1
|
Cheng T, Li F, Jiang X, Yu D, Wei J, Yuan Y, Xu H. Comparison of different acceleration factors of artificial intelligence-compressed sensing for brachial plexus MRI imaging: scanning time and image quality. BMC Med Imaging 2024; 24:309. [PMID: 39543482 PMCID: PMC11566112 DOI: 10.1186/s12880-024-01493-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND 3D brachial plexus MRI scanning is prone to examination failure due to the lengthy scan times, which can lead to patient discomfort and motion artifacts. Our purpose is to investigate the efficacy of artificial intelligence-assisted compressed sensing (ACS) in improving the acceleration efficiency and maintaining or enhancing the image quality of brachial plexus MR imaging. METHODS A total of 30 volunteers underwent 3D sampling perfection with application-optimized contrast using different flip angle evolution short time inversion recovery using a 3.0T MR scanner. The imaging protocol included parallel imaging (PI) and ACS employing acceleration factors of 4.37, 6.22, and 9.03. Radiologists evaluated the neural detail display, fat suppression effectiveness, presence of image artifacts, and overall image quality. Signal intensity and standard deviation of specific anatomical sites within the brachial plexus and background tissues were measured, with signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) subsequently calculated. Cohen's weighted kappa (κ), One-way ANOVA, Kruskal-Wallis and pairwise comparisons with Bonferroni-adjusted significance level. P < 0.05 was considered statistically significant. RESULTS ACS significantly reduced scanning times compared to PI. Evaluations revealed differences in subjective scores and SNR across the sequences (P < 0.05), with no marked differences in CNR (P > 0.05). For subjective scores, ACS 9.03 were lower than the other three sequences in neural details display, image artifacts and overall image quality. There was no significant difference in fat suppression. For objective quantitative evaluation, SNR of right C6 root in ACS 6.22 and ACS 9.03 was higher than that in PI; SNR of left C6 root in ACS 4.37, ACS 6.22 and ACS 9.03 was higher than that in PI; SNR of medial cord in ACS 6.22, ACS 9.03 was higher than that in PI. CONCLUSION Compared with PI, ACS can shorten scanning time while ensuring good image quality.
Collapse
Affiliation(s)
- Tianxin Cheng
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yongan Road, Beijing, 100050, China
| | - Feifei Li
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yongan Road, Beijing, 100050, China
- Department of Radiology, BaoShan Hospital of Traditional Chinese Medicine, Baoshan, Yunnan, China
| | - Xuetao Jiang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yongan Road, Beijing, 100050, China
- Department of Radiology, Zunyi First People's Hospital, The Third Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Dan Yu
- United Imaging Research Institute of Intelligent Imaging, Beijing, China
| | - Jie Wei
- Shanghai United Imaging Healthcare Co., Ltd., Shanghai, China
| | - Ying Yuan
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yongan Road, Beijing, 100050, China.
| | - Hui Xu
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yongan Road, Beijing, 100050, China.
| |
Collapse
|
2
|
Karthik A, Aggarwal K, Kapoor A, Singh D, Hu L, Gandhamal A, Kumar D. Comprehensive assessment of imaging quality of artificial intelligence-assisted compressed sensing-based MR images in routine clinical settings. BMC Med Imaging 2024; 24:284. [PMID: 39434010 PMCID: PMC11494941 DOI: 10.1186/s12880-024-01463-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/11/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Conventional MR acceleration techniques, such as compressed sensing, parallel imaging, and half Fourier often face limitations, including noise amplification, reduced signal-to-noise ratio (SNR) and increased susceptibility to artifacts, which can compromise image quality, especially in high-speed acquisitions. Artificial intelligence (AI)-assisted compressed sensing (ACS) has emerged as a novel approach that combines the conventional techniques with advanced AI algorithms. The objective of this study was to examine the imaging quality of the ACS approach by qualitative and quantitative analysis for brain, spine, kidney, liver, and knee MR imaging, as well as compare the performance of this method with conventional (non-ACS) MR imaging. METHODS This study included 50 subjects. Three radiologists independently assessed the quality of MR images based on artefacts, image sharpness, overall image quality and diagnostic efficacy. SNR, contrast-to-noise ratio (CNR), edge content (EC), enhancement measure (EME), scanning time were used for quantitative evaluation. The Cohen's kappa correlation coefficient (k) was employed to measure radiologists' inter-observer agreement, and the Mann Whitney U-test used for comparison between non-ACS and ACS. RESULTS The qualitative analysis of three radiologists demonstrated that ACS images showed superior clinical information than non-ACS images with a mean k of ~ 0.70. The images acquired with ACS approach showed statistically higher values (p < 0.05) for SNR, CNR, EC, and EME compared to the non-ACS images. Furthermore, the study's findings indicated that ACS-enabled images reduced scan time by more than 50% while maintaining high imaging quality. CONCLUSION Integrating ACS technology into routine clinical settings has the potential to speed up image acquisition, improve image quality, and enhance diagnostic procedures and patient throughput.
Collapse
Affiliation(s)
- Adiraju Karthik
- Department of Radiology, Sprint Diagnostics, Jubilee Hills, Hyderabad, India
| | | | - Aakaar Kapoor
- Department of Radiology, City Imaging & Clinical Labs, Delhi, India
| | - Dharmesh Singh
- Central Research Institute, United Imaging Healthcare, Shanghai, China.
| | - Lingzhi Hu
- Central Research Institute, United Imaging Healthcare, Houston, USA
| | - Akash Gandhamal
- Central Research Institute, United Imaging Healthcare, Shanghai, China
| | - Dileep Kumar
- Central Research Institute, United Imaging Healthcare, Shanghai, China
| |
Collapse
|
3
|
Li Q, Xu WY, Sun NN, Feng QX, Hou YJ, Sang ZT, Zhu ZN, Hsu YC, Nickel D, Xu H, Zhang YD, Liu XS. Deep learning-accelerated T2WI: image quality, efficiency, and staging performance against BLADE T2WI for gastric cancer. Abdom Radiol (NY) 2024; 49:2574-2584. [PMID: 38662208 DOI: 10.1007/s00261-024-04323-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 04/26/2024]
Abstract
PURPOSE The purpose of our study is to investigate image quality, efficiency, and diagnostic performance of a deep learning-accelerated single-shot breath-hold (DLSB) against BLADE for T2-weighted MR imaging (T2WI) for gastric cancer (GC). METHODS 112 patients with GCs undergoing gastric MRI were prospectively enrolled between Aug 2022 and Dec 2022. Axial DLSB-T2WI and BLADE-T2WI of stomach were scanned with same spatial resolution. Three radiologists independently evaluated the image qualities using a 5-scale Likert scales (IQS) in terms of lesion delineation, gastric wall boundary conspicuity, and overall image quality. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated in measurable lesions. T staging was conducted based on the results of both sequences for GC patients with gastrectomy. Pairwise comparisons between DLSB-T2WI and BLADE-T2WI were performed using the Wilcoxon signed-rank test, paired t-test, and chi-squared test. Kendall's W, Fleiss' Kappa, and intraclass correlation coefficient values were used to determine inter-reader reliability. RESULTS Against BLADE, DLSB reduced total acquisition time of T2WI from 495 min (mean 4:42 per patient) to 33.6 min (18 s per patient), with better overall image quality that produced 9.43-fold, 8.00-fold, and 18.31-fold IQS upgrading against BALDE, respectively, in three readers. In 69 measurable lesions, DLSB-T2WI had higher mean SNR and higher CNR than BLADE-T2WI. Among 71 patients with gastrectomy, DLSB-T2WI resulted in comparable accuracy to BLADE-T2WI in staging GCs (P > 0.05). CONCLUSIONS DLSB-T2WI demonstrated shorter acquisition time, better image quality, and comparable staging accuracy, which could be an alternative to BLADE-T2WI for gastric cancer imaging.
Collapse
Affiliation(s)
- Qiong Li
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei-Yue Xu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Na-Na Sun
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiu-Xia Feng
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ya-Jun Hou
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zi-Tong Sang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhen-Ning Zhu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yi-Cheng Hsu
- MR Collaboration, Siemens Healthineers Ltd, Shanghai, China
| | - Dominik Nickel
- MR Applications Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany
| | - Hao Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yu-Dong Zhang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xi-Sheng Liu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
4
|
Geng Z, Wang S, Ma L, Zhang C, Guan Z, Zhang Y, Yin S, Lian S, Xie C. Prediction of microvascular invasion in hepatocellular carcinoma patients with MRI radiomics based on susceptibility weighted imaging and T2-weighted imaging. LA RADIOLOGIA MEDICA 2024; 129:1130-1142. [PMID: 38997568 DOI: 10.1007/s11547-024-01845-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 07/01/2024] [Indexed: 07/14/2024]
Abstract
BACKGROUND The accurate identification of microvascular invasion (MVI) in patients with hepatocellular carcinoma (HCC) is of great clinical importance. PURPOSE To develop a radiomics nomogram based on susceptibility-weighted imaging (SWI) and T2-weighted imaging (T2WI) for predicting MVI in early-stage (Barcelona Clinic Liver Cancer stages 0 and A) HCC patients. MATERIALS AND METHODS A prospective cohort of 189 participants with HCC was included for model training and testing, and an additional 34 participants were enrolled for external validation. ITK-SNAP was used to manually segment the tumour, and PyRadiomics was used to extract radiomic features from the SWI and T2W images. Variance filtering, student's t test, least absolute shrinkage and selection operator regression and random forest (RF) were applied to select meaningful features. Four machine learning classifiers, including K-nearest neighbour, RF, logistic regression and support vector machine-based models, were established. Independent clinical and radiological risk factors were also determined to establish a clinical model. The best radiomics and clinical models were further evaluated in the validation set. In addition, a nomogram was constructed from the radiomic model and independent clinical factors. Diagnostic efficacy was evaluated by receiver operating characteristic curve analysis with fivefold cross-validation. RESULTS AFP levels greater than 400 ng/mL [odds ratio (OR) 2.50; 95% confidence interval (CI) 1.239-5.047], tumour diameter greater than 5 cm (OR 2.39; 95% CI 1.178-4.839), and absence of pseudocapsule (OR 2.053; 95% CI 1.007-4.202) were found to be independent risk factors for MVI. The areas under the curve (AUCs) of the best radiomic model were 1.000 and 0.882 in the training and testing cohorts, respectively, while those of the clinical model were 0.688 and 0.6691. In the validation set, the radiomic model achieved better diagnostic performance (AUC = 0.888) than the clinical model (AUC = 0.602). The combination of clinical factors and the radiomic model yielded a nomogram with the best diagnostic performance (AUC = 0.948). CONCLUSION SWI and T2WI-derived radiomic features are valuable for noninvasively and accurately identifying MVI in early-stage HCC. Furthermore, the integration of radiomics and clinical factors yielded a predictive nomogram with satisfactory diagnostic performance and potential clinical benefits.
Collapse
Affiliation(s)
- Zhijun Geng
- Department of Radiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, No. 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China
| | - Shutong Wang
- Department of Hepatic Surgery, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China
| | - Lidi Ma
- Department of Radiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, No. 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China
| | - Cheng Zhang
- Department of Radiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, No. 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China
| | - Zeyu Guan
- Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China
| | - Yunfei Zhang
- United Imaging Healthcare Co., Ltd, Shanghai, 201807, China
| | - Shaohan Yin
- Department of Radiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, No. 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China
| | - Shanshan Lian
- Department of Radiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, No. 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China
| | - Chuanmiao Xie
- Department of Radiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, No. 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China.
| |
Collapse
|
5
|
Gulinac M, Kiprin G, Tsranchev I, Graklanov V, Chervenkov L, Velikova T. Clinical issues and challenges in imaging of gastrointestinal diseases: A minireview and our experience. World J Clin Cases 2024; 12:3304-3313. [PMID: 38983422 PMCID: PMC11229912 DOI: 10.12998/wjcc.v12.i18.3304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/25/2024] [Accepted: 05/06/2024] [Indexed: 06/13/2024] Open
Abstract
Imaging techniques play a crucial role in the modern era of medicine, particularly in gastroenterology. Nowadays, various non-invasive and invasive imaging modalities are being routinely employed to evaluate different gastrointestinal (GI) diseases. However, many instrumental as well as clinical issues are arising in the area of modern GI imaging. This minireview article aims to briefly overview the clinical issues and challenges encountered in imaging GI diseases while highlighting our experience in the field. We also summarize the advances in clinically available diagnostic methods for evaluating different diseases of the GI tract and demonstrate our experience in the area. In conclusion, almost all imaging techniques used in imaging GI diseases can also raise many challenges that necessitate careful consideration and profound expertise in this field.
Collapse
Affiliation(s)
- Milena Gulinac
- Department of General and Clinical Pathology, Medical University of Plovdiv, Plovdiv 4002, Bulgaria
- Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
| | - Georgi Kiprin
- Department of Gastroenterology, MHAT Eurohospital, Plovdiv 4000, Bulgaria
| | - Ivan Tsranchev
- Department of Forensic Medicine and Deontology, Medical University of Plovdiv, Plovdiv 4000, Bulgaria
| | - Vasko Graklanov
- First Department of Internal Diseases, Medical University of Plovdiv, Plovdiv 4000, Bulgaria
| | - Lyubomir Chervenkov
- Department of Diagnostic Imaging, Medical University Plovdiv, Plovdiv 4000, Bulgaria
| | - Tsvetelina Velikova
- Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
| |
Collapse
|
6
|
Liu K, Sun H, Wang X, Wen X, Yang J, Zhang X, Chen C, Zeng M. Feasibility of the application of deep learning-reconstructed ultra-fast respiratory-triggered T2-weighted imaging at 3 T in liver imaging. Magn Reson Imaging 2024; 109:27-33. [PMID: 38438094 DOI: 10.1016/j.mri.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/25/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
OBJECTIVE The evaluate the feasibility of a novel deep learning-reconstructed ultra-fast respiratory-triggered T2WI sequence (DL-RT-T2WI) In liver imaging, compared with respiratory-triggered Arms-T2WI (Arms-RT-T2WI) and respiratory-triggered FSE-T2WI (FSE-RT-T2WI) sequences. METHODS 71 patients with liver lesions underwent 3-T MRI and were prospectively enrolled. Two readers independently analyzed images acquired with DL-RT-T2WI, Arms-RT-T2WI, and FSE-RT-T2WI. The qualitative evaluation indicators, including overall image quality (OIQ), sharpness, noise, artifacts, lesion detectability (LC), lesion characterization (LD), cardiacmotion-related signal loss (CSL), and diagnostic confidence (DC), were evaluated in two readers, and further statistically compared using paired Wilcoxon rank-sum test among three sequences. RESULTS 176 lesions were detected in DL-RT-T2W and Arms-RT-T2WI, and 175 were detected in FSE-RT-T2WI. The acquisition time of DL-RT-T2WI was improved by 4.8-7.9 folds compared to the other two sequences. The OIQ was scored highest for DL-RT-T2WI (R1, 4.61 ± 0.52 and R2, 4.62 ± 0.49), was significantly superior to Arms-RT-T2WI (R1, 4.30 ± 0.66 and R2, 4.34 ± 0.69) and FSE-RT-T2WI (R1, 3.65 ± 1.08 and R2, 3.75 ± 1.01). Artifacts and sharpness scored highest for DL-RT-T2WI, followed by Arms-RT-T2WI, and were lowest for FSE-RT-T2WI in both two readers. Noise and CSL for DL-RT-T2WI scored similar to Arms-RT-T2WI (P > 0.05) and were significantly superior to FSE-RT-T2WI (P < 0.001). Both LD and LC for DL-RT-T2WI were significantly superior to Arms-RT-T2WI and FSE-RT-T2WI in two readers (P < 0.001). DC for DL-RT-T2WI scored best, significantly superior to Arms-RT-T2WI (P < 0.010) and FSE-RT-T2WI (P < 0.001). CONCLUSIONS The novel ultra-fast DL-RT-T2WI is feasible for liver imaging and lesion characterization and diagnosis, not only offers a significant improvement in acquisition time but also outperforms Arms-RT-T2WI and FSE-RT-T2WI concerning image quality and DC.
Collapse
Affiliation(s)
- Kai Liu
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Haitao Sun
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Xingxing Wang
- Department of Pathology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Xixi Wen
- Shanghai United Imaging Healthcare Co., Ltd., Shanghai 201807, China
| | - Jun Yang
- Shanghai United Imaging Healthcare Co., Ltd., Shanghai 201807, China
| | - Xingjian Zhang
- Shanghai United Imaging Healthcare Co., Ltd., Shanghai 201807, China
| | - Caizhong Chen
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Mengsu Zeng
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai 200032, China.
| |
Collapse
|
7
|
Chen Q, Fang S, Yuchen Y, Li R, Deng R, Chen Y, Ma D, Lin H, Yan F. Clinical feasibility of deep learning reconstruction in liver diffusion-weighted imaging: Improvement of image quality and impact on apparent diffusion coefficient value. Eur J Radiol 2023; 168:111149. [PMID: 37862927 DOI: 10.1016/j.ejrad.2023.111149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/26/2023] [Accepted: 10/10/2023] [Indexed: 10/22/2023]
Abstract
PURPOSE Diffusion-weighted imaging (DWI) of the liver suffers from low resolution, noise, and artifacts. This study aimed to investigate the effect of deep learning reconstruction (DLR) on image quality and apparent diffusion coefficient (ADC) quantification of liver DWI at 3 Tesla. METHOD In this prospective study, images of the liver obtained at DWI with b-values of 0 (DWI0), 50 (DWI50) and 800 s/mm2 (DWI800) from consecutive patients with liver lesions from February 2022 to February 2023 were reconstructed with and without DLR (non-DLR). Image quality was assessed qualitatively using Likert scoring system and quantitatively using signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and liver/parenchyma boundary sharpness from region-of-interest (ROI) analysis. ADC value of lesion were measured. Phantom experiment was also performed to investigate the factors that determine the effect of DLR on ADC value. Qualitative score, SNR, CNR, boundary sharpness, and apparent diffusion coefficients (ADCs) for DWI were compared using paired t-test and Wilcoxon signed rank test. P < 0.05 was considered statistically significant. RESULTS A total of 85 patients with 170 lesions were included. DLR group showed a higher qualitative score than the non-DLR group. for example, with DWI800 the score was 4.77 ± 0.52 versus 4.30 ± 0.63 (P < 0.001). DLR group also showed higher SNRs, CNRs and boundary sharpness than the non-DLR group. DLR reduced the ADC of malignant tumors (1.105[0.904, 1.340] versus 1.114[0.904, 1.320]) (P < 0.001), but there was no significant difference in the diagnostic value of malignancy for DLR and non-DLR groups (P = 57.3). The phantom study confirmed a reduction of ADC in images with low resolution, and a stronger reduction of ADC in heterogeneous structures than in homogeneous ones (P < 0.001). CONCLUSIONS DLR improved image quality of liver DWI. DLR reduced the ADC value of lesions, but did not affect the diagnostic performance of ADC in distinguishing malignant tumors on a 3.0-T MRI system.
Collapse
Affiliation(s)
- Qian Chen
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, NO. 197 Ruijin Er Road, Shanghai 200025, China; Department of Radiology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Huan-Hu-Xi Road, Ti-Yuan-Bei, He Xi District, Tianjin 300060, China
| | - Shu Fang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, NO. 197 Ruijin Er Road, Shanghai 200025, China
| | - Yang Yuchen
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School Of Medicine, NO. 197 Ruijin Er Road, Shanghai 200025, China
| | - Ruokun Li
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, NO. 197 Ruijin Er Road, Shanghai 200025, China
| | - Rong Deng
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, NO. 197 Ruijin Er Road, Shanghai 200025, China
| | - Yongjun Chen
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School Of Medicine, NO. 197 Ruijin Er Road, Shanghai 200025, China
| | - Di Ma
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School Of Medicine, NO. 197 Ruijin Er Road, Shanghai 200025, China
| | - Huimin Lin
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, NO. 197 Ruijin Er Road, Shanghai 200025, China.
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, NO. 197 Ruijin Er Road, Shanghai 200025, China; College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|