1
|
Moazamian D, Mohammadi HS, Athertya J, Daskareh M, Ma Y, Guma M, Covey DC, Yaksh T, Singh A, Kavanaugh A, Chung CB, Du J, Chang EY, Jerban S. Non-invasive evaluation of Achilles tendon and its enthesis using ultrashort echo time adiabatic T 1ρ (UTE-Adiab-T 1ρ) magnetic resonance imaging (MRI) in psoriatic arthritis. Eur J Radiol 2025; 183:111841. [PMID: 39667119 PMCID: PMC11844800 DOI: 10.1016/j.ejrad.2024.111841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/27/2024] [Accepted: 11/18/2024] [Indexed: 12/14/2024]
Abstract
PURPOSE This cross-sectional study investigates the utility of the quantitative ultrashort echo time (UTE) adiabatic T1ρ (UTE-Adiab-T1ρ) magnetic resonance imaging (MRI) in detecting potential differences in Achilles tendons and entheses of patients with psoriatic arthritis disease (PsA) compared with asymptomatic volunteers. MATERIAL AND METHOD The Achilles tendons of forty-four PsA patients (59 ± 15 years old, 38 % female) and thirty-seven asymptomatic volunteers (32 ± 10 years old, 51 % female) were scanned on a 3 T clinical scanner in the sagittal plane using a 3-inch surface coil. The 3D UTE-Adiab-T1ρ sequences with fat saturation (FS) were used to measure UTE-Adiab-T1ρ. Tenderness of the tendons, the SF-12 health survey, and visual analog scale (VAS) were recorded for the patients. The Kruskal Wallis test was used to examine the differences in UTE-Adiab-T1ρ values between asymptomatic volunteers and patients, as well as subgroups of patients with pain in the Achilles tendon region and those treated with Biologics. Spearman's correlation coefficients were calculated between UTE-Adiab-T1ρ and patient evaluations. P values < 0.05 were considered significant. RESULTS UTE-Adiab-T1ρ was significantly higher for the PsA group compared with the asymptomatic group in the enthesis (11.4 ± 2.6 ms vs. 10.4 ± 2.4 ms) and tensile tendon regions (9.8 ± 2.8 ms vs. 7.7 ± 1.7 ms). PsA patients with active Achilles pain showed significantly lower T1ρ in the entheses compared with other patients (10.7 ± 2.6 ms vs. 11.7 ± 2.5 ms). PsA patients treated with Biologics showed significantly lower T1ρ values in the tendon compared with other patients (9.5 ± 2.5 ms vs. 10.3 ± 3.3 ms). The VAS score of patients showed a significant negative but weak correlation (R = -0.2) with UTE-Adiab-T1ρ of the enthesis. Correlations with SF-12 scores were not significant. CONCLUSION This study highlighted the UTE-Adiab-T1ρ sequence capability in evaluating tendons and entheses and their potential involvement in PsA disease or response to therapies.
Collapse
Affiliation(s)
- Dina Moazamian
- Department of Radiology, University of California, San Diego, CA, USA.
| | | | - Jiyo Athertya
- Department of Radiology, University of California, San Diego, CA, USA
| | - Mahyar Daskareh
- Department of Radiology, University of California, San Diego, CA, USA
| | - Yajun Ma
- Department of Radiology, University of California, San Diego, CA, USA
| | - Monica Guma
- Department of Rheumatology, University of California, San Diego, CA, USA
| | - Dana C Covey
- Department of Orthopaedic Surgery, University of California, San Diego, CA, USA
| | - Tony Yaksh
- Department of Anesthesiology, University of California, San Diego, CA, USA
| | - Abha Singh
- Department of Rheumatology, University of California, San Diego, CA, USA
| | - Arthur Kavanaugh
- Department of Rheumatology, University of California, San Diego, CA, USA
| | - Christine B Chung
- Department of Radiology, University of California, San Diego, CA, USA; Radiology Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Jiang Du
- Department of Radiology, University of California, San Diego, CA, USA; Radiology Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Eric Y Chang
- Department of Radiology, University of California, San Diego, CA, USA; Radiology Service, VA San Diego Healthcare System, San Diego, CA, USA.
| | - Saeed Jerban
- Department of Radiology, University of California, San Diego, CA, USA.
| |
Collapse
|
2
|
Boonsri P, Laohawiriyakamol T, Tanutit P. Editorial for "Comparing the Effect of Mechanical Loading on Deep and Superficial Cartilage Using Quantitative UTE MRI". J Magn Reson Imaging 2024; 59:2058-2059. [PMID: 37638760 DOI: 10.1002/jmri.28978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023] Open
Affiliation(s)
- Pattira Boonsri
- Radiology department, Prince of Songkla University, Hat Yai, Thailand
| | | | - Pramot Tanutit
- Radiology department, Prince of Songkla University, Hat Yai, Thailand
| |
Collapse
|
3
|
Ma Y, Carl M, Tang Q, Moazamian D, Athertya JS, Jang H, Bukata SV, Chung CB, Chang EY, Du J. Whole knee joint mapping using a phase modulated UTE adiabatic T 1ρ (PM-UTE-AdiabT 1ρ ) sequence. Magn Reson Med 2024; 91:896-910. [PMID: 37755319 PMCID: PMC10843531 DOI: 10.1002/mrm.29871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/14/2023] [Accepted: 08/31/2023] [Indexed: 09/28/2023]
Abstract
PURPOSE To develop a 3D phase modulated UTE adiabatic T1ρ (PM-UTE-AdiabT1ρ ) sequence for whole knee joint mapping on a clinical 3 T scanner. METHODS This new sequence includes six major features: (1) a magnetization reset module, (2) a train of adiabatic full passage pulses for spin locking, (3) a phase modulation scheme (i.e., RF cycling pair), (4) a fat saturation module, (5) a variable flip angle scheme, and (6) a 3D UTE Cones sequence for data acquisition. A simple exponential fitting was used for T1ρ quantification. Phantom studies were performed to investigate PM-UTE-AdiabT1ρ 's sensitivity to compositional changes and reproducibility as well as its correlation with continuous wave-T1ρ measurement. The PM-UTE-AdiabT1ρ technique was then applied to five ex vivo and five in vivo normal knees to measure T1ρ values of femoral cartilage, meniscus, posterior cruciate ligament, anterior cruciate ligament, patellar tendon, and muscle. RESULTS The phantom study demonstrated PM-UTE-AdiabT1ρ 's high sensitivity to compositional changes, its high reproducibility, and its strong linear correlation with continuous wave-T1ρ measurement. The ex vivo and in vivo knee studies demonstrated average T1ρ values of 105.6 ± 8.4 and 77.9 ± 3.9 ms for the femoral cartilage, 39.2 ± 5.1 and 30.1 ± 2.2 ms for the meniscus, 51.6 ± 5.3 and 29.2 ± 2.4 ms for the posterior cruciate ligament, 79.0 ± 9.3 and 52.0 ± 3.1 ms for the anterior cruciate ligament, 19.8 ± 4.5 and 17.0 ± 1.8 ms for the patellar tendon, and 91.1 ± 8.8 and 57.6 ± 2.8 ms for the muscle, respectively. CONCLUSION The 3D PM-UTE-AdiabT1ρ sequence allows volumetric T1ρ assessment for both short and long T2 tissues in the knee joint on a clinical 3 T scanner.
Collapse
Affiliation(s)
- Yajun Ma
- Department of Radiology, University of California San Diego, CA, USA
| | | | - Qingbo Tang
- Department of Radiology, University of California San Diego, CA, USA
- Radiology Service, Veterans Affairs San Diego Healthcare System, CA, USA
| | - Dina Moazamian
- Department of Radiology, University of California San Diego, CA, USA
| | - Jiyo S Athertya
- Department of Radiology, University of California San Diego, CA, USA
| | - Hyungseok Jang
- Department of Radiology, University of California San Diego, CA, USA
| | - Susan V Bukata
- Department of Orthopaedic Surgery, University of California San Diego, CA, USA
| | - Christine B Chung
- Department of Radiology, University of California San Diego, CA, USA
- Radiology Service, Veterans Affairs San Diego Healthcare System, CA, USA
| | - Eric Y Chang
- Department of Radiology, University of California San Diego, CA, USA
- Radiology Service, Veterans Affairs San Diego Healthcare System, CA, USA
| | - Jiang Du
- Department of Radiology, University of California San Diego, CA, USA
- Radiology Service, Veterans Affairs San Diego Healthcare System, CA, USA
- Department of Bioengineering, University of California San Diego, CA, USA
| |
Collapse
|
4
|
Cheng KY, Moazamian D, Ma Y, Jang H, Jerban S, Du J, Chung CB. Clinical application of ultrashort echo time (UTE) and zero echo time (ZTE) magnetic resonance (MR) imaging in the evaluation of osteoarthritis. Skeletal Radiol 2023; 52:2149-2157. [PMID: 36607355 PMCID: PMC10323038 DOI: 10.1007/s00256-022-04269-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 01/07/2023]
Abstract
Novel compositional magnetic resonance (MR) imaging techniques have allowed for both the qualitative and quantitative assessments of tissue changes in osteoarthritis, many of which are difficult to characterize on conventional MR imaging. Ultrashort echo time (UTE) and zero echo time (ZTE) MR imaging have not been broadly implemented clinically but have several applications that leverage contrast mechanisms for morphologic evaluation of bone and soft tissue, as well as biochemical assessment in various stages of osteoarthritis progression. Many of the musculoskeletal tissues implicated in the initiation and progression of osteoarthritis are short T2 in nature, appearing dark as signal has already decayed to its minimum when image sampling starts. UTE and ZTE MR imaging allow for the qualitative and quantitative assessments of these short T2 tissues (bone, tendon, calcified cartilage, meniscus, and ligament) with both structural and functional reference standards described in the literature [1-3]. This review will describe applications of UTE and ZTE MR imaging in musculoskeletal tissues focusing on its role in knee osteoarthritis. While the review will address tissue-specific applications of these sequences, it is understood that osteoarthritis is a whole joint process with involvement and interdependence of all tissues. KEY POINTS: • UTE MR imaging allows for the qualitative and quantitative evaluation of short T2 tissues (bone, calcified cartilage, and meniscus), enabling identification of both early degenerative changes and subclinical injuries that may predispose to osteoarthritis. • ZTE MR imaging allows for the detection of signal from bone, which has some of the shortest T2 values, and generates tissue contrast similar to CT, potentially obviating the need for CT in the assessment of osseous features of osteoarthritis.
Collapse
Affiliation(s)
- Karen Y Cheng
- Department of Radiology, University of California, San Diego, CA, USA
| | - Dina Moazamian
- Department of Radiology, University of California, San Diego, CA, USA
| | - Yajun Ma
- Department of Radiology, University of California, San Diego, CA, USA
| | - Hyungseok Jang
- Department of Radiology, University of California, San Diego, CA, USA
| | - Saeed Jerban
- Department of Radiology, University of California, San Diego, CA, USA
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Department of Orthopedic Surgery, University of California, San Diego, San Diego, CA, USA
| | - Jiang Du
- Department of Radiology, University of California, San Diego, CA, USA
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Department of Bioengineering, University of California, San Diego, CA, USA
| | - Christine B Chung
- Department of Radiology, University of California, San Diego, CA, USA.
- Department of Radiology, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
5
|
Coletti C, Fotaki A, Tourais J, Zhao Y, van de Steeg-Henzen C, Akçakaya M, Tao Q, Prieto C, Weingärtner S. Robust cardiac T 1 ρ $$ {\mathrm{T}}_{1_{\boldsymbol{\rho}}} $$ mapping at 3T using adiabatic spin-lock preparations. Magn Reson Med 2023; 90:1363-1379. [PMID: 37246420 PMCID: PMC10984724 DOI: 10.1002/mrm.29713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 04/26/2023] [Accepted: 05/04/2023] [Indexed: 05/30/2023]
Abstract
PURPOSE The aim of this study is to develop and optimize an adiabaticT 1 ρ $$ {\mathrm{T}}_{1\uprho} $$ (T 1 ρ , adiab $$ {\mathrm{T}}_{1\uprho, \mathrm{adiab}} $$ ) mapping method for robust quantification of spin-lock (SL) relaxation in the myocardium at 3T. METHODS Adiabatic SL (aSL) preparations were optimized for resilience againstB 0 $$ {\mathrm{B}}_0 $$ andB 1 + $$ {\mathrm{B}}_1^{+} $$ inhomogeneities using Bloch simulations. OptimizedB 0 $$ {\mathrm{B}}_0 $$ -aSL, Bal-aSL andB 1 $$ {\mathrm{B}}_1 $$ -aSL modules, each compensating for different inhomogeneities, were first validated in phantom and human calf. MyocardialT 1 ρ $$ {\mathrm{T}}_{1\uprho} $$ mapping was performed using a single breath-hold cardiac-triggered bSSFP-based sequence. Then, optimizedT 1 ρ , adiab $$ {\mathrm{T}}_{1\uprho, \mathrm{adiab}} $$ preparations were compared to each other and to conventional SL-preparedT 1 ρ $$ {\mathrm{T}}_{1\uprho} $$ maps (RefSL) in phantoms to assess repeatability, and in 13 healthy subjects to investigate image quality, precision, reproducibility and intersubject variability. Finally, aSL and RefSL sequences were tested on six patients with known or suspected cardiovascular disease and compared with LGE,T 1 $$ {\mathrm{T}}_1 $$ , and ECV mapping. RESULTS The highestT 1 ρ , adiab $$ {\mathrm{T}}_{1\uprho, \mathrm{adiab}} $$ preparation efficiency was obtained in simulations for modules comprising 2 HS pulses of 30 ms each. In vivoT 1 ρ , adiab $$ {\mathrm{T}}_{1\uprho, \mathrm{adiab}} $$ maps yielded significantly higher quality than RefSL maps. Average myocardialT 1 ρ , adiab $$ {\mathrm{T}}_{1\uprho, \mathrm{adiab}} $$ values were 183.28± $$ \pm $$ 25.53 ms, compared with 38.21± $$ \pm $$ 14.37 ms RefSL-preparedT 1 ρ $$ {\mathrm{T}}_{1\uprho} $$ .T 1 ρ , adiab $$ {\mathrm{T}}_{1\uprho, \mathrm{adiab}} $$ maps showed a significant improvement in precision (avg. 14.47± $$ \pm $$ 3.71% aSL, 37.61± $$ \pm $$ 19.42% RefSL, p < 0.01) and reproducibility (avg. 4.64± $$ \pm $$ 2.18% aSL, 47.39± $$ \pm $$ 12.06% RefSL, p < 0.0001), with decreased inter-subject variability (avg. 8.76± $$ \pm $$ 3.65% aSL, 51.90± $$ \pm $$ 15.27% RefSL, p < 0.0001). Among aSL preparations,B 0 $$ {\mathrm{B}}_0 $$ -aSL achieved the better inter-subject variability. In patients,B 1 $$ {\mathrm{B}}_1 $$ -aSL preparations showed the best artifact resilience among the adiabatic preparations.T 1 ρ , adiab $$ {\mathrm{T}}_{1\uprho, \mathrm{adiab}} $$ times show focal alteration colocalized with areas of hyper-enhancement in the LGE images. CONCLUSION Adiabatic preparations enable robust in vivo quantification of myocardial SL relaxation times at 3T.
Collapse
Affiliation(s)
- Chiara Coletti
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Anastasia Fotaki
- Department of Biomedical Engineering, King’s College London, London, United Kingdom
| | - Joao Tourais
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Yidong Zhao
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | | | - Mehmet Akçakaya
- Department of Electrical and Computer Engineering and Center for Magnetic Resonance Research, University of Minnesota, Minnesota, USA
| | - Qian Tao
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Claudia Prieto
- Department of Biomedical Engineering, King’s College London, London, United Kingdom
- School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
- Milleniun Institute for Intelligent Healthcare Engineering, Santiago, Chile
| | - Sebastian Weingärtner
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|