1
|
Runderkamp B, Caan M, van der Zwaag W, Hemke R, Maas M, Andersen M, Strijkers G, Markenroth Bloch K, Nederveen A. High-Resolution 3D Turbo Spin-Echo Wrist MRI at 7T Accelerated by Compressed Sensing. NMR IN BIOMEDICINE 2025; 38:e70041. [PMID: 40242987 PMCID: PMC12004352 DOI: 10.1002/nbm.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 03/29/2025] [Accepted: 04/01/2025] [Indexed: 04/18/2025]
Abstract
This study aimed to obtain high-resolution 3D isotropic turbo spin-echo (TSE) wrist MRI acquisitions at 7T, with and without fat suppression, facilitated by compressed-sensing (CS) acceleration. In 16 healthy subjects, fat-suppressed (FS) and nonfat-suppressed (NFS) TSE wrist images were obtained. The protocol consisted of a SENSE-accelerated scan, with an isotropic voxel size of 0.45 mm and acquisition time of 7 min ("SENSE45"), a 0.45-mm, 4-min CS-accelerated scan ("CS45"), and a 0.35-mm, 7-min CS-accelerated scan ("CS35"). For two subjects, additional 0.45-mm, 4-min SENSE-accelerated scans were acquired ("High-SENSE"). For the NFS scans, refocusing pulses were optimized to mitigate water-fat chemical-shift artifacts in the slab-selection direction. Anatomical visibility of wrist structures and image quality were assessed qualitatively and through musculoskeletal radiologist grading. The use of nonselective hard refocusing pulses with optimized bandwidths and a center frequency in between water and fat enabled NFS imaging. The image quality of the faster CS45 scans was lower than for SENSE45, with statistically significantly different grading in 9/16 (FS) and 2/6 (NFS) grading parameters. Nonetheless, a similar scan time reduction could not be achieved using High-SENSE. No distinct benefit of CS35 compared to SENSE45 was evident in either the FS or NFS scans. NFS CS35 exhibited enhanced bone sharpness compared to SENSE45 for some subjects, yet on a group level, the difference was not statistically significant. In conclusion, for maintained voxel size, CS presents the opportunity to achieve shorter scan times than possible with SENSE alone, but with reduced image quality. For maintained scan time, although higher resolution CS incidentally showed a promising increase in NFS bone sharpness compared to SENSE, it does not present an unequivocal advantage for 3D 7-T TSE wrist MRI at this stage. Further optimization of the acquisition and reconstruction process is recommended.
Collapse
Affiliation(s)
- Bobby A. Runderkamp
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, University of AmsterdamAmsterdam Movement SciencesAmsterdamthe Netherlands
| | - Matthan W. A. Caan
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Center, University of AmsterdamAmsterdam Movement SciencesAmsterdamthe Netherlands
| | - Wietske van der Zwaag
- Spinoza Centre for NeuroimagingRoyal Netherlands Academy for Arts and Sciences (KNAW)Amsterdamthe Netherlands
- Computational and Cognitive Neuroscience and NeuroimagingNetherlands Institute for Neuroscience, KNAWAmsterdamthe Netherlands
| | - Robert Hemke
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, University of AmsterdamAmsterdam Movement SciencesAmsterdamthe Netherlands
| | - Mario Maas
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, University of AmsterdamAmsterdam Movement SciencesAmsterdamthe Netherlands
| | - Mads Andersen
- Lund University Bioimaging CenterLund UniversityLundSweden
- Philips HealthcareCopenhagenDenmark
| | - Gustav J. Strijkers
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Center, University of AmsterdamAmsterdam Movement SciencesAmsterdamthe Netherlands
| | | | - Aart J. Nederveen
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, University of AmsterdamAmsterdam Movement SciencesAmsterdamthe Netherlands
| |
Collapse
|
2
|
Li X, Kim J, Yang M, Ok AH, Zbýň Š, Link TM, Majumdar S, Ma CB, Spindler KP, Winalski CS. Cartilage compositional MRI-a narrative review of technical development and clinical applications over the past three decades. Skeletal Radiol 2024; 53:1761-1781. [PMID: 38980364 PMCID: PMC11303573 DOI: 10.1007/s00256-024-04734-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 07/10/2024]
Abstract
Articular cartilage damage and degeneration are among hallmark manifestations of joint injuries and arthritis, classically osteoarthritis. Cartilage compositional MRI (Cart-C MRI), a quantitative technique, which aims to detect early-stage cartilage matrix changes that precede macroscopic alterations, began development in the 1990s. However, despite the significant advancements over the past three decades, Cart-C MRI remains predominantly a research tool, hindered by various technical and clinical hurdles. This paper will review the technical evolution of Cart-C MRI, delve into its clinical applications, and conclude by identifying the existing gaps and challenges that need to be addressed to enable even broader clinical application of Cart-C MRI.
Collapse
Affiliation(s)
- Xiaojuan Li
- Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, 9500 Euclid Avenue, ND20, Cleveland, OH, 44195, USA.
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
- Department of Diagnostic Radiology, Cleveland Clinic, Cleveland, OH, USA.
| | - Jeehun Kim
- Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, 9500 Euclid Avenue, ND20, Cleveland, OH, 44195, USA
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Mingrui Yang
- Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, 9500 Euclid Avenue, ND20, Cleveland, OH, 44195, USA
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ahmet H Ok
- Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, 9500 Euclid Avenue, ND20, Cleveland, OH, 44195, USA
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Diagnostic Radiology, Cleveland Clinic, Cleveland, OH, USA
| | - Štefan Zbýň
- Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, 9500 Euclid Avenue, ND20, Cleveland, OH, 44195, USA
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Diagnostic Radiology, Cleveland Clinic, Cleveland, OH, USA
| | - Thomas M Link
- Department of Radiology and Biomedical Imaging, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Sharmilar Majumdar
- Department of Radiology and Biomedical Imaging, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - C Benjamin Ma
- Department of Orthopaedic Surgery, UCSF, San Francisco, CA, USA
| | - Kurt P Spindler
- Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, 9500 Euclid Avenue, ND20, Cleveland, OH, 44195, USA
- Department of Orthopaedic Surgery, Cleveland Clinic, Cleveland, OH, USA
| | - Carl S Winalski
- Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, 9500 Euclid Avenue, ND20, Cleveland, OH, 44195, USA
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Diagnostic Radiology, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
3
|
Eck BL, Yang M, Elias JJ, Winalski CS, Altahawi F, Subhas N, Li X. Quantitative MRI for Evaluation of Musculoskeletal Disease: Cartilage and Muscle Composition, Joint Inflammation, and Biomechanics in Osteoarthritis. Invest Radiol 2023; 58:60-75. [PMID: 36165880 PMCID: PMC10198374 DOI: 10.1097/rli.0000000000000909] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
ABSTRACT Magnetic resonance imaging (MRI) is a valuable tool for evaluating musculoskeletal disease as it offers a range of image contrasts that are sensitive to underlying tissue biochemical composition and microstructure. Although MRI has the ability to provide high-resolution, information-rich images suitable for musculoskeletal applications, most MRI utilization remains in qualitative evaluation. Quantitative MRI (qMRI) provides additional value beyond qualitative assessment via objective metrics that can support disease characterization, disease progression monitoring, or therapy response. In this review, musculoskeletal qMRI techniques are summarized with a focus on techniques developed for osteoarthritis evaluation. Cartilage compositional MRI methods are described with a detailed discussion on relaxometric mapping (T 2 , T 2 *, T 1ρ ) without contrast agents. Methods to assess inflammation are described, including perfusion imaging, volume and signal changes, contrast-enhanced T 1 mapping, and semiquantitative scoring systems. Quantitative characterization of structure and function by bone shape modeling and joint kinematics are described. Muscle evaluation by qMRI is discussed, including size (area, volume), relaxometric mapping (T 1 , T 2 , T 1ρ ), fat fraction quantification, diffusion imaging, and metabolic assessment by 31 P-MR and creatine chemical exchange saturation transfer. Other notable technologies to support qMRI in musculoskeletal evaluation are described, including magnetic resonance fingerprinting, ultrashort echo time imaging, ultrahigh-field MRI, and hybrid MRI-positron emission tomography. Challenges for adopting and using qMRI in musculoskeletal evaluation are discussed, including the need for metal artifact suppression and qMRI standardization.
Collapse
Affiliation(s)
- Brendan L. Eck
- Program of Advanced Musculoskeletal Imaging, Cleveland Clinic, Cleveland, OH, USA
- Imaging Instute, Cleveland Clinic, Cleveland, OH, USA
| | - Mingrui Yang
- Program of Advanced Musculoskeletal Imaging, Cleveland Clinic, Cleveland, OH, USA
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - John J. Elias
- Program of Advanced Musculoskeletal Imaging, Cleveland Clinic, Cleveland, OH, USA
- Department of Research, Cleveland Clinic Akron General, Akron, OH, USA
| | - Carl S. Winalski
- Program of Advanced Musculoskeletal Imaging, Cleveland Clinic, Cleveland, OH, USA
- Imaging Instute, Cleveland Clinic, Cleveland, OH, USA
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Faysal Altahawi
- Program of Advanced Musculoskeletal Imaging, Cleveland Clinic, Cleveland, OH, USA
- Imaging Instute, Cleveland Clinic, Cleveland, OH, USA
| | - Naveen Subhas
- Program of Advanced Musculoskeletal Imaging, Cleveland Clinic, Cleveland, OH, USA
- Imaging Instute, Cleveland Clinic, Cleveland, OH, USA
| | - Xiaojuan Li
- Program of Advanced Musculoskeletal Imaging, Cleveland Clinic, Cleveland, OH, USA
- Imaging Instute, Cleveland Clinic, Cleveland, OH, USA
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
4
|
Bravo G, Modenese A, Arcangeli G, Bertoldi C, Camisa V, Corona G, Giglioli S, Ligabue G, Moccaldi R, Mucci N, Muscatello M, Venturelli I, Vimercati L, Zaffina S, Zanotti G, Gobba F. Subjective Symptoms in Magnetic Resonance Imaging Personnel: A Multi-Center Study in Italy. Front Public Health 2021; 9:699675. [PMID: 34692618 PMCID: PMC8530375 DOI: 10.3389/fpubh.2021.699675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/26/2021] [Indexed: 12/23/2022] Open
Abstract
Introduction: Magnetic Resonance Imaging (MRI) personnel have significant exposure to static and low-frequency time-varying magnetic fields. In these workers an increased prevalence of different subjective symptoms has been observed. The aim of our study was to investigate the prevalence of non-specific subjective symptoms and of "core symptoms" in a group of MRI personnel working in different centers in Italy, and of possible relationships with personal and occupational characteristics. Methods: The occurrence of 11 subjective symptoms was evaluated using a specific questionnaire with 240 subjects working in 6 different Italian hospitals and research centers, 177 MRI health care and research personnel and 63 unexposed subjects employed in the same departments. Exposure was subjectively investigated according to the type of MRI scanner (≤1.5 vs. ≥3 T) and to the number of MRI procedures attended and/or performed by the personnel, even if no information on how frequently the personnel entered the scanner room was collected. The possible associations among symptoms and estimated EMF exposure, the main characteristics of the population, and job stress perception were analyzed. Results: Eighty-six percent of the personnel reported at least one symptom; drowsiness, headache, and sleep disorders were the most frequent. The total number of symptoms did not differ between exposed persons and controls. Considering the total number of annual MRI procedures reported by the personnel, no significant associations were found nor with the total number of symptoms, nor with "core symptoms." Only subjects complaining of drowsiness also reported a significantly higher mean annual number of MRI procedures with ≤ 1.5 T scanners when compared with exposed subjects without drowsiness. In a multivariate model, subjects with a high level of perceived stress complained of more symptoms (p = 0.0002). Conclusions: Our study did not show any association between the occurrence of reversible subjective symptoms, including the more specific "core symptoms," and the occupational exposure of MRI personnel to static and low-frequency time-varying magnetic fields. On the other hand, the role played by occupational stress appears to be not negligible. In further research in this field, measurements of EMF exposure should be considered.
Collapse
Affiliation(s)
- Giulia Bravo
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Department of Medicine, University of Udine, Udine, Italy
| | - Alberto Modenese
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulio Arcangeli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Chiara Bertoldi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Vincenzo Camisa
- Occupational Medicine Unit, Bambino Gesù Children's Hospital—IRCCS, Rome, Italy
| | - Gianluca Corona
- Health Surveillance Service, University Hospital Policlinico, Modena, Italy
| | - Senio Giglioli
- Occupational Medicine Unit, Azienda Usl Toscana Sud-Est, Siena, Italy
| | - Guido Ligabue
- Health Surveillance Service, University Hospital Policlinico, Modena, Italy
- Chair of Radiology, University of Modena and Reggio Emilia, Modena, Italy
| | - Roberto Moccaldi
- Prevention and Protection Service, National Research Council, Rome, Italy
| | - Nicola Mucci
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Martina Muscatello
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Irene Venturelli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Luigi Vimercati
- Interdisciplinary Department of Medicine, Occupational Medicine “B. Ramazzini” Unit, University of Bari, Bari, Italy
| | - Salvatore Zaffina
- Occupational Medicine Unit, Bambino Gesù Children's Hospital—IRCCS, Rome, Italy
| | - Giulio Zanotti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Fabriziomaria Gobba
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|