1
|
Schumacher O, Newton RU, Tang C, Chee R, Vos SB, Low RS, Joseph D, Taaffe DR, Galvão DA. Exercise medicine as adjunct therapy during RADIation for CAncer of the prostaTE to improve treatment efficacy - protocol for the ERADICATE study: a phase II randomised controlled trial. BMC Cancer 2025; 25:160. [PMID: 39875858 PMCID: PMC11773748 DOI: 10.1186/s12885-025-13555-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 01/17/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Tumour hypoxia resulting from inadequate perfusion is common in many solid tumours, including prostate cancer, and constitutes a major limiting factor in radiation therapy that contributes to treatment resistance. Emerging research in preclinical animal models indicates that exercise has the potential to enhance the efficacy of cancer treatment by modulating tumour perfusion and reducing hypoxia; however, evidence from randomised controlled trials is currently lacking. The 'Exercise medicine as adjunct therapy during RADIation for CAncer of the prostaTE' (ERADICATE) study is designed to investigate the impact of exercise on treatment response, tumour physiology, and adverse effects of treatment in prostate cancer patients undergoing external beam radiation therapy (EBRT). METHODS The ERADICATE study is a two-arm, parallel group, phase II randomised controlled trial. Fifty patients diagnosed with prostate cancer will be randomised (1:1) to either an exercise intervention group (EBRT + exercise) or a usual care control group (EBRT only) for the duration of treatment (i.e., 2 to 8 weeks of EBRT). The exercise intervention will be clinic-based and supervised by exercise physiologists. Exercise sessions will include moderate- to vigorous-intensity aerobic and resistance exercise conducted two to three times per week for 60 min per session. Treatment response (primary outcome) will be assessed by change in tumour apparent diffusion coefficient derived from magnetic resonance imaging. Secondary outcomes will include acute and chronic changes in tumour perfusion and hypoxia, treatment-related toxicity, body composition, physical function, and quality of life. Survival outcomes will be assessed as exploratory endpoints. Study measurements will be conducted at baseline (i.e., prior to commencing EBRT), immediately after completion of EBRT, and during follow-up at 3 months as well as 2 years and 5 years post treatment. The study was approved by the Human Research Ethics Committee at Edith Cowan University. DISCUSSION The ERADICATE study will investigate exercise as a novel therapeutic approach for sensitising prostate cancer to EBRT by targeting a known mechanism of treatment resistance. Improving treatment efficacy of EBRT with exercise may result in better patient outcomes clinically, while also addressing adverse effects of treatment and quality of life in prostate cancer patients. TRIAL REGISTRATION The study was registered on the Australian New Zealand Clinical Trials Registry (ACTRN12624000786594) on 26/06/2024.
Collapse
Affiliation(s)
- Oliver Schumacher
- Exercise Medicine Research Institute, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Robert U Newton
- Exercise Medicine Research Institute, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Colin Tang
- Exercise Medicine Research Institute, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- 5D Clinics, Claremont, WA, Australia
- Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Raphael Chee
- Exercise Medicine Research Institute, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- GenesisCare, Joondalup, WA, Australia
| | - Sjoerd B Vos
- Western Australia National Imaging Facility, University of Western Australia, Perth, WA, Australia
| | - Ronny S Low
- Envision Medical Imaging, Wembley, WA, Australia
| | - David Joseph
- Exercise Medicine Research Institute, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- 5D Clinics, Claremont, WA, Australia
| | - Dennis R Taaffe
- Exercise Medicine Research Institute, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Daniel A Galvão
- Exercise Medicine Research Institute, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia.
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.
| |
Collapse
|
2
|
Yuan Q, Recchimuzzi DZ, Costa DN. Magnetic Resonance Perfusion Imaging of Prostate. Magn Reson Imaging Clin N Am 2024; 32:171-179. [PMID: 38007279 DOI: 10.1016/j.mric.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Magnetic resonance (MR) perfusion imaging, both with and without exogenous contrast agents, has the potential to assess tissue perfusion and vascularity in prostate cancer. Dynamic contrast-enhanced (DCE) MRI is an important element of the clinical non-invasive multiparametric MRI, which can be used to differentiate benign from malignant lesions, to stage tumors, and to monitor response to therapy. The arterial spin labeled (ASL) and intravoxel incoherent motion (IVIM) diffusion-weighted MRI have the advantage of quantitative perfusion measurements without the concerns of gadolinium-based contrast agent safety and retention issues. The adoption of these non-contrast techniques in clinical practice needs more research and clinical evaluation.
Collapse
Affiliation(s)
- Qing Yuan
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| | - Debora Z Recchimuzzi
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Daniel N Costa
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; Department of Urology, University of Texas Southwestern Medical Center, 2201 Inwood Road, TX 75390, USA
| |
Collapse
|
3
|
Liu D, Zhu D, Xu F, Sedaghat F, Qin Q. Prostate perfusion mapping using Fourier-transform based velocity-selective arterial spin labeling: Choice of cutoff velocity and comparison with brain. Magn Reson Med 2023; 90:1121-1129. [PMID: 37203405 PMCID: PMC11932130 DOI: 10.1002/mrm.29695] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/21/2023] [Accepted: 04/19/2023] [Indexed: 05/20/2023]
Abstract
PURPOSE To develop velocity selective arterial spin labeling (VSASL) protocols for prostate blood flow (PBF) and prostate blood volume (PBV) mapping. METHODS Fourier-transform based velocity-selective inversion and saturation pulse trains were utilized in VSASL sequences to obtain blood flow and blood volume weighted perfusion signal, respectively. Here four cutoff velocities (Vcut = 0.25, 0.50, 1.00, and 1.50 cm/s) for PBF and PBV mapping sequences were evaluated with a parallel implementation in brain for measuring cerebral blood flow (CBF) and cerebral blood volume (CBV) with identical 3D readout. This study was performed at 3T on eight young and middle-aged healthy subjects comparing both perfusion weighted signal (PWS) and temporal SNR (tSNR). RESULTS In contrast to CBF and CBV, the PWS of PBF and PBV were rather unobservable at Vcut of 1.00 or 1.50 cm/s and both PWS and tSNR of PBF and PBV considerably increased at the lower Vcut , indicating that blood moves much slower in prostate than in brain. Similar to the brain results, the tSNR of PBV-weighted signal was about two to four times over the corresponding values of PBF-weighted signal. The results also suggested a trend of reduced vascularity within prostate during aging. CONCLUSION For prostate, a low Vcut of 0.25-0.50 cm/s seemed necessary for both PBF and PBV measurements to obtain adequate perfusion signal. As in brain, PBV mapping yielded a higher tSNR than PBF.
Collapse
Affiliation(s)
- Dapeng Liu
- Department of Radiology; Johns Hopkins University School
of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging,
Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Dan Zhu
- Department of Radiology; Johns Hopkins University School
of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging,
Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Feng Xu
- Department of Radiology; Johns Hopkins University School
of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging,
Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Farzad Sedaghat
- Department of Radiology; Johns Hopkins University School
of Medicine, Baltimore, Maryland, USA
| | - Qin Qin
- Department of Radiology; Johns Hopkins University School
of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging,
Kennedy Krieger Institute, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Dwivedi DK, Jagannathan NR. Emerging MR methods for improved diagnosis of prostate cancer by multiparametric MRI. MAGMA (NEW YORK, N.Y.) 2022; 35:587-608. [PMID: 35867236 DOI: 10.1007/s10334-022-01031-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 06/28/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Current challenges of using serum prostate-specific antigen (PSA) level-based screening, such as the increased false positive rate, inability to detect clinically significant prostate cancer (PCa) with random biopsy, multifocality in PCa, and the molecular heterogeneity of PCa, can be addressed by integrating advanced multiparametric MR imaging (mpMRI) approaches into the diagnostic workup of PCa. The standard method for diagnosing PCa is a transrectal ultrasonography (TRUS)-guided systematic prostate biopsy, but it suffers from sampling errors and frequently fails to detect clinically significant PCa. mpMRI not only increases the detection of clinically significant PCa, but it also helps to reduce unnecessary biopsies because of its high negative predictive value. Furthermore, non-Cartesian image acquisition and compressed sensing have resulted in faster MR acquisition with improved signal-to-noise ratio, which can be used in quantitative MRI methods such as dynamic contrast-enhanced (DCE)-MRI. With the growing emphasis on the role of pre-biopsy mpMRI in the evaluation of PCa, there is an increased demand for innovative MRI methods that can improve PCa grading, detect clinically significant PCa, and biopsy guidance. To meet these demands, in addition to routine T1-weighted, T2-weighted, DCE-MRI, diffusion MRI, and MR spectroscopy, several new MR methods such as restriction spectrum imaging, vascular, extracellular, and restricted diffusion for cytometry in tumors (VERDICT) method, hybrid multi-dimensional MRI, luminal water imaging, and MR fingerprinting have been developed for a better characterization of the disease. Further, with the increasing interest in combining MR data with clinical and genomic data, there is a growing interest in utilizing radiomics and radiogenomics approaches. These big data can also be utilized in the development of computer-aided diagnostic tools, including automatic segmentation and the detection of clinically significant PCa using machine learning methods.
Collapse
Affiliation(s)
- Durgesh Kumar Dwivedi
- Department of Radiodiagnosis, King George Medical University, Lucknow, UP, 226 003, India.
| | - Naranamangalam R Jagannathan
- Department of Radiology, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, TN, 603 103, India.
- Department of Radiology, Sri Ramachandra Institute of Higher Education and Research, Chennai, TN, 600 116, India.
- Department of Electrical Engineering, Indian Institute Technology Madras, Chennai, TN, 600 036, India.
| |
Collapse
|
5
|
Reiter R, Majumdar S, Kearney S, Kajdacsy-Balla A, Macias V, Crivellaro S, Abern M, Royston TJ, Klatt D. Investigating the heterogeneity of viscoelastic properties in prostate cancer using MR elastography at 9.4T in fresh prostatectomy specimens. Magn Reson Imaging 2022; 87:113-118. [PMID: 35007693 DOI: 10.1016/j.mri.2022.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 11/20/2022]
Abstract
PURPOSE To quantify the heterogeneity of viscoelastic tissue properties in prostatectomy specimens from men with prostate cancer (PC) using MR elastography (MRE) with histopathology as reference. METHODS Twelve fresh prostatectomy specimens were examined in a preclinical 9.4T MRI scanner. Maps of the complex shear modulus (|G*| in kPa) with its real and imaginary part (G' and G" in kPa) were calculated at 500 Hz. Prostates were divided into 12 segments for segment-wise measurement of viscoelastic properties and histopathology. Coefficients of variation (CVs in %) were calculated for quantification of heterogeneity. RESULTS Group-averaged values of cancerous vs. benign segments were significantly increased: |G*| of 12.13 kPa vs. 6.14 kPa, G' of 10.84 kPa vs. 5.44 kPa and G" of 5.45 kPa vs. 2.92 kPa, all p < 0.001. In contrast, CVs were significantly increased for benign segments: 23.59% vs. 26.32% (p = 0.014) for |G*|, 27.05% vs. 37.84% (p < 0.003) for G', and 36.51% vs. 50.37% (p = 0.008) for G". DISCUSSION PC is characterized by a stiff yet homogeneous biomechanical signature, which may be due to the unique nondestructive growth pattern of PC with intervening stroma, providing a rigid scaffold in the affected area. In turn, increased heterogeneity in benign prostate segments may be attributable to the presence of different prostate zones with involvement by specific nonmalignant pathology.
Collapse
Affiliation(s)
- Rolf Reiter
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany; Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Str. 2, 10178 Berlin, Germany; Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, 830 South Wood Street, Chicago, IL 60612, United States.
| | - Shreyan Majumdar
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, 830 South Wood Street, Chicago, IL 60612, United States.
| | - Steven Kearney
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, 830 South Wood Street, Chicago, IL 60612, United States
| | - André Kajdacsy-Balla
- Department of Pathology, University of Illinois at Chicago, 830 South Wood Street, Chicago, IL 60612, United States.
| | - Virgilia Macias
- Department of Pathology, University of Illinois at Chicago, 830 South Wood Street, Chicago, IL 60612, United States.
| | - Simone Crivellaro
- Department of Urology, University of Illinois at Chicago, 830 South Wood Street, Chicago, IL 60612, United States.
| | - Michael Abern
- Department of Urology, University of Illinois at Chicago, 830 South Wood Street, Chicago, IL 60612, United States.
| | - Thomas J Royston
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, 830 South Wood Street, Chicago, IL 60612, United States.
| | - Dieter Klatt
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, 830 South Wood Street, Chicago, IL 60612, United States.
| |
Collapse
|
6
|
Michallek F, Huisman H, Hamm B, Elezkurtaj S, Maxeiner A, Dewey M. Prediction of prostate cancer grade using fractal analysis of perfusion MRI: retrospective proof-of-principle study. Eur Radiol 2021; 32:3236-3247. [PMID: 34913991 PMCID: PMC9038862 DOI: 10.1007/s00330-021-08394-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 09/28/2021] [Accepted: 10/09/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Multiparametric MRI has high diagnostic accuracy for detecting prostate cancer, but non-invasive prediction of tumor grade remains challenging. Characterizing tumor perfusion by exploiting the fractal nature of vascular anatomy might elucidate the aggressive potential of a tumor. This study introduces the concept of fractal analysis for characterizing prostate cancer perfusion and reports about its usefulness for non-invasive prediction of tumor grade. METHODS We retrospectively analyzed the openly available PROSTATEx dataset with 112 cancer foci in 99 patients. In all patients, histological grading groups specified by the International Society of Urological Pathology (ISUP) were obtained from in-bore MRI-guided biopsy. Fractal analysis of dynamic contrast-enhanced perfusion MRI sequences was performed, yielding fractal dimension (FD) as quantitative descriptor. Two-class and multiclass diagnostic accuracy was analyzed using area under the curve (AUC) receiver operating characteristic analysis, and optimal FD cutoffs were established. Additionally, we compared fractal analysis to conventional apparent diffusion coefficient (ADC) measurements. RESULTS Fractal analysis of perfusion allowed accurate differentiation of non-significant (group 1) and clinically significant (groups 2-5) cancer with a sensitivity of 91% (confidence interval [CI]: 83-96%) and a specificity of 86% (CI: 73-94%). FD correlated linearly with ISUP groups (r2 = 0.874, p < 0.001). Significant groupwise differences were obtained between low, intermediate, and high ISUP group 1-4 (p ≤ 0.001) but not group 5 tumors. Fractal analysis of perfusion was significantly more reliable than ADC in predicting non-significant and clinically significant cancer (AUCFD = 0.97 versus AUCADC = 0.77, p < 0.001). CONCLUSION Fractal analysis of perfusion MRI accurately predicts prostate cancer grading in low-, intermediate-, and high-, but not highest-grade, tumors. KEY POINTS • In 112 prostate carcinomas, fractal analysis of MR perfusion imaging accurately differentiated low-, intermediate-, and high-grade cancer (ISUP grade groups 1-4). • Fractal analysis detected clinically significant prostate cancer with a sensitivity of 91% (83-96%) and a specificity of 86% (73-94%). • Fractal dimension of perfusion at the tumor margin may provide an imaging biomarker to predict prostate cancer grading.
Collapse
Affiliation(s)
- Florian Michallek
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.
| | - Henkjan Huisman
- Department of Radiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Bernd Hamm
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Sefer Elezkurtaj
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Andreas Maxeiner
- Department of Urology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Marc Dewey
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| |
Collapse
|