1
|
Gammaraccio F, Villano D, Irrera P, Anemone AA, Carella A, Corrado A, Longo DL. Development and Validation of Four Different Methods to Improve MRI-CEST Tumor pH Mapping in Presence of Fat. J Imaging 2024; 10:166. [PMID: 39057737 PMCID: PMC11277679 DOI: 10.3390/jimaging10070166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/28/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
CEST-MRI is an emerging imaging technique suitable for various in vivo applications, including the quantification of tumor acidosis. Traditionally, CEST contrast is calculated by asymmetry analysis, but the presence of fat signals leads to wrong contrast quantification and hence to inaccurate pH measurements. In this study, we investigated four post-processing approaches to overcome fat signal influences and enable correct CEST contrast calculations and tumor pH measurements using iopamidol. The proposed methods involve replacing the Z-spectrum region affected by fat peaks by (i) using a linear interpolation of the fat frequencies, (ii) applying water pool Lorentzian fitting, (iii) considering only the positive part of the Z-spectrum, or (iv) calculating a correction factor for the ratiometric value. In vitro and in vivo studies demonstrated the possibility of using these approaches to calculate CEST contrast and then to measure tumor pH, even in the presence of moderate to high fat fraction values. However, only the method based on the water pool Lorentzian fitting produced highly accurate results in terms of pH measurement in tumor-bearing mice with low and high fat contents.
Collapse
Affiliation(s)
- Francesco Gammaraccio
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Torino, Italy
| | - Daisy Villano
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Torino, Italy
| | - Pietro Irrera
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), 10126 Torino, Italy
| | - Annasofia A. Anemone
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Torino, Italy
| | - Antonella Carella
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), 10126 Torino, Italy
| | - Alessia Corrado
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), 10126 Torino, Italy
| | - Dario Livio Longo
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), 10126 Torino, Italy
| |
Collapse
|
2
|
Zhang N, Song Q, Liang H, Wang Z, Wu Q, Zhang H, Zhang L, Liu A, Wang H, Wang J, Lin L. Early prediction of pathological response to neoadjuvant chemotherapy of breast tumors: a comparative study using amide proton transfer-weighted, diffusion weighted and dynamic contrast enhanced MRI. Front Med (Lausanne) 2024; 11:1295478. [PMID: 38298813 PMCID: PMC10827983 DOI: 10.3389/fmed.2024.1295478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 01/05/2024] [Indexed: 02/02/2024] Open
Abstract
Objective To examine amide proton transfer-weighted (APTw) combined with diffusion weighed (DWI) and dynamic contrast enhanced (DCE) MRI for early prediction of pathological response to neoadjuvant chemotherapy in invasive breast cancer. Materials In this prospective study, 50 female breast cancer patients (49.58 ± 10.62 years old) administered neoadjuvant chemotherapy (NAC) were enrolled with MRI carried out both before NAC (T0) and at the end of the second cycle of NAC (T1). The patients were divided into 2 groups based on tumor response according to the Miller-Payne Grading (MPG) system. Group 1 included patients with a greater degree of decrease in major histologic responder (MHR, Miller-Payne G4-5), while group 2 included non-MHR cases (Miller-Payne G1-3). Traditional imaging protocols (T1 weighted, T2 weighted, diffusion weighted, and DCE-MRI) and APTw imaging were scanned for each subject before and after treatment. APTw value (APTw0 and APTw1), Dmax (maximum diameter, Dmax0 and Dmax1), V (3D tumor volume, V0 and V1), and ADC (apparent diffusion coefficient, ADC0 and ADC1) before and after treatment, as well as changes between the two times points (ΔAPT, ΔDmax, ΔV, ΔADC) for breast tumors were compared between the two groups. Results APT0 and APT1 values significantly differed between the two groups (p = 0.034 and 0.01). ΔAPTw values were significantly lower in non-MHR tumors compared with MHR tumors (p = 0.015). ΔDmax values were significantly higher in MHR tumors compared with non-MHR tumors (p = 0.005). ADC0 and ADC1 values were significantly higher in MHR tumors than in non-MHR tumors (p = 0.038 and 0.035). AUC (Dmax+DWI + APTw) = AUC (Dmax+APTw) > AUC (APTw) > AUC (Dmax+DWI) > AUC (Dmax). Conclusion APTw imaging along with change of tumor size showed a significant potential in early prediction of MHR for NAC treatment in breast cancer, which might allow timely regimen refinement before definitive surgical treatment.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Radiology, First Affiliated Hospital, Dalian Medical University, Dalian, China
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qingwei Song
- Department of Radiology, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Hongbing Liang
- Department of Radiology, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Zhuo Wang
- Department of Radiology, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Qi Wu
- Department of Radiology, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Haonan Zhang
- Department of Radiology, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Lina Zhang
- Department of Radiology, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Ailian Liu
- Department of Radiology, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Huali Wang
- Department of Pathology, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Jiazheng Wang
- MSC Clinical and Technical Solutions, Philips Healthcare, Beijing, China
| | - Liangjie Lin
- MSC Clinical and Technical Solutions, Philips Healthcare, Beijing, China
| |
Collapse
|
3
|
Vinogradov E, Keupp J, Dimitrov IE, Seiler S, Pedrosa I. CEST-MRI for body oncologic imaging: are we there yet? NMR IN BIOMEDICINE 2023; 36:e4906. [PMID: 36640112 PMCID: PMC10200773 DOI: 10.1002/nbm.4906] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 05/23/2023]
Abstract
Chemical exchange saturation transfer (CEST) MRI has gained recognition as a valuable addition to the molecular imaging and quantitative biomarker arsenal, especially for characterization of brain tumors. There is also increasing interest in the use of CEST-MRI for applications beyond the brain. However, its translation to body oncology applications lags behind those in neuro-oncology. The slower migration of CEST-MRI to non-neurologic applications reflects the technical challenges inherent to imaging of the torso. In this review, we discuss the application of CEST-MRI to oncologic conditions of the breast and torso (i.e., body imaging), emphasizing the challenges and potential solutions to address them. While data are still limited, reported studies suggest that CEST signal is associated with important histology markers such as tumor grade, receptor status, and proliferation index, some of which are often associated with prognosis and response to therapy. However, further technical development is still needed to make CEST a reliable clinical application for body imaging and establish its role as a predictive and prognostic biomarker.
Collapse
Affiliation(s)
- Elena Vinogradov
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Ivan E Dimitrov
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Philips Healthcare, Gainesville, FL, USA
| | - Stephen Seiler
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ivan Pedrosa
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|