1
|
Cruz M, Ferreira AA, Papanikolaou N, Banerjee R, Alves FC. New boundaries of liver imaging: from morphology to function. Eur J Intern Med 2020; 79:12-22. [PMID: 32571581 DOI: 10.1016/j.ejim.2020.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/20/2020] [Accepted: 06/04/2020] [Indexed: 12/12/2022]
Abstract
From an invisible organ to one of the most explored non-invasively, the liver is, today, one of the cornerstones for current cross-sectional imaging techniques and minimally invasive procedures. After the achievements of US, CT and, most recently, MRI in providing highly accurate morphological and structural information about the organ, a significant scientific development has gained momentum for the last decades, coupling morphology to liver function and contributing far most to what we know today as precision medicine. In fact, dedicated tailor-made investigations are now possible in order to detect and, most of all, quantify physiopathological processes with unprecedented certitude. It is the intention of this review to provide a better insight to the reader of several functional imaging techniques applied to liver imaging. Contrast enhanced imaging, diffusion weighted imaging, elastography, spectral computed tomography and fat and iron assessment techniques are commonly performed clinically. Diffusion kurtosis imaging, magnetic resonance spectroscopy, T1 relaxometry and radiomics remain largely limited to advanced clinical research. Each of them has its own value and place on the diagnostic armamentarium and provide unique qualitative and quantitative information regarding the pathophysiology of diseases, contributing at a large scale to model therapeutic decisions and patient follow-up. Therefore, state-of-the-art liver imaging acts today as a non-invasive surrogate biomarker of many focal and diffuse liver diseases.
Collapse
Affiliation(s)
- Manuel Cruz
- Department of Radiology, Faculty of Medicine, University Hospital Coimbra and CIBIT/ICNAS research center, University of Coimbra, Coimbra, Portugal.
| | - Ana Aguiar Ferreira
- Department of Radiology, Faculty of Medicine, University Hospital Coimbra and CIBIT/ICNAS research center, University of Coimbra, Coimbra, Portugal
| | - Nikolaos Papanikolaou
- Computational Clinical Imaging Group, Centre for the Unknown, Champalimaud Foundation, Lisbon, Portugal
| | - Rajarshi Banerjee
- Department of Acute Medicine, Oxford University Hospitals NHS Trust, Oxford, United Kingdom
| | - Filipe Caseiro Alves
- Department of Radiology, Faculty of Medicine, University Hospital Coimbra and CIBIT/ICNAS research center, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
2
|
Shukla-Dave A, Obuchowski NA, Chenevert TL, Jambawalikar S, Schwartz LH, Malyarenko D, Huang W, Noworolski SM, Young RJ, Shiroishi MS, Kim H, Coolens C, Laue H, Chung C, Rosen M, Boss M, Jackson EF. Quantitative imaging biomarkers alliance (QIBA) recommendations for improved precision of DWI and DCE-MRI derived biomarkers in multicenter oncology trials. J Magn Reson Imaging 2018; 49:e101-e121. [PMID: 30451345 DOI: 10.1002/jmri.26518] [Citation(s) in RCA: 252] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/06/2018] [Accepted: 09/06/2018] [Indexed: 12/14/2022] Open
Abstract
Physiological properties of tumors can be measured both in vivo and noninvasively by diffusion-weighted imaging and dynamic contrast-enhanced magnetic resonance imaging. Although these techniques have been used for more than two decades to study tumor diffusion, perfusion, and/or permeability, the methods and studies on how to reduce measurement error and bias in the derived imaging metrics is still lacking in the literature. This is of paramount importance because the objective is to translate these quantitative imaging biomarkers (QIBs) into clinical trials, and ultimately in clinical practice. Standardization of the image acquisition using appropriate phantoms is the first step from a technical performance standpoint. The next step is to assess whether the imaging metrics have clinical value and meet the requirements for being a QIB as defined by the Radiological Society of North America's Quantitative Imaging Biomarkers Alliance (QIBA). The goal and mission of QIBA and the National Cancer Institute Quantitative Imaging Network (QIN) initiatives are to provide technical performance standards (QIBA profiles) and QIN tools for producing reliable QIBs for use in the clinical imaging community. Some of QIBA's development of quantitative diffusion-weighted imaging and dynamic contrast-enhanced QIB profiles has been hampered by the lack of literature for repeatability and reproducibility of the derived QIBs. The available research on this topic is scant and is not in sync with improvements or upgrades in MRI technology over the years. This review focuses on the need for QIBs in oncology applications and emphasizes the importance of the assessment of their reproducibility and repeatability. Level of Evidence: 5 Technical Efficacy Stage: 1 J. Magn. Reson. Imaging 2019;49:e101-e121.
Collapse
Affiliation(s)
- Amita Shukla-Dave
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Nancy A Obuchowski
- Department of Quantitative Health Sciences, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Thomas L Chenevert
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Sachin Jambawalikar
- Department of Radiology, Columbia University Irving Medical Center, New York, New York, USA
| | - Lawrence H Schwartz
- Department of Radiology, Columbia University Irving Medical Center, New York, New York, USA
| | - Dariya Malyarenko
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Wei Huang
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Susan M Noworolski
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Robert J Young
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Mark S Shiroishi
- Division of Neuroradiology, Department of Radiology, University of Southern California, Los Angeles, California, USA
| | - Harrison Kim
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Catherine Coolens
- Department of Radiation Oncology, Princess Margaret Cancer Centre, Toronto, Canada
| | | | - Caroline Chung
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, Texas, USA
| | - Mark Rosen
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael Boss
- Applied Physics Division, National Institute of Standards and Technology, Boulder, Colorado, USA
| | - Edward F Jackson
- Departments of Medical Physics, Radiology, and Human Oncology, University of Wisconsin School of Medicine, Madison, Wisconsin, USA
| |
Collapse
|
3
|
Del Chicca F, Schwarz A, Grest P, Kircher PR. Perfusion- and diffusion-weighted magnetic resonance imaging of the liver of healthy dogs. Am J Vet Res 2016; 77:463-70. [PMID: 27111013 DOI: 10.2460/ajvr.77.5.463] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To describe the perfusion and diffusion characteristics of the liver in healthy dogs as determined by morphological, perfusion-weighted, and diffusion-weighted MRI. ANIMALS 11 healthy adult Beagles. PROCEDURES Each dog was anesthetized and underwent morphological, perfusion-weighted, and diffusion-weighted MRI of the cranial aspect of the abdomen. On the MRI images, a region of interest (ROI) was established for each of 6 structures (aorta, caudal vena cava, portal vein, hepatic parenchyma, splenic parenchyma, and skeletal [epaxial] muscle). The signal intensity was determined, and a time-intensity curve was generated for each ROI. The apparent diffusion coefficient (ADC) was calculated for the hepatic and splenic parenchyma in diffusion-weighted MRI images, and the normalized ADC for the liver was calculated as the ratio of the ADC for the hepatic parenchyma to the ADC for the splenic parenchyma. Dogs also underwent abdominal ultrasonography, and ultrasound-guided fine-needle aspirate samples and biopsy specimens were obtained from the liver for cytologic and histologic examination. RESULTS Cytologic and histologic results suggested that the liver was clinically normal in all dogs. Perfusion-weighted MRI parameters varied among the 6 ROIs. The mean ± SD ADC of the hepatic parenchyma was 0.84 × 10(-3) mm(2)/s ± 0.17 × 10(-3) mm(2)/s, and the mean normalized ADC for the liver was 1.8 ± 0.4. CONCLUSIONS AND CLINICAL RELEVANCE Results provided preliminary baseline information about the diffusion and perfusion characteristics of the liver in healthy dogs. Additional studies on dogs of various breeds with and without hepatopathies are necessary to validate and refine these findings.
Collapse
|
4
|
Yin M, Glaser KJ, Talwalkar JA, Chen J, Manduca A, Ehman RL. Hepatic MR Elastography: Clinical Performance in a Series of 1377 Consecutive Examinations. Radiology 2015; 278:114-24. [PMID: 26162026 DOI: 10.1148/radiol.2015142141] [Citation(s) in RCA: 217] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE To assess the technical success rate and diagnostic performance of liver magnetic resonance (MR) elastography. MATERIALS AND METHODS This retrospective study was approved by the institutional review board with patient informed consent. A total of 1377 consecutive MR elastography examinations performed between 2007 and 2010 in 1287 patients for clinical indications were included. Medical records were used to retrieve liver stiffness as assessed with MR elastography, histologic analysis, blood work, and other liver disease-related information. Nonparametric Kruskal-Wallis tests and analysis of covariance methods were used to evaluate the diagnostic values and relationships of the collected data. RESULTS Hepatic MR elastography had a success rate of 94.4% (1300 of 1377 cases) and yielded reproducible measurements (r = 0.9716, P < .0001) in the study cohort, with a complex patient profile and multiple interpreters. Body mass index had no significant effect on success rate (P = .2). In 289 patients who underwent liver biopsy within 1 year of the MR elastography date, mean liver stiffness as assessed with MR elastography was significantly higher in patients with advanced fibrosis (stages F3, F4) than in those with mild to moderate fibrosis (stages F0, F1, F2) (5.93 kPa ± 2.31 [standard deviation] vs 3.35 kPa ± 1.44, P < .0001). Liver stiffness is associated with many factors other than fibrosis extent, including cause of fibrosis (viral hepatitis C vs nonalcoholic fatty liver disease, P = .025), inflammation (severe vs mild to moderate, P = .03), and hepatic metabolic and synthetic function (no fibrosis vs intermediate fibrosis, P ≤ .01). CONCLUSION In a general clinical practice environment, hepatic MR elastography is a robust imaging method with a high success rate in a broad spectrum of patients. It also shows the complex association between liver stiffness and hepatic pathophysiology.
Collapse
Affiliation(s)
- Meng Yin
- From the Departments of Radiology (M.Y., K.J.G., J.C., A.M., R.L.E.) and Gastroenterology (J.A.T.), Mayo Clinic, 200 First St SW, Rochester, MN 55905
| | - Kevin J Glaser
- From the Departments of Radiology (M.Y., K.J.G., J.C., A.M., R.L.E.) and Gastroenterology (J.A.T.), Mayo Clinic, 200 First St SW, Rochester, MN 55905
| | - Jayant A Talwalkar
- From the Departments of Radiology (M.Y., K.J.G., J.C., A.M., R.L.E.) and Gastroenterology (J.A.T.), Mayo Clinic, 200 First St SW, Rochester, MN 55905
| | - Jun Chen
- From the Departments of Radiology (M.Y., K.J.G., J.C., A.M., R.L.E.) and Gastroenterology (J.A.T.), Mayo Clinic, 200 First St SW, Rochester, MN 55905
| | - Armando Manduca
- From the Departments of Radiology (M.Y., K.J.G., J.C., A.M., R.L.E.) and Gastroenterology (J.A.T.), Mayo Clinic, 200 First St SW, Rochester, MN 55905
| | - Richard L Ehman
- From the Departments of Radiology (M.Y., K.J.G., J.C., A.M., R.L.E.) and Gastroenterology (J.A.T.), Mayo Clinic, 200 First St SW, Rochester, MN 55905
| |
Collapse
|
5
|
Abstract
Liver perfusion magnetic resonance (MR) imaging is currently being actively investigated as a functional imaging technique that provides physiologic information on the microcirculation and microenvironment of liver tumors and the underlying liver. It has gained importance in light of antiangiogenic therapy for hepatocellular carcinoma and colorectal liver metastases. This article explains the various model-free and model-based approaches for liver perfusion MR imaging and their relative clinical utility. Relevant published works are summarized for each approach so that the reader can understand their relative strengths and weaknesses, to make an informed choice when performing liver perfusion MR imaging studies.
Collapse
Affiliation(s)
- Choon Hua Thng
- Duke-NUS Graduate Medical School, Singapore 169857, Republic of Singapore; Department of Oncologic Imaging, National Cancer Centre Singapore, 11 Hospital Drive, Singapore 169610, Republic of Singapore
| | - Tong San Koh
- Department of Oncologic Imaging, National Cancer Centre Singapore, 11 Hospital Drive, Singapore 169610, Republic of Singapore; Center for Quantitative Biology, Duke-NUS Graduate Medical School, Singapore 169857, Republic of Singapore
| | - David Collins
- Cancer Research UK Cancer Imaging Centre, Institute of Cancer Research, 15 Cotswold Road, Belmont, Sutton, Surrey SM2 5NG, UK
| | - Dow-Mu Koh
- Department of Radiology, Royal Marsden Hospital, Downs Road, Sutton SM2 5PT, UK.
| |
Collapse
|
6
|
Utility of semiquantitative parameters to differentiate benign and malignant focal hepatic lesions. Clin Imaging 2013; 37:692-6. [DOI: 10.1016/j.clinimag.2013.01.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 12/10/2012] [Accepted: 01/17/2013] [Indexed: 11/20/2022]
|
7
|
Agreement and reproducibility of apparent diffusion coefficient measurements of dual-b-value and multi-b-value diffusion-weighted magnetic resonance imaging at 1.5 Tesla in phantom and in soft tissues of the abdomen. J Comput Assist Tomogr 2013; 37:46-51. [PMID: 23321832 DOI: 10.1097/rct.0b013e3182720e07] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To compare the coefficient of variation (CV) and long-term reproducibility of apparent diffusion coefficient (ADC) in a simple fluid-filled phantom and abdominal organs simultaneously. MATERIALS AND METHODS Retrospective institutional review board-approved and Health Insurance Portability and Accountability Act-compliant study sequentially selected 100 patients who underwent clinically indicated abdominal magnetic resonance imaging. A subset of 58 patients had repeat scans within 2 to 5 months after the initial magnetic resonance imaging. Two diffusion-weighted imaging techniques (b-values 0-750 mm/s) were performed to compare the ADC values. Mean ADC values were calculated for 10 locations and the reference phantom. The CV and Bland-Altman plots were calculated for the phantom and soft tissues at each session and location. RESULTS There were no significant differences in the mean ADC values between repeated acquisitions. However, ADC values were statistically higher using dual-b-value than multi-b-value diffusion-weighted imaging. The CV for the phantom was 8.6 versus 10.8 for dual-b-value and multi-b-value, respectively. The CVs for the soft tissues had a wider range compared with that of the phantom (liver, 12.6 vs 9.0; spleen, 11.7 vs 11.2; gallbladder, 11.0 vs 13.6; head of pancreas, 14.6 vs 14.7; body of pancreas, 13.4 vs 13.0; tail of pancreas, 14.8 vs 16.3; right kidney, 9.1 vs 9.6; left kidney, 9.3 vs 9.3; right paraspinal muscle, 7.9 vs 7.5; left paraspinal muscle, 7.3 vs 7.3, respectively). CONCLUSIONS A change in ADC less than 11% falls into the range of measurement variability. Paraspinal muscle could potentially be used as an internal reference parameter.
Collapse
|
8
|
Abstract
Anatomical-based imaging is used widely for the evaluation of diffuse and focal liver, including detection, characterization, and therapy response assessment. However, a limitation of anatomical-based imaging is that structural changes may occur relatively late in a disease process. By applying conventional anatomical-imaging methods in a more functional manner, specific pathophysiologic alterations of the liver may be assessed and quantified. There has been an increasing interest in both the clinical and research settings, with the expectation that functional-imaging techniques may help solve common diagnostic dilemmas that conventional imaging alone cannot. This review considers the most common functional magnetic resonance imaging, computed tomography, and ultrasound imaging techniques that may be applied to the liver.
Collapse
Affiliation(s)
- Vicky Goh
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK.
| | | | | |
Collapse
|