad de México, México
| | - Gustavo F. Méndez-Machado
- Cardiólogo Especialista en Insuficiencia Cardiaca, Imperial College, Londres, Reino Unido
- Unidad de Investigación Clínica Hospital Ángeles Xalapa, Veracruz, México
| | | | - Luisa F. Aguilera-Mora
- Directora de la Clínica de Insuficiencia Cardiaca, Instituto Cardiovascular de Mínima Invasión, Hospital Puerta de Hierro, Zapopan, Jalisco, México
| | - Antonio Jordán-Ríos
- Coordinador Digital, Sociedad Mexicana de Cardiología A.C., México
- Cardiólogo Clínico, Ecocardiografía Adultos, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | - Luis Olmos-Domínguez
- Cardiólogo Adscrito a la Clínica de Insuficiencia Cardiaca, Hospital de Cardiología, Centro Médico Nacional Siglo XXI, Ciudad de México, México
| | - Marcos J. Olalde-Román
- Cardiólogo Adscrito a la Clínica de Insuficiencia Cardiaca, Hospital de Cardiología, Centro Médico Nacional Siglo XXI, Ciudad de México, México
| | | | | | - Jorge Rayo-Chávez
- Adscrito a la Clínica de Insuficiencia Cardiaca, Hospital de Cardiología, Centro Médico Nacional Siglo XXI, Ciudad de México, México
| | - Alexandra A. Mendoza
- Cardióloga Especialista en Medicina Crítica, Centro Médico ABC Observatorio, Ciudad de México, México
- Jefa de Urgencias y Unidad Coronaria, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | - Manlio F. Márquez-Murillo
- Cardiólogo Especialista en Electrofisiología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | - Sergio A. Chávez-Leal
- Clínica de Insuficiencia Cardiaca, SIMNSA Health Care, Tijuana, Baja California, México
| | - Amada Álvarez-San Gabriel
- Coordinadora del Programa de Insuficiencia Cardiaca, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | | | - Alex D. Pacheco-Bouthiller
- Director de la Clínica de Arritmias y Estimulación Cardiaca, Instituto Cardiovascular de Mínima Invasión, Hospital Puerta de Hierro, Zapopan, Jalisco, México
| | | | - Carlos A. Guizar-Sánchez
- Coordinador del Programa de Insuficiencia Cardiaca, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
- Hospital Central Sur, PEMEX, Ciudad de México, México
| | | | | | | | | | - Genaro H. Mendoza-Zavala
- Adscrito a la Clínica de Insuficiencia Cardiaca, Hospital de Cardiología, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Moisés Aceves-García
- Adscrito a la Clínica de Insuficiencia Cardiaca, Hospital de Cardiología, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | | | - Marisol Arroyo-Hernández
- Adscrito a la Unidad Coronaria, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
- Servicio de Neumología, Instituto Nacional de Cancerología, Tlapan, México
| | - Bertha B. Montaño-Velázquez
- Adscrito a la Unidad Coronaria, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
- Hospital de Especialidades, Centro Médico Nacional La Raza, Ciudad de México, México
| | - Luis F. Romero-Moreno
- Adscrito a la Unidad Coronaria, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
- Médico Adscrito a la Fundación Hospital de la Misericordia, Bogotá, Colombia
| | - María M. Baquero-Hoyos
- Unidad de Posgrado, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
- Adscrito a la Unidad Coronaria, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | - Liliana Velasco-Hidalgo
- Unidad de Posgrado, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
- Adscrito a la Unidad Coronaria, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | - Ana L. Rodríguez-Lozano
- Unidad de Posgrado, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
- Adscrito a la Unidad Coronaria, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | - Nancy E. Aguilar-Gómez
- Unidad de Posgrado, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
- Adscrito a la Unidad Coronaria, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | - Mario Rodríguez-Vega
- Adscrito a la Unidad Coronaria, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | | |
Collapse
|
13
|
Assadi H, Matthews G, Chambers B, Grafton-Clarke C, Shabi M, Plein S, Swoboda PP, Garg P. Cardiac Magnetic Resonance Left Ventricular Filling Pressure Is Associated with NT-proBNP in Patients with New Onset Heart Failure. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1924. [PMID: 38003973 PMCID: PMC10673394 DOI: 10.3390/medicina59111924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023]
Abstract
Background and Objectives: Cardiovascular magnetic resonance (CMR) is emerging as an important imaging tool for sub-phenotyping and estimating left ventricular (LV) filling pressure (LVFP). The N-terminal prohormone of B-type natriuretic peptide (NT-proBNP) is released from cardiac myocytes in response to mechanical load and wall stress. This study sought to investigate if CMR-derived LVFP is associated with the serum levels of NT-proBNP and, in addition, if it provides any incremental prognostic value in heart failure (HF). Materials and Methods: This study recruited 380 patients diagnosed with HF who underwent same-day CMR and clinical assessment between February 2018 and January 2020. CMR-derived LVFP was calculated, as previously, from long- and short-axis cines. During CMR assessment, serum NT-proBNP was measured. The pathological cut-offs were defined as follows: NT-proBNP ≥ 125 pg/mL and CMR LVFP > 15 mmHg. The incidence of HF hospitalisation was treated as a clinical outcome. Results: In total, 305 patients had NT-proBNP ≥ 125 pg/mL. Patients with raised NT-proBNP were older (54 ± 14 vs. 64 ± 11 years, p < 0.0001). Patients with raised NT-proBNP had higher LV volumes and mass. In addition, CMR LVFP was higher in patients with raised NT-proBNP (13.2 ± 2.6 vs. 15.4 ± 3.2 mmHg, p < 0.0001). The serum levels of NT-proBNP were associated with CMR-derived LVFP (R = 0.42, p < 0.0001). In logistic regression analysis, this association between NT-proBNP and CMR LVFP was independent of all other CMR variables, including LV ejection fraction, LV mass, and left atrial volume (coefficient = 2.02, p = 0.002). CMR LVFP demonstrated an independent association with the incidence of HF hospitalisation above NT-proBNP (hazard ratio 2.7, 95% confidence interval 1.2 to 6, p = 0.01). Conclusions: A CMR-modelled LVFP is independently associated with serum NT-proBNP levels. Importantly, it provides an incremental prognostic value over and above serum NT-proBNP levels.
Collapse
Affiliation(s)
- Hosamadin Assadi
- Department of Cardiovascular and Metabolic Health, Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK
- Department of Cardiology, Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich NR4 7UY, UK
| | - Gareth Matthews
- Department of Cardiovascular and Metabolic Health, Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK
- Department of Cardiology, Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich NR4 7UY, UK
| | - Bradley Chambers
- Division of Biomedical Imaging, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK (S.P.)
| | - Ciaran Grafton-Clarke
- Department of Cardiovascular and Metabolic Health, Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK
- Department of Cardiology, Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich NR4 7UY, UK
| | - Mubien Shabi
- Division of Biomedical Imaging, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK (S.P.)
| | - Sven Plein
- Division of Biomedical Imaging, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK (S.P.)
| | - Peter P Swoboda
- Division of Biomedical Imaging, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK (S.P.)
| | - Pankaj Garg
- Department of Cardiovascular and Metabolic Health, Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK
- Department of Cardiology, Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich NR4 7UY, UK
| |
Collapse
|
14
|
Santangelo G, Faggiano A, Locatelli G, Carugo S. Left-to-right ventricular volume ratio predicts prognosis in heart failure with preserved ejection fraction: when simple is better. J Cardiovasc Med (Hagerstown) 2023; 24:561-563. [PMID: 37409601 DOI: 10.2459/jcm.0000000000001526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Affiliation(s)
- Gloria Santangelo
- Department of Cardio-Thoracic-Vascular Diseases, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico
| | - Andrea Faggiano
- Department of Cardio-Thoracic-Vascular Diseases, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Giuseppe Locatelli
- Department of Cardio-Thoracic-Vascular Diseases, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Stefano Carugo
- Department of Cardio-Thoracic-Vascular Diseases, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
15
|
Barton AK, Tzolos E, Bing R, Singh T, Weber W, Schwaiger M, Varasteh Z, Slart RHJA, Newby DE, Dweck MR. Emerging molecular imaging targets and tools for myocardial fibrosis detection. Eur Heart J Cardiovasc Imaging 2023; 24:261-275. [PMID: 36575058 PMCID: PMC9936837 DOI: 10.1093/ehjci/jeac242] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/20/2022] [Indexed: 12/29/2022] Open
Abstract
Myocardial fibrosis is the heart's common healing response to injury. While initially seeking to optimize the strength of diseased tissue, fibrosis can become maladaptive, producing stiff poorly functioning and pro-arrhythmic myocardium. Different patterns of fibrosis are associated with different myocardial disease states, but the presence and quantity of fibrosis largely confer adverse prognosis. Current imaging techniques can assess the extent and pattern of myocardial scarring, but lack specificity and detect the presence of established fibrosis when the window to modify this process may have ended. For the first time, novel molecular imaging methods, including gallium-68 (68Ga)-fibroblast activation protein inhibitor positron emission tomography (68Ga-FAPI PET), may permit highly specific imaging of fibrosis activity. These approaches may facilitate earlier fibrosis detection, differentiation of active vs. end-stage disease, and assessment of both disease progression and treatment-response thereby improving patient care and clinical outcomes.
Collapse
Affiliation(s)
- Anna K Barton
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Chancellor’s Building, Little France Crescent, Edinburgh EH16 4SB, UK
| | - Evangelos Tzolos
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Chancellor’s Building, Little France Crescent, Edinburgh EH16 4SB, UK
| | - Rong Bing
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Chancellor’s Building, Little France Crescent, Edinburgh EH16 4SB, UK
| | - Trisha Singh
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Chancellor’s Building, Little France Crescent, Edinburgh EH16 4SB, UK
| | - Wolfgang Weber
- Department of Nuclear Medicine, Clinikum rechts der Isar, Technical University of Munich, Ismaniger Straße 22, 81675 Munich, Germany
| | - Markus Schwaiger
- Department of Nuclear Medicine, Clinikum rechts der Isar, Technical University of Munich, Ismaniger Straße 22, 81675 Munich, Germany
| | - Zohreh Varasteh
- Department of Nuclear Medicine, Clinikum rechts der Isar, Technical University of Munich, Ismaniger Straße 22, 81675 Munich, Germany
| | - Riemer H J A Slart
- Faculty of Medical Sciences, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - David E Newby
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Chancellor’s Building, Little France Crescent, Edinburgh EH16 4SB, UK
| | - Marc R Dweck
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Chancellor’s Building, Little France Crescent, Edinburgh EH16 4SB, UK
| |
Collapse
|
16
|
Assadi H, Li R, Grafton-Clarke C, Uthayachandran B, Alabed S, Maiter A, Archer G, Swoboda PP, Sawh C, Ryding A, Nelthorpe F, Kasmai B, Ricci F, van der Geest RJ, Flather M, Vassiliou VS, Swift AJ, Garg P. Automated 4D flow cardiac MRI pipeline to derive peak mitral inflow diastolic velocities using short-axis cine stack: two centre validation study against echocardiographic pulse-wave doppler. BMC Cardiovasc Disord 2023; 23:24. [PMID: 36647000 PMCID: PMC9843884 DOI: 10.1186/s12872-023-03052-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Measurement of peak velocities is important in the evaluation of heart failure. This study compared the performance of automated 4D flow cardiac MRI (CMR) with traditional transthoracic Doppler echocardiography (TTE) for the measurement of mitral inflow peak diastolic velocities. METHODS Patients with Doppler echocardiography and 4D flow cardiac magnetic resonance data were included retrospectively. An established automated technique was used to segment the left ventricular transvalvular flow using short-axis cine stack of images. Peak mitral E-wave and peak mitral A-wave velocities were automatically derived using in-plane velocity maps of transvalvular flow. Additionally, we checked the agreement between peak mitral E-wave velocity derived by 4D flow CMR and Doppler echocardiography in patients with sinus rhythm and atrial fibrillation (AF) separately. RESULTS Forty-eight patients were included (median age 69 years, IQR 63 to 76; 46% female). Data were split into three groups according to heart rhythm. The median peak E-wave mitral inflow velocity by automated 4D flow CMR was comparable with Doppler echocardiography in all patients (0.90 ± 0.43 m/s vs 0.94 ± 0.48 m/s, P = 0.132), sinus rhythm-only group (0.88 ± 0.35 m/s vs 0.86 ± 0.38 m/s, P = 0.54) and in AF-only group (1.33 ± 0.56 m/s vs 1.18 ± 0.47 m/s, P = 0.06). Peak A-wave mitral inflow velocity results had no significant difference between Doppler TTE and automated 4D flow CMR (0.81 ± 0.44 m/s vs 0.81 ± 0.53 m/s, P = 0.09) in all patients and sinus rhythm-only groups. Automated 4D flow CMR showed a significant correlation with TTE for measurement of peak E-wave in all patients group (r = 0.73, P < 0.001) and peak A-wave velocities (r = 0.88, P < 0.001). Moreover, there was a significant correlation between automated 4D flow CMR and TTE for peak-E wave velocity in sinus rhythm-only patients (r = 0.68, P < 0.001) and AF-only patients (r = 0.81, P = 0.014). Excellent intra-and inter-observer variability was demonstrated for both parameters. CONCLUSION Automated dynamic peak mitral inflow diastolic velocity tracing using 4D flow CMR is comparable to Doppler echocardiography and has excellent repeatability for clinical use. However, 4D flow CMR can potentially underestimate peak velocity in patients with AF.
Collapse
Affiliation(s)
- Hosamadin Assadi
- grid.8273.e0000 0001 1092 7967Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7UQ UK ,grid.240367.40000 0004 0445 7876Norfolk and Norwich University Hospitals NHS Foundation Trust, Norfolk, UK
| | - Rui Li
- grid.8273.e0000 0001 1092 7967Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7UQ UK ,grid.240367.40000 0004 0445 7876Norfolk and Norwich University Hospitals NHS Foundation Trust, Norfolk, UK
| | - Ciaran Grafton-Clarke
- grid.8273.e0000 0001 1092 7967Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7UQ UK ,grid.240367.40000 0004 0445 7876Norfolk and Norwich University Hospitals NHS Foundation Trust, Norfolk, UK
| | - Bhalraam Uthayachandran
- grid.8273.e0000 0001 1092 7967Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7UQ UK ,grid.240367.40000 0004 0445 7876Norfolk and Norwich University Hospitals NHS Foundation Trust, Norfolk, UK
| | - Samer Alabed
- grid.31410.370000 0000 9422 8284Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School and Sheffield Teaching Hospitals NHS Trust, Sheffield, UK ,grid.31410.370000 0000 9422 8284Department of Clinical Radiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Ahmed Maiter
- grid.31410.370000 0000 9422 8284Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School and Sheffield Teaching Hospitals NHS Trust, Sheffield, UK ,grid.31410.370000 0000 9422 8284Department of Clinical Radiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Gareth Archer
- grid.31410.370000 0000 9422 8284Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School and Sheffield Teaching Hospitals NHS Trust, Sheffield, UK
| | - Peter P. Swoboda
- grid.9909.90000 0004 1936 8403Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Chris Sawh
- grid.240367.40000 0004 0445 7876Norfolk and Norwich University Hospitals NHS Foundation Trust, Norfolk, UK
| | - Alisdair Ryding
- grid.240367.40000 0004 0445 7876Norfolk and Norwich University Hospitals NHS Foundation Trust, Norfolk, UK
| | - Faye Nelthorpe
- grid.240367.40000 0004 0445 7876Norfolk and Norwich University Hospitals NHS Foundation Trust, Norfolk, UK
| | - Bahman Kasmai
- grid.240367.40000 0004 0445 7876Norfolk and Norwich University Hospitals NHS Foundation Trust, Norfolk, UK
| | - Fabrizio Ricci
- grid.412451.70000 0001 2181 4941Department of Neuroscience, Imaging and Clinical Sciences, “G.d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Rob J. van der Geest
- grid.10419.3d0000000089452978Department of Radiology, Division of Image Processing, Leiden University Medical Center, Leiden, The Netherlands
| | - Marcus Flather
- grid.8273.e0000 0001 1092 7967Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7UQ UK ,grid.240367.40000 0004 0445 7876Norfolk and Norwich University Hospitals NHS Foundation Trust, Norfolk, UK
| | - Vassilios S. Vassiliou
- grid.8273.e0000 0001 1092 7967Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7UQ UK ,grid.240367.40000 0004 0445 7876Norfolk and Norwich University Hospitals NHS Foundation Trust, Norfolk, UK
| | - Andrew J. Swift
- grid.31410.370000 0000 9422 8284Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School and Sheffield Teaching Hospitals NHS Trust, Sheffield, UK ,grid.31410.370000 0000 9422 8284Department of Clinical Radiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Pankaj Garg
- grid.8273.e0000 0001 1092 7967Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7UQ UK ,grid.240367.40000 0004 0445 7876Norfolk and Norwich University Hospitals NHS Foundation Trust, Norfolk, UK ,grid.31410.370000 0000 9422 8284Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School and Sheffield Teaching Hospitals NHS Trust, Sheffield, UK
| |
Collapse
|
17
|
Cardiac Magnetic Resonance in Hypertensive Heart Disease: Time for a New Chapter. Diagnostics (Basel) 2022; 13:diagnostics13010137. [PMID: 36611429 PMCID: PMC9818319 DOI: 10.3390/diagnostics13010137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Hypertension is one of the most important cardiovascular risk factors, associated with significant morbidity and mortality. Chronic high blood pressure leads to various structural and functional changes in the myocardium. Different sophisticated imaging methods are developed to properly estimate the severity of the disease and to prevent possible complications. Cardiac magnetic resonance can provide a comprehensive assessment of patients with hypertensive heart disease, including accurate and reproducible measurement of left and right ventricle volumes and function, tissue characterization, and scar quantification. It is important in the proper evaluation of different left ventricle hypertrophy patterns to estimate the presence and severity of myocardial fibrosis, as well as to give more information about the benefits of different therapeutic modalities. Hypertensive heart disease often manifests as a subclinical condition, giving exceptional value to cardiac magnetic resonance as an imaging modality capable to detect subtle changes. In this article, we are giving a comprehensive review of all the possibilities of cardiac magnetic resonance in patients with hypertensive heart disease.
Collapse
|
18
|
Schulz A, Schuster A. Visualizing diastolic failure: Non-invasive imaging-biomarkers in patients with heart failure with preserved ejection fraction. EBioMedicine 2022; 86:104369. [PMID: 36423377 PMCID: PMC9691917 DOI: 10.1016/j.ebiom.2022.104369] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 11/22/2022] Open
Abstract
Heart failure with preserved ejection fraction is an increasing challenge for modern day medicine and has been drawing more attention recently. Invasive right heart catheterization represents the mainstay for the diagnosis of diastolic dysfunction, however due to its attributable risk of an invasive procedure, other non-invasive clinical pathways are trying to approach this pathology in clinical practice. Diastolic failure is complex, and imaging is based on various parameters. In addition to transthoracic echocardiography, numerous novel imaging approaches, such as cardiac magnetic resonance imaging, computed tomography, positron emission (computed) tomography or single photon emission computed tomography techniques are being used to supplement deeper insights into causal pathology and might open targets for dedicated therapy options. This article provides insights into these sophisticated imaging techniques, their incremental value for the diagnosis of this poorly understood disease and recent promising results for an enhanced prognostication of outcome and therapy monitoring.
Collapse
Affiliation(s)
- Alexander Schulz
- Department of Cardiology and Pneumology, Georg-August University, University Medical Center Göttingen, Göttingen, Germany
| | - Andreas Schuster
- Department of Cardiology and Pneumology, Georg-August University, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
19
|
Safabakhsh S, Al-Shaheen A, Swiggum E, Mielniczuk L, Tremblay-Gravel M, Laksman Z. Arrhythmic Sudden Cardiac Death in Heart Failure With Preserved Ejection Fraction: Mechanisms, Genetics, and Future Directions. CJC Open 2022; 4:959-969. [PMID: 36444369 PMCID: PMC9700220 DOI: 10.1016/j.cjco.2022.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/20/2022] [Indexed: 11/22/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is an increasingly recognized disorder. Many clinical trials have failed to demonstrate benefit in patients with HFpEF but have recognized alarming rates of sudden cardiac death (SCD). Genetic testing has become standard in the workup of patients with otherwise unexplained cardiac arrest, but the genetic architecture of HFpEF, and the overlap of a genetic predisposition to HFpEF and arrhythmias, is poorly understood. An understanding of the genetics of HFpEF and related SCD has the potential to redefine and generate novel diagnostic, prognostic, and therapeutic tools. In this review, we examine recent pathophysiological and clinical advancements in our understanding of HFpEF, which reinforce the heterogeneity of the condition. We also discuss data describing SCD events in patients with HFpEF and review the current literature on genetic underpinnings of HFpEF. Mechanisms of arrhythmogenesis which may lead to SCD in this population are also explored. Lastly, we outline several areas of promise for experimentation and clinical trials that have the potential to further advance our understanding of and contribute to improved clinical care of this patient population.
Collapse
Affiliation(s)
- Sina Safabakhsh
- Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Elizabeth Swiggum
- Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lisa Mielniczuk
- University of Ottawa Heart Institute, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Zachary Laksman
- Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
20
|
Njoku P, Grafton-Clarke C, Assadi H, Gosling R, Archer G, Swift AJ, Morris PD, Albaraikan A, Williams G, Westenberg J, Aben JP, Ledoux L, Alabed S, Flather M, Cameron D, Cabrero JB, Val JRD, Nair S, Ryding A, Sawh C, Swoboda PP, Levelt E, Chowdhary A, Vassiliou V, Zhong L, Garg P. Validation of time-resolved, automated peak trans-mitral velocity tracking: Two center four-dimensional flow cardiovascular magnetic resonance study. Int J Cardiol 2022; 364:148-156. [PMID: 35716937 DOI: 10.1016/j.ijcard.2022.06.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/05/2022] [Accepted: 06/10/2022] [Indexed: 11/22/2022]
Abstract
OBJECTIVE We aim to validate four-dimensional flow cardiovascular magnetic resonance (4D flow CMR) peak velocity tracking methods for measuring the peak velocity of mitral inflow against Doppler echocardiography. METHOD Fifty patients were recruited who had 4D flow CMR and Doppler Echocardiography. After transvalvular flow segmentation using established valve tracking methods, peak velocity was automatically derived using three-dimensional streamlines of transvalvular flow. In addition, a static-planar method was used at the tip of mitral valve to mimic Doppler technique. RESULTS Peak E-wave mitral inflow velocity was comparable between TTE and the novel 4D flow automated dynamic method (0.9 ± 0.5 vs 0.94 ± 0.6 m/s; p = 0.29) however there was a statistically significant difference when compared with the static planar method (0.85 ± 0.5 m/s; p = 0.01). Median A-wave peak velocity was also comparable across TTE and the automated dynamic streamline (0.77 ± 0.4 vs 0.76 ± 0.4 m/s; p = 0.77). A significant difference was seen with the static planar method (0.68 ± 0.5 m/s; p = 0.04). E/A ratio was comparable between TTE and both the automated dynamic and static planar method (1.1 ± 0.7 vs 1.15 ± 0.5 m/s; p = 0.74 and 1.15 ± 0.5 m/s; p = 0.5 respectively). Both novel 4D flow methods showed good correlation with TTE for E-wave (dynamic method; r = 0.70; P < 0.001 and static-planar method; r = 0.67; P < 0.001) and A-wave velocity measurements (dynamic method; r = 0.83; P < 0.001 and static method; r = 0.71; P < 0.001). The automated dynamic method demonstrated excellent intra/inter-observer reproducibility for all parameters. CONCLUSION Automated dynamic peak velocity tracing method using 4D flow CMR is comparable to Doppler echocardiography for mitral inflow assessment and has excellent reproducibility for clinical use.
Collapse
Affiliation(s)
- Paul Njoku
- University of East Anglia, Norwich Medical School, Norfolk, United Kingdom; Norfolk and Norwich University Hospitals NHS Foundation Trust, Norfolk, United Kingdom
| | - Ciaran Grafton-Clarke
- University of East Anglia, Norwich Medical School, Norfolk, United Kingdom; Norfolk and Norwich University Hospitals NHS Foundation Trust, Norfolk, United Kingdom
| | - Hosamadin Assadi
- University of East Anglia, Norwich Medical School, Norfolk, United Kingdom; Norfolk and Norwich University Hospitals NHS Foundation Trust, Norfolk, United Kingdom
| | - Rebecca Gosling
- Department of Infection, Immunity and Cardiovascular disease, University of Sheffield, Sheffield, United Kingdom
| | - Gareth Archer
- Department of Infection, Immunity and Cardiovascular disease, University of Sheffield, Sheffield, United Kingdom
| | - Andrew J Swift
- Department of Infection, Immunity and Cardiovascular disease, University of Sheffield, Sheffield, United Kingdom
| | - Paul D Morris
- Department of Infection, Immunity and Cardiovascular disease, University of Sheffield, Sheffield, United Kingdom
| | - Abdulaziz Albaraikan
- Department of Infection, Immunity and Cardiovascular disease, University of Sheffield, Sheffield, United Kingdom
| | - Gareth Williams
- Department of Infection, Immunity and Cardiovascular disease, University of Sheffield, Sheffield, United Kingdom
| | - Jos Westenberg
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Leon Ledoux
- Pie Medical Imaging BV, Maastricht, the Netherlands
| | - Samer Alabed
- Department of Infection, Immunity and Cardiovascular disease, University of Sheffield, Sheffield, United Kingdom
| | - Marcus Flather
- University of East Anglia, Norwich Medical School, Norfolk, United Kingdom; Norfolk and Norwich University Hospitals NHS Foundation Trust, Norfolk, United Kingdom
| | - Donnie Cameron
- University of East Anglia, Norwich Medical School, Norfolk, United Kingdom; Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jordi Broncano Cabrero
- Cardiothoracic Imaging Unit, Hospital San Juan de Dios, Ressalta, HT Medica, Cordoba, Spain
| | - Javier Royuela Del Val
- Cardiothoracic Imaging Unit, Hospital San Juan de Dios, Ressalta, HT Medica, Cordoba, Spain
| | - Sunil Nair
- Norfolk and Norwich University Hospitals NHS Foundation Trust, Norfolk, United Kingdom
| | - Alisdair Ryding
- Norfolk and Norwich University Hospitals NHS Foundation Trust, Norfolk, United Kingdom
| | - Chris Sawh
- Norfolk and Norwich University Hospitals NHS Foundation Trust, Norfolk, United Kingdom
| | - Peter P Swoboda
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Eylem Levelt
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Amrit Chowdhary
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Vassilios Vassiliou
- University of East Anglia, Norwich Medical School, Norfolk, United Kingdom; Norfolk and Norwich University Hospitals NHS Foundation Trust, Norfolk, United Kingdom
| | - Liang Zhong
- National Heart Centre Singapore, Duke-NUS Medical School Singapore, Singapore
| | - Pankaj Garg
- University of East Anglia, Norwich Medical School, Norfolk, United Kingdom; Norfolk and Norwich University Hospitals NHS Foundation Trust, Norfolk, United Kingdom.
| |
Collapse
|
21
|
Vidula MK, Bravo PE, Chirinos JA. The Role of Multimodality Imaging in the Evaluation of Heart Failure with Preserved Ejection Fraction. Cardiol Clin 2022; 40:443-457. [DOI: 10.1016/j.ccl.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
22
|
Garg P, Gosling R, Swoboda P, Jones R, Rothman A, Wild JM, Kiely DG, Condliffe R, Alabed S, Swift AJ. Cardiac magnetic resonance identifies raised left ventricular filling pressure: prognostic implications. Eur Heart J 2022; 43:2511-2522. [PMID: 35512290 PMCID: PMC9259376 DOI: 10.1093/eurheartj/ehac207] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 03/13/2022] [Accepted: 04/07/2022] [Indexed: 11/28/2022] Open
Abstract
AIMS Non-invasive imaging is routinely used to estimate left ventricular (LV) filling pressure (LVFP) in heart failure (HF). Cardiovascular magnetic resonance (CMR) is emerging as an important imaging tool for sub-phenotyping HF. However, currently, LVFP cannot be estimated from CMR. This study sought to investigate (i) if CMR can estimate LVFP in patients with suspected HF and (ii) if CMR-modelled LVFP has prognostic power. METHODS AND RESULTS Suspected HF patients underwent right heart catheterization (RHC), CMR and transthoracic echocardiography (TTE) (validation cohort only) within 24 h of each other. Right heart catheterization measured pulmonary capillary wedge pressure (PCWP) was used as a reference for LVFP. At follow-up, death was considered as the primary endpoint. We enrolled 835 patients (mean age: 65 ± 13 years, 40% male). In the derivation cohort (n = 708, 85%), two CMR metrics were associated with RHC PCWP:LV mass and left atrial volume. When applied to the validation cohort (n = 127, 15%), the correlation coefficient between RHC PCWP and CMR-modelled PCWP was 0.55 (95% confidence interval: 0.41-0.66, P < 0.0001). Cardiovascular magnetic resonance-modelled PCWP was superior to TTE in classifying patients as normal or raised filling pressures (76 vs. 25%). Cardiovascular magnetic resonance-modelled PCWP was associated with an increased risk of death (hazard ratio: 1.77, P < 0.001). At Kaplan-Meier analysis, CMR-modelled PCWP was comparable to RHC PCWP (≥15 mmHg) to predict survival at 7-year follow-up (35 vs. 37%, χ2 = 0.41, P = 0.52). CONCLUSION A physiological CMR model can estimate LVFP in patients with suspected HF. In addition, CMR-modelled LVFP has a prognostic role.
Collapse
Affiliation(s)
- Pankaj Garg
- Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
- Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, UK
| | - Rebecca Gosling
- Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, UK
| | - Peter Swoboda
- The Institute of Cardiovascular and Metabolic Medicine, University of Leeds, UK
| | - Rachel Jones
- Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, UK
| | - Alexander Rothman
- Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, UK
| | - Jim M Wild
- Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, UK
| | - David G Kiely
- Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, UK
- Sheffield Pulmonary Vascular Disease Unit, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Robin Condliffe
- Sheffield Pulmonary Vascular Disease Unit, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Samer Alabed
- Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, UK
| | - Andrew J Swift
- Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, UK
| |
Collapse
|
23
|
Elmadi J, Satish Kumar L, Pugalenthi LS, Ahmad M, Reddy S, Barkhane Z. Cardiovascular Magnetic Resonance Imaging: A Prospective Modality in the Diagnosis and Prognostication of Heart Failure. Cureus 2022; 14:e23840. [PMID: 35530891 PMCID: PMC9072284 DOI: 10.7759/cureus.23840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Heart failure (HF) is a clinical syndrome resulting from structural cardiac remodeling and altered function that impairs tissue perfusion. This article aimed to highlight the current diagnostic and prognostic value of cardiac magnetic resonance (CMR) in the management of HF and prospective future applications. Reviewed are the physics associated with CMR, its use in ischemic and non-ischemic causes of HF, and its role in quantifying left ventricular ejection fraction. It also emphasized that CMR allows for noninvasive morphologic and functional assessment, tissue characterization, blood flow, and perfusion evaluation in patients with suspected or diagnosed HF. CMR has become a crucial instrument for the diagnosis, prognosis, and therapy planning in patients with HF and cardiomyopathy due to its accuracy in quantifying cardiac volumes and ejection fraction (considered the gold standard) as well as native and post-contrast myocardial tissue characterization.
Collapse
|
24
|
Rezaeian N. Cardiac MRI imaging in heart failure with preserved ejection fraction. Trends Cardiovasc Med 2022; 33:148-149. [PMID: 34986428 DOI: 10.1016/j.tcm.2021.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 10/19/2022]
Affiliation(s)
- Nahid Rezaeian
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical sciences, Tehran, Iran.
| |
Collapse
|
25
|
Daal MRR, Strijkers GJ, Hautemann DJ, Nederveen AJ, Wüst RCI, Coolen BF. Longitudinal CMR assessment of cardiac global longitudinal strain and hemodynamic forces in a mouse model of heart failure. Int J Cardiovasc Imaging 2022; 38:2385-2394. [PMID: 36434328 PMCID: PMC9700588 DOI: 10.1007/s10554-022-02631-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/22/2022] [Indexed: 12/14/2022]
Abstract
To longitudinally assess left ventricle (LV) global longitudinal strain (GLS) and hemodynamic forces during the early stages of cardiac dysfunction in a mouse model of heart failure with preserved ejection fraction (HFpEF). Cardiac MRI measurements were performed in control mice (n = 6), and db/db mice (n = 7), whereby animals were scanned four times between the age of 11-15 weeks. After the first scan, the db/db animals received a doxycycline intervention to accelerate progression of HFpEF. Systolic function was evaluated based on a series of prospectively ECG-triggered short-axis CINE images acquired from base to apex. Cardiac GLS and hemodynamic forces values were evaluated based on high frame rate retrospectively gated 2-, 3-, and 4-chamber long-axis CINE images. Ejection fraction (EF) was not different between control and db/db animals, despite that cardiac output, as well as end systolic and end diastolic volume were significantly higher in control animals. Whereas GLS parameters were not significantly different between groups, hemodynamic force root mean square (RMS) values, as well as average hemodynamic forces and the ratio between hemodynamic forces in the inferolateral-anteroseptal and apical-basal direction were lower in db/db mice compared to controls. More importantly, hemodynamic forces parameters showed a significant interaction effect between time and group. Our results indicated that hemodynamic forces parameters were the only functional outcome measure that showed distinct temporal differences between groups. As such, changes in hemodynamic forces reflect early alterations in cardiac function which can be of added value in (pre)clinical research on HFpEF.
Collapse
Affiliation(s)
- Mariah R. R. Daal
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Gustav J. Strijkers
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | | | - Aart J. Nederveen
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Rob C. I. Wüst
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Bram F. Coolen
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
26
|
Myocardial Tissue Characterization in Heart Failure with Preserved Ejection Fraction: From Histopathology and Cardiac Magnetic Resonance Findings to Therapeutic Targets. Int J Mol Sci 2021; 22:ijms22147650. [PMID: 34299270 PMCID: PMC8304780 DOI: 10.3390/ijms22147650] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a complex clinical syndrome responsible for high mortality and morbidity rates. It has an ever growing social and economic impact and a deeper knowledge of molecular and pathophysiological basis is essential for the ideal management of HFpEF patients. The association between HFpEF and traditional cardiovascular risk factors is known. However, myocardial alterations, as well as pathophysiological mechanisms involved are not completely defined. Under the definition of HFpEF there is a wide spectrum of different myocardial structural alterations. Myocardial hypertrophy and fibrosis, coronary microvascular dysfunction, oxidative stress and inflammation are only some of the main pathological detectable processes. Furthermore, there is a lack of effective pharmacological targets to improve HFpEF patients' outcomes and risk factors control is the primary and unique approach to treat those patients. Myocardial tissue characterization, through invasive and non-invasive techniques, such as endomyocardial biopsy and cardiac magnetic resonance respectively, may represent the starting point to understand the genetic, molecular and pathophysiological mechanisms underlying this complex syndrome. The correlation between histopathological findings and imaging aspects may be the future challenge for the earlier and large-scale HFpEF diagnosis, in order to plan a specific and effective treatment able to modify the disease's natural course.
Collapse
|
27
|
Cardiovascular magnetic resonance predicts all-cause mortality in pulmonary hypertension associated with heart failure with preserved ejection fraction. Int J Cardiovasc Imaging 2021; 37:3019-3025. [PMID: 33978936 PMCID: PMC8494694 DOI: 10.1007/s10554-021-02279-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/04/2021] [Indexed: 01/30/2023]
Abstract
This study aimed to determine the prognostic value of cardiovascular magnetic resonance (CMR) in patients with heart failure with preserved ejection fraction and associated pulmonary hypertension (pulmonary hypertension-HFpEF). Patients with pulmonary hypertension-HFpEF were recruited from the ASPIRE registry and underwent right heart catheterisation (RHC) and CMR. On RHC, the inclusion criteria was a mean pulmonary artery pressure (MPAP) ≥ 25 mmHg and pulmonary arterial wedge pressure > 15 mmHg and, on CMR, a left atrial volume > 41 ml/m2 with left ventricular ejection fraction > 50%. Cox regression was performed to evaluate CMR against all-cause mortality. In this study, 116 patients with pulmonary hypertension-HFpEF were identified. Over a mean follow-up period of 3 ± 2 years, 61 patients with pulmonary hypertension-HFpEF died (53%). In univariate regression, 11 variables demonstrated association to mortality: indexed right ventricular (RV) volumes and stroke volume, right ventricular ejection fraction (RVEF), indexed RV mass, septal angle, pulmonary artery systolic/diastolic area and its relative area change. In multivariate regression, only three variables were independently associated with mortality: RVEF (HR 0.64, P < 0.001), indexed RV mass (HR 1.46, P < 0.001) and IV septal angle (HR 1.48, P < 0.001). Our CMR model had 0.76 area under the curve (P < 0.001) to predict mortality. This study confirms that pulmonary hypertension in patients with HFpEF is associated with a poor prognosis and we observe that CMR can risk stratify these patients and predict all-cause mortality. When patients with HFpEF develop pulmonary hypertension, CMR measures that reflect right ventricular afterload and function predict all-cause mortality.
Collapse
|
28
|
Assadi H, Jones R, Swift AJ, Al-Mohammad A, Garg P. Cardiac MRI for the prognostication of heart failure with preserved ejection fraction: A systematic review and meta-analysis. Magn Reson Imaging 2020; 76:116-122. [PMID: 33221422 PMCID: PMC7819363 DOI: 10.1016/j.mri.2020.11.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/07/2020] [Accepted: 11/16/2020] [Indexed: 12/23/2022]
Abstract
Background Cardiac magnetic resonance imaging (MRI) is emerging as an important imaging tool in the assessment of heart failure with preserved ejection fraction (HFpEF). This systematic review and meta-analysis aim to synthesise and consolidate the current literature on cardiac MRI for prognostication of HFpEF. Methods design Systematic review and meta-analysis. Data sources: Scopus (PubMed and Embase) for studies published between 2008 and 2019. Eligibility criteria for study selection were studies that evaluated the prognostic role of cardiac MRI in HFpEF. Random effects meta-analyses of the reported hazard ratios (HR) for clinical outcomes was performed. Results Initial screening identified 97 studies. From these, only nine (9%) studies met all the criteria. The main cardiac MRI methods that demonstrated association to prognosis in HFpEF included late gadolinium enhancement (LGE) assessment of scar (n = 3), tissue characterisation with T1-mapping (n = 4), myocardial ischaemia (n = 1) and right ventricular dysfunction (RVSD) (n = 1). The pooled HR for all 9 studies was 1.52 (95% CI 1.05–1.99, P < 0.01). Sub-evaluation by cardiac MRI methods revealed varying HRs: LGE (net n = 402, HR = 1.6, 95% CI 0.42–2.78, P = 0.008); T1-mapping (n = 1623, HR = 1.25, 95% CI 0.891–1.60, P < 0.001); myocardial ischaemia or RVSD (n = 325, HR = 3.19, 95% CI 0.30–6.08, P = 0.03). Conclusion This meta-analysis demonstrates that multiparametric cardiac MRI has value in prognostication of patients with HFpEF. HFpEF patients with a detectable scar on LGE, fibrosis on T1-mapping, myocardial ischaemia or RVSD appear to have a worse prognosis. PROSPERO registration number CRD42020187228.
Collapse
Affiliation(s)
- Hosamadin Assadi
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Rachel Jones
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Andrew J Swift
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Abdallah Al-Mohammad
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK; Sheffield Teaching Hospital NHS Foundation Trust, Sheffield, UK
| | - Pankaj Garg
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK; Sheffield Teaching Hospital NHS Foundation Trust, Sheffield, UK.
| |
Collapse
|