1
|
Sahota JS, Guleria K, Sambyal V. XRCC1 Polymorphisms p.Arg194Trp, p.Arg280His, and p.Arg399Gln, Polycyclic Aromatic Hydrocarbons, and Infertility: A Case-Control and In Silico Study. Biochem Genet 2025; 63:730-760. [PMID: 38514504 DOI: 10.1007/s10528-024-10743-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/14/2024] [Indexed: 03/23/2024]
Abstract
XRCC1 is involved in repair of single-strand breaks generated by mutagenic exposure. Polymorphisms within XRCC1 affect its ability to efficiently repair DNA damage. Polycyclic aromatic hydrocarbons or PAHs are genotoxic compounds which form bulky DNA adducts that are linked with infertility. Few reports suggest combined role of XRCC1 polymorphisms and PAHs in infertility. Present study investigates association of three XRCC1 polymorphisms (p.Arg194Trp, p.Arg280His, p.Arg399Gln) with male and female infertility in a North-West Indian population using case-control approach. Additionally, in silico approach has been used to predict whether XRCC1 polymorphisms effect interaction of XRCC1 with different PAHs. For case-control study, XRCC1 polymorphisms were screened in peripheral blood samples of age- and gender-matched 201 infertile cases (♂-100, ♀-101) and 201 fertile controls (♂-100, ♀-101) using PCR-RFLP method. For in silico study, AutoDock v4.2.6 was used for molecular docking of B[a]P, BPDE-I, ( ±)-anti-BPDE, DB[a,l]P, 1-N, 2-N, 1-OHP, 2-OHF with XRCC1 and assess effect of XRCC1 polymorphisms on their interaction. In case-control study, statistical analysis showed association of XRCC1 p.Arg280His GA genotype (p = 0.027), A allele (p = 0.019) with reduced risk of male infertility. XRCC1 p.Arg399Gln AA genotype (p = 0.021), A allele (p = 0.014) were associated with reduced risk for female primary infertility. XRCC1 p.Arg194Trp T allele was associated with increased risk for female infertility (p = 0.035). In silico analysis showed XRCC1-PAH interaction with non-significant effect of XRCC1 polymorphisms on predicted binding. Therefore, present study concludes that XRCC1 polymorphism-modified risk for male and female infertility in North-West Indians without significant effect on predicted XRCC1-PAH interactions. This is the first report on XRCC1 in female infertility.
Collapse
Affiliation(s)
- Jatinder Singh Sahota
- Cytogenetics Laboratory, Department of Human Genetics, Guru Nanak Dev University (GNDU), Amritsar, Punjab, 143005, India
| | - Kamlesh Guleria
- Cytogenetics Laboratory, Department of Human Genetics, Guru Nanak Dev University (GNDU), Amritsar, Punjab, 143005, India
| | - Vasudha Sambyal
- Cytogenetics Laboratory, Department of Human Genetics, Guru Nanak Dev University (GNDU), Amritsar, Punjab, 143005, India.
| |
Collapse
|
2
|
Hashemi M, Khoushab S, Aghmiuni MH, Anaraki SN, Alimohammadi M, Taheriazam A, Farahani N, Entezari M. Non-coding RNAs in oral cancer: Emerging biomarkers and therapeutic frontier. Heliyon 2024; 10:e40096. [PMID: 39583806 PMCID: PMC11582460 DOI: 10.1016/j.heliyon.2024.e40096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/13/2024] [Accepted: 11/01/2024] [Indexed: 11/26/2024] Open
Abstract
Around the world, oral cancer (OC) is a major public health problem, resulting in a significant number of deaths each year. Early detection and treatment are crucial for improving patient outcomes. Recent progress in DNA sequencing and transcriptome profiling has revealed extensive non-coding RNAs (ncRNAs) transcription, underscoring their regulatory importance. NcRNAs influence genomic transcription and translation and molecular signaling pathways, making them valuable for various clinical applications. Combining spatial transcriptomics (ST) and spatial metabolomics (SM) with single-cell RNA sequencing provides deeper insights into tumor microenvironments, enhancing diagnostic and therapeutic precision for OC. Additionally, the exploration of salivary biomarkers offers a non-invasive diagnostic avenue. This article explores the potential of ncRNAs as diagnostic and therapeutic tools for OC.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saloomeh Khoushab
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mina Hobabi Aghmiuni
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saeid Nemati Anaraki
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Operative, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University,Tehran, Iran
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
3
|
Goetten ALF, Barreta MH, Pinto da Silva Y, Bertolin K, Koch J, Rocha CC, Dias Gonçalves PB, Price CA, Antoniazzi AQ, Portela VM. FGF18 impairs blastocyst viability, DNA double-strand breaks and maternal recognition of pregnancy genes. Theriogenology 2024; 225:81-88. [PMID: 38796960 DOI: 10.1016/j.theriogenology.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
Embryonic mortality in cattle is high, reaching 10-40 % in vivo and 60-70 % in vitro. Death of embryos involves reduced expression of genes related to embryonic viability, inhibition of DNA repair and increased DNA damage. In follicular granulosa cells, FGF18 from the theca layer increases apoptosis and DNA damage, so we hypothesized that FGF18 may also affect the oocyte and contribute to early embryonic death. The aims of this study were to identify the effects of FGF18 on cumulus expansion, oocyte maturation and embryo development from cleavage to blastocyst stage using a conventional bovine in vitro embryo production system using ovaries of abattoir origin. Addition of FGF18 during in-vitro maturation did not affect FSH-induced cumulus expansion or rates of nuclear maturation. When FGF18 was present in the culture system, rates of cleavage were not affected however, blastocyst and expanded blastocyst development was substantially inhibited (P < 0.05), indicating a delay of blastulation. The number of phosphorylated histone H2AFX foci per nucleus, a marker of DNA damage, was higher in cleavage-stage embryos cultured with FGF18 than in those from control group (P < 0.05). Furthermore, FGF18 decreased accumulation of PTGS2 and IFNT2 mRNA in blastocysts. In conclusion, these novel findings suggest that FGF18 plays a role in the regulation of embryonic death during the early stages of development by impairing DNA double-strand break repair and expression of genes associated with embryo viability and maternal recognition of pregnancy during the progression from oocyte to expanded blastocysts.
Collapse
Affiliation(s)
- André Lucio Fontana Goetten
- Laboratory of Animal Reproduction Physiology, LAFRA, Federal University of Santa Catarina, Curitibanos, SC, Brazil
| | - Marcos Henrique Barreta
- Laboratory of Animal Reproduction Physiology, LAFRA, Federal University of Santa Catarina, Curitibanos, SC, Brazil
| | - Yago Pinto da Silva
- Laboratory of Animal Reproduction Physiology, LAFRA, Federal University of Santa Catarina, Curitibanos, SC, Brazil
| | - Kalyne Bertolin
- Biotechnology and Animal Reproduction Laboratory, BioRep, Federal University of Santa Maria, RS, Brazil
| | - Júlia Koch
- Biotechnology and Animal Reproduction Laboratory, BioRep, Federal University of Santa Maria, RS, Brazil
| | - Cecilia Constantino Rocha
- Laboratory of Animal Reproduction Physiology, LAFRA, Federal University of Santa Catarina, Curitibanos, SC, Brazil
| | - Paulo Bayard Dias Gonçalves
- Biotechnology and Animal Reproduction Laboratory, BioRep, Federal University of Santa Maria, RS, Brazil; Molecular and Integrative Physiology of Reproduction Laboratory, MINT, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Christopher Alan Price
- Centre de Recherche en Reproduction et Fertilité, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, QC, Canada
| | - Alfredo Quites Antoniazzi
- Biotechnology and Animal Reproduction Laboratory, BioRep, Federal University of Santa Maria, RS, Brazil
| | - Valerio Marques Portela
- Biotechnology and Animal Reproduction Laboratory, BioRep, Federal University of Santa Maria, RS, Brazil.
| |
Collapse
|
4
|
Khajedehi N, Fathi R, Akbarinejad V, Gourabi H. Oocyte Vitrification Reduces its Capability to Repair Sperm DNA Fragmentation and Impairs Embryonic Development. Reprod Sci 2024; 31:1256-1267. [PMID: 38151654 DOI: 10.1007/s43032-023-01419-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/29/2023] [Indexed: 12/29/2023]
Abstract
Oocytes play a crucial role in repairing sperm DNA damage, which can affect the next generation; however, certain factors can impair this ability. This study examined whether oocyte vitrification, a widely used method for fertility preservation, negatively affects repair ability. Male DBA/2 mice (n = 28) were injected with 101.60 µmol/100 g body weight of tert-Butyl hydroperoxide (tBHP) for 14 days to induce sperm DNA damage. Histological changes, sperm functions, and DNA fragmentation were assessed using the TUNEL assay. Cumulus-oocyte-complexes (COCs) of superovulated female DBA/2 mice (n = 28) were vitrified using the Cryotop method. Fresh and vitrified oocytes were then fertilized by tBHP-treated and untreated sperms, and subsequent embryonic development was monitored. Additionally, the expression of Mre11a, Rad51, Brca1, and Xrcc4 was assessed in resulting zygotes and blastocysts using real-time PCR. The sperm tBHP treatment reduced differentiated spermatogenic cells in the testicular tissue, sperm concentration, and motility, while increasing DNA fragmentation (P < 0.05). The fertilization rate was decreased in the tBHP-treated sperm-vitrified oocyte group (P < 0.05), and the two-cell rate diminished in tBHP-treated sperm-fresh and vitrified oocyte groups (P < 0.05). The four-cell to blastocyst rate decreased in the untreated sperm-vitrified oocyte and the tBHP-treated sperm-fresh and vitrified oocyte groups (P < 0.05), and the tBHP-treated sperm-vitrified oocyte groups had the lowest blastocyst rate. In zygotes, Brca1 was upregulated in the tBHP-treated sperm-vitrified oocyte group (P < 0.05). Also, in blastocysts, Rad51, Brca1, and Xrcc4 were significantly upregulated in the untreated sperm-vitrified oocytes group (P < 0.05). Damages to the oocyte due to vitrification can disrupt the repair of sperm DNA fragmentation and consequently impair the embryo development.
Collapse
Affiliation(s)
- Niloofar Khajedehi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Rouhollah Fathi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| | - Vahid Akbarinejad
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Hamid Gourabi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| |
Collapse
|
5
|
Ahmed M, Aytacoglu H, Coban O, Tulay P. Investigation of BAK, BAX and MAD2L1 gene expression in human aneuploid blastocysts. ZYGOTE 2023; 31:605-611. [PMID: 37994469 DOI: 10.1017/s0967199423000539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Maintaining genomic stability is crucial for normal development. At earlier stages of preimplantation development, as the embryonic genome activation is not fully completed, the embryos may be more prone to abnormalities. Aneuploidies are one of the most common genetic causes of implantation failure or first-trimester miscarriages. Apoptosis is a crucial mechanism to eliminate damaged or abnormal cells from the organism to enable healthy growth. Therefore, this study aimed to determine the relationship between the expression levels of genes involved in apoptosis in human aneuploid and euploid blastocysts. In total, 32 human embryos obtained from 21 patients were used for this study. Trophectoderm biopsies were performed and next-generation screening was carried out for aneuploidy screening. Total RNA was extracted from each blastocyst separately and cDNA was synthesized. Gene expression levels were evaluated using RT-PCR. The statistical analysis was performed to evaluate the gene expression level variations in the euploid and aneuploid embryos, respectively. The expression level of the BAX gene was significantly different between the aneuploid and euploid samples. BAX expression levels were found to be 1.5-fold lower in aneuploid cells. However, the expression levels of BAK and MAD2L1 genes were similar in each group. This study aimed to investigate the possible role of genes involved in apoptosis and aneuploidy mechanisms. The findings of this investigation revealed that the BAX gene was expressed significantly differently between aneuploid and euploid embryos. Therefore, it is possible that the genes involved in the apoptotic pathway have a role in the aneuploidy mechanism.
Collapse
Affiliation(s)
- M Ahmed
- Near East University, Faculty of Medicine, Department of Medical Genetics, Nicosia, Cyprus
| | - H Aytacoglu
- Near East University, Faculty of Medicine, Department of Medical Genetics, Nicosia, Cyprus
| | - O Coban
- British Cyprus IVF Hospital, Embryology Lab, Nicosia, Cyprus
| | - P Tulay
- Near East University, Faculty of Medicine, Department of Medical Genetics, Nicosia, Cyprus
- Near East University, DESAM Research Institute, Nicosia, Cyprus
- Near East University, Center of Excellence, Genetics and Cancer Diagnosis-Research Center, Nicosia, Cyprus
| |
Collapse
|
6
|
Ji P, Liu Y, Yan L, Jia Y, Zhao M, Lv D, Yao Y, Ma W, Yin D, Liu F, Gao S, Wusiman A, Yang K, Zhang L, Liu G. Melatonin improves the vitrification of sheep morulae by modulating transcriptome. Front Vet Sci 2023; 10:1212047. [PMID: 37920328 PMCID: PMC10619913 DOI: 10.3389/fvets.2023.1212047] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/03/2023] [Indexed: 11/04/2023] Open
Abstract
Embryo vitrification technology is widely used in livestock production, but freezing injury has been a key factor hindering the efficiency of embryo production. There is an urgent need to further analyze the molecular mechanism of embryo damage by the vitrification process. In the study, morulae were collected from Hu sheep uterine horns after superovulation and sperm transfusion. Morulae were Cryotop vitrified and warmed. Nine morulae were in the vitrified control group (frozen), and seven morulae were vitrified and warmed with 10-5 M melatonin (melatonin). Eleven non-frozen morulae were used as controls (fresh). After warming, each embryo was sequenced separately for library construction and gene expression analysis. p < 0.05 was used to differentiate differentially expressed genes (DEG). The results showed that differentiated differentially expressed genes (DEG) in vitrified morulae were mainly enriched in protein kinase activity, adhesion processes, calcium signaling pathways and Wnt, PI3K/AKT, Ras, ErbB, and MAPK signaling pathways compared to controls. Importantly, melatonin treatment upregulated the expression of key pathways that increase the resistance of morulae against vitrification induced damage. These pathways include kinase activity pathway, ErbB, and PI3K/Akt signaling pathway. It is worth mentioning that melatonin upregulates the expression of XPA, which is a key transcription factor for DNA repair. In conclusion, vitrification affected the transcriptome of in vivo-derived Hu sheep morulae, and melatonin had a protective effect on the vitrification process. For the first time, the transcriptome profiles caused by vitrification and melatonin in sheep morulae were analyzed in single embryo level. These data obtained from the single embryo level provide an important molecular mechanism for further optimizing the cryopreservation of embryos or other cells.
Collapse
Affiliation(s)
- Pengyun Ji
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yunjie Liu
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Laiqing Yan
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | | | - Mengmeng Zhao
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dongying Lv
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yujun Yao
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wenkui Ma
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Depeng Yin
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Fenze Liu
- Inner Mongolia Golden Grassland Ecological Technology Group Co., Ltd., Inner Mongolia, China
| | - Shuai Gao
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Abulizi Wusiman
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Kailun Yang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Lu Zhang
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Guoshi Liu
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
7
|
Ozturk S. Genetic variants underlying spermatogenic arrests in men with non-obstructive azoospermia. Cell Cycle 2023; 22:1021-1061. [PMID: 36740861 PMCID: PMC10081088 DOI: 10.1080/15384101.2023.2171544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/29/2022] [Accepted: 01/18/2023] [Indexed: 02/07/2023] Open
Abstract
Spermatogenic arrest is a severe form of non-obstructive azoospermia (NOA), which occurs in 10-15% of infertile men. Interruption in spermatogenic progression at premeiotic, meiotic, or postmeiotic stage can lead to arrest in men with NOA. Recent studies have intensively focused on defining genetic variants underlying these spermatogenic arrests by making genome/exome sequencing. A number of variants were discovered in the genes involving in mitosis, meiosis, germline differentiation and other basic cellular events. Herein, defined variants in NOA cases with spermatogenic arrests and created knockout mouse models for the related genes are comprehensively reviewed. Also, importance of gene panel-based screening for NOA cases was discussed. Screening common variants in these infertile men with spermatogenic arrests may contribute to elucidating the molecular background and designing novel treatment strategies.
Collapse
Affiliation(s)
- Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya, Turkey
| |
Collapse
|
8
|
Talibova G, Bilmez Y, Ozturk S. DNA double-strand break repair in male germ cells during spermatogenesis and its association with male infertility development. DNA Repair (Amst) 2022; 118:103386. [DOI: 10.1016/j.dnarep.2022.103386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022]
|
9
|
Gazo I, Naraine R, Lebeda I, Tomčala A, Dietrich M, Franěk R, Pšenička M, Šindelka R. Transcriptome and Proteome Analyses Reveal Stage-Specific DNA Damage Response in Embryos of Sturgeon ( Acipenser ruthenus). Int J Mol Sci 2022; 23:6392. [PMID: 35742841 PMCID: PMC9223696 DOI: 10.3390/ijms23126392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/03/2022] [Accepted: 06/03/2022] [Indexed: 11/27/2022] Open
Abstract
DNA damage during early life stages may have a negative effect on embryo development, inducing mortality and malformations that have long-lasting effects during adult life. Therefore, in the current study, we analyzed the effect of DNA damage induced by genotoxicants (camptothecin (CPT) and olaparib) at different stages of embryo development. The survival, DNA fragmentation, transcriptome, and proteome of the endangered sturgeon Acipenser ruthenus were analyzed. Sturgeons are non-model fish species that can provide new insights into the DNA damage response and embryo development. The transcriptomic and proteomic patterns changed significantly after exposure to genotoxicants in a stage-dependent manner. The results of this study indicate a correlation between phenotype formation and changes in transcriptomic and proteomic profiles. CPT and olaparib downregulated oxidative phosphorylation and metabolic pathways, and upregulated pathways involved in nucleotide excision repair, base excision repair, and homologous recombination. We observed the upregulated expression of zona pellucida sperm-binding proteins in all treatment groups, as well as the upregulation of several glycolytic enzymes. The analysis of gene expression revealed several markers of DNA damage response and adaptive stress response, which could be applied in toxicological studies on fish embryos. This study is the first complex analysis of the DNA damage response in endangered sturgeons.
Collapse
Affiliation(s)
- Ievgeniia Gazo
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic; (I.L.); (R.F.); (M.P.)
| | - Ravindra Naraine
- Laboratory of Gene Expression, Institute of Biotechnology—Biocev, Academy of Science of Czech Republic, 252 50 Vestec, Czech Republic; (R.N.); (R.Š.)
| | - Ievgen Lebeda
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic; (I.L.); (R.F.); (M.P.)
| | - Aleš Tomčala
- Institute of Aquaculture and Protection of Waters, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Husova tř. 458/102, 370 05 České Budějovice, Czech Republic;
| | - Mariola Dietrich
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland;
| | - Roman Franěk
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic; (I.L.); (R.F.); (M.P.)
| | - Martin Pšenička
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic; (I.L.); (R.F.); (M.P.)
| | - Radek Šindelka
- Laboratory of Gene Expression, Institute of Biotechnology—Biocev, Academy of Science of Czech Republic, 252 50 Vestec, Czech Republic; (R.N.); (R.Š.)
| |
Collapse
|
10
|
Rasool R, Ullah I, Mubeen B, Alshehri S, Imam SS, Ghoneim MM, Alzarea SI, Al-Abbasi FA, Murtaza BN, Kazmi I, Nadeem MS. Theranostic Interpolation of Genomic Instability in Breast Cancer. Int J Mol Sci 2022; 23:ijms23031861. [PMID: 35163783 PMCID: PMC8836911 DOI: 10.3390/ijms23031861] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is a diverse disease caused by mutations in multiple genes accompanying epigenetic aberrations of hazardous genes and protein pathways, which distress tumor-suppressor genes and the expression of oncogenes. Alteration in any of the several physiological mechanisms such as cell cycle checkpoints, DNA repair machinery, mitotic checkpoints, and telomere maintenance results in genomic instability. Theranostic has the potential to foretell and estimate therapy response, contributing a valuable opportunity to modify the ongoing treatments and has developed new treatment strategies in a personalized manner. “Omics” technologies play a key role while studying genomic instability in breast cancer, and broadly include various aspects of proteomics, genomics, metabolomics, and tumor grading. Certain computational techniques have been designed to facilitate the early diagnosis of cancer and predict disease-specific therapies, which can produce many effective results. Several diverse tools are used to investigate genomic instability and underlying mechanisms. The current review aimed to explore the genomic landscape, tumor heterogeneity, and possible mechanisms of genomic instability involved in initiating breast cancer. We also discuss the implications of computational biology regarding mutational and pathway analyses, identification of prognostic markers, and the development of strategies for precision medicine. We also review different technologies required for the investigation of genomic instability in breast cancer cells, including recent therapeutic and preventive advances in breast cancer.
Collapse
Affiliation(s)
- Rabia Rasool
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan; (R.R.); (I.U.); (B.M.)
| | - Inam Ullah
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan; (R.R.); (I.U.); (B.M.)
| | - Bismillah Mubeen
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan; (R.R.); (I.U.); (B.M.)
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (S.S.I.)
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (S.S.I.)
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia;
| | - Fahad A. Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Bibi Nazia Murtaza
- Department of Zoology, Abbottabad University of Science and Technology (AUST), Abbottabad 22310, Pakistan;
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Correspondence: (I.K.); (M.S.N.)
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Correspondence: (I.K.); (M.S.N.)
| |
Collapse
|
11
|
Musson R, Gąsior Ł, Bisogno S, Ptak GE. DNA damage in preimplantation embryos and gametes: specification, clinical relevance and repair strategies. Hum Reprod Update 2022; 28:376-399. [PMID: 35021196 PMCID: PMC9071077 DOI: 10.1093/humupd/dmab046] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/13/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND DNA damage is a hazard that affects all cells of the body. DNA-damage repair (DDR) mechanisms are in place to repair damage and restore cellular function, as are other damage-induced processes such as apoptosis, autophagy and senescence. The resilience of germ cells and embryos in response to DNA damage is less well studied compared with other cell types. Given that recent studies have described links between embryonic handling techniques and an increased likelihood of disease in post-natal life, an update is needed to summarize the sources of DNA damage in embryos and their capacity to repair it. In addition, numerous recent publications have detailed novel techniques for detecting and repairing DNA damage in embryos. This information is of interest to medical or scientific personnel who wish to obtain undamaged embryos for use in offspring generation by ART. OBJECTIVE AND RATIONALE This review aims to thoroughly discuss sources of DNA damage in male and female gametes and preimplantation embryos. Special consideration is given to current knowledge and limits in DNA damage detection and screening strategies. Finally, obstacles and future perspectives in clinical diagnosis and treatment (repair) of DNA damaged embryos are discussed. SEARCH METHODS Using PubMed and Google Scholar until May 2021, a comprehensive search for peer-reviewed original English-language articles was carried out using keywords relevant to the topic with no limits placed on time. Keywords included ‘DNA damage repair’, ‘gametes’, ‘sperm’, ‘oocyte’, ‘zygote’, ‘blastocyst’ and ‘embryo’. References from retrieved articles were also used to obtain additional articles. Literature on the sources and consequences of DNA damage on germ cells and embryos was also searched. Additional papers cited by primary references were included. Results from our own studies were included where relevant. OUTCOMES DNA damage in gametes and embryos can differ greatly based on the source and severity. This damage affects the development of the embryo and can lead to long-term health effects on offspring. DDR mechanisms can repair damage to a certain extent, but the factors that play a role in this process are numerous and altogether not well characterized. In this review, we describe the multifactorial origin of DNA damage in male and female gametes and in the embryo, and suggest screening strategies for the selection of healthy gametes and embryos. Furthermore, possible therapeutic solutions to decrease the frequency of DNA damaged gametes and embryos and eventually to repair DNA and increase mitochondrial quality in embryos before their implantation is discussed. WIDER IMPLICATIONS Understanding DNA damage in gametes and embryos is essential for the improvement of techniques that could enhance embryo implantation and pregnancy success. While our knowledge about DNA damage factors and regulatory mechanisms in cells has advanced greatly, the number of feasible practical techniques to avoid or repair damaged embryos remains scarce. Our intention is therefore to focus on strategies to obtain embryos with as little DNA damage as possible, which will impact reproductive biology research with particular significance for reproductive clinicians and embryologists.
Collapse
Affiliation(s)
- Richard Musson
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Łukasz Gąsior
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Simona Bisogno
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Grażyna Ewa Ptak
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
12
|
Varghese J, Peter M, Kamath MS. Oogenesis Arrest Prior to Birth: A Trade-off between Possible Evolutionary Advantages and Age-Related Oocyte Dysfunction? FERTILITY & REPRODUCTION 2021. [DOI: 10.1142/s2661318221500079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Oogenesis in mammalian females, including humans, is arrested prior to birth. Females, therefore, are born with a limited number of primary oocytes. This is in direct contrast to males in whom spermatogenesis continues during the entire lifespan following puberty. Here, we discuss possible evolutionary advantages that this confers and contrast this with age-related decline in oocyte quality that results in diminished fertility with advancing maternal age. We believe that a better understanding of these processes would be helpful in developing strategies to preserve fertility as maternal age increases, especially in the context of the current demographic shift with more and more women seeking fertility treatment at advanced age.
Collapse
Affiliation(s)
- Joe Varghese
- Department of Biochemistry, Christian Medical College, Vellore, Tamil Nadu, India
| | - Monica Peter
- Department of Biochemistry, Christian Medical College, Vellore, Tamil Nadu, India
| | - Mohan S. Kamath
- Reproductive Medicine and Surgery, Christian Medical College, Vellore, Tamil Nadu, India
| |
Collapse
|
13
|
Munisha M, Schimenti JC. Genome maintenance during embryogenesis. DNA Repair (Amst) 2021; 106:103195. [PMID: 34358805 DOI: 10.1016/j.dnarep.2021.103195] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/25/2022]
Abstract
Genome maintenance during embryogenesis is critical, because defects during this period can be perpetuated and thus have a long-term impact on individual's health and longevity. Nevertheless, genome instability is normal during certain aspects of embryonic development, indicating that there is a balance between the exigencies of timely cell proliferation and mutation prevention. In particular, early embryos possess unique cellular and molecular features that underscore the challenge of having an appropriate balance. Here, we discuss genome instability during embryonic development, the mechanisms used in various cell compartments to manage genomic stress and address outstanding questions regarding the balance between genome maintenance mechanisms in key cell types that are important for adulthood and progeny.
Collapse
Affiliation(s)
- Mumingjiang Munisha
- Dept. of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, United States
| | - John C Schimenti
- Dept. of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, United States.
| |
Collapse
|
14
|
Kopca T, Tulay P. Association of Assisted Reproductive Technology Treatments with Imprinting Disorders. Glob Med Genet 2021; 8:1-6. [PMID: 33748817 PMCID: PMC7964251 DOI: 10.1055/s-0041-1723085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Assisted reproductive technology (ART) is a broad field in infertility that encompasses different types of treatments. These revolutionary treatment methods aimed to aid infertile or subfertile couples. Treatment was expanded exponentially, as 1 to 3% of the births worldwide takes place with ART procedures. However, treatment is not flawless. Gametes and embryos are exposed to different chemicals and stress through treatment, which leads to disturbance in proper embryo development and results in prenatal and congenital anomalies. When compared with in-vivo development of gametes and preimplantation embryos in mice, in-vitro conditions during ART treatments have been suggested to disturb the gene expression levels, especially imprinted genes. Therefore, ART has been suggested to be associated with increased incidences of different imprinting disorders such as Beckwith–Wiedemann syndrome, Angelman syndrome, and Silver–Russell syndrome, as proved by different case reports and studies. This literature review aims to explain the association of imprinting disorders with this revolutionary treatment procedure.
Collapse
Affiliation(s)
- T Kopca
- Department of Medical Genetics, Faculty of Medicine, Near East University, Nicosia, Cyprus
| | - Pinar Tulay
- Department of Medical Genetics, Faculty of Medicine, Near East University, Nicosia, Cyprus.,Near East University, DESAM Institute, Nicosia, Cyprus
| |
Collapse
|
15
|
Cuello C, Martinez CA, Cambra JM, Parrilla I, Rodriguez-Martinez H, Gil MA, Martinez EA. Effects of Vitrification on the Blastocyst Gene Expression Profile in a Porcine Model. Int J Mol Sci 2021; 22:ijms22031222. [PMID: 33513717 PMCID: PMC7865857 DOI: 10.3390/ijms22031222] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/19/2021] [Accepted: 01/23/2021] [Indexed: 12/17/2022] Open
Abstract
This study was designed to investigate the impact of vitrification on the transcriptome profile of blastocysts using a porcine (Sus scrofa) model and a microarray approach. Blastocysts were collected from weaned sows (n = 13). A total of 60 blastocysts were vitrified (treatment group). After warming, vitrified embryos were cultured in vitro for 24 h. Non-vitrified blastocysts (n = 40) were used as controls. After the in vitro culture period, the embryo viability was morphologically assessed. A total of 30 viable embryos per group (three pools of 10 from 4 different donors each) were subjected to gene expression analysis. A fold change cut-off of ±1.5 and a restrictive threshold at p-value < 0.05 were used to distinguish differentially expressed genes (DEGs). The survival rates of vitrified/warmed blastocysts were similar to those of the control (nearly 100%, n.s.). A total of 205 (112 upregulated and 93 downregulated) were identified in the vitrified blastocysts compared to the control group. The vitrification/warming impact was moderate, and it was mainly related to the pathways of cell cycle, cellular senescence, gap junction, and signaling for TFGβ, p53, Fox, and MAPK. In conclusion, vitrification modified the transcriptome of in vivo-derived porcine blastocysts, resulting in minor gene expression changes.
Collapse
Affiliation(s)
- Cristina Cuello
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Cam-pus for Higher Education and Research “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (C.C.); (J.M.C.); (I.P.); (M.A.G.); (E.A.M.)
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Campus de Ciencias de la Salud, Carretera Bue-navista s/n, 30120 Murcia, Spain
| | - Cristina A. Martinez
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Linköping University, SE-58185 Linköping, Sweden;
- Correspondence:
| | - Josep M. Cambra
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Cam-pus for Higher Education and Research “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (C.C.); (J.M.C.); (I.P.); (M.A.G.); (E.A.M.)
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Campus de Ciencias de la Salud, Carretera Bue-navista s/n, 30120 Murcia, Spain
| | - Inmaculada Parrilla
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Cam-pus for Higher Education and Research “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (C.C.); (J.M.C.); (I.P.); (M.A.G.); (E.A.M.)
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Campus de Ciencias de la Salud, Carretera Bue-navista s/n, 30120 Murcia, Spain
| | - Heriberto Rodriguez-Martinez
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Linköping University, SE-58185 Linköping, Sweden;
| | - Maria A. Gil
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Cam-pus for Higher Education and Research “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (C.C.); (J.M.C.); (I.P.); (M.A.G.); (E.A.M.)
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Campus de Ciencias de la Salud, Carretera Bue-navista s/n, 30120 Murcia, Spain
| | - Emilio A. Martinez
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Cam-pus for Higher Education and Research “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (C.C.); (J.M.C.); (I.P.); (M.A.G.); (E.A.M.)
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Campus de Ciencias de la Salud, Carretera Bue-navista s/n, 30120 Murcia, Spain
| |
Collapse
|
16
|
Ancient Sturgeons Possess Effective DNA Repair Mechanisms: Influence of Model Genotoxicants on Embryo Development of Sterlet, Acipenser ruthenus. Int J Mol Sci 2020; 22:ijms22010006. [PMID: 33374934 PMCID: PMC7792610 DOI: 10.3390/ijms22010006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/15/2020] [Accepted: 12/19/2020] [Indexed: 11/16/2022] Open
Abstract
DNA damage caused by exogenous or endogenous factors is a common challenge for developing fish embryos. DNA damage repair (DDR) pathways help organisms minimize adverse effects of DNA alterations. In terms of DNA repair mechanisms, sturgeons represent a particularly interesting model due to their exceptional genome plasticity. Sterlet (Acipenser ruthenus) is a relatively small species of sturgeon. The goal of this study was to assess the sensitivity of sterlet embryos to model genotoxicants (camptothecin, etoposide, and benzo[a]pyrene), and to assess DDR responses. We assessed the effects of genotoxicants on embryo survival, hatching rate, DNA fragmentation, gene expression, and phosphorylation of H2AX and ATM kinase. Exposure of sterlet embryos to 1 µM benzo[a]pyrene induced low levels of DNA damage accompanied by ATM phosphorylation and xpc gene expression. Conversely, 20 µM etoposide exposure induced DNA damage without activation of known DDR pathways. Effects of 10 nM camptothecin on embryo development were stage-specific, with early stages, before gastrulation, being most sensitive. Overall, this study provides foundational information for future investigation of sterlet DDR pathways.
Collapse
|
17
|
Khokhlova EV, Fesenko ZS, Sopova JV, Leonova EI. Features of DNA Repair in the Early Stages of Mammalian Embryonic Development. Genes (Basel) 2020; 11:genes11101138. [PMID: 32992616 PMCID: PMC7599644 DOI: 10.3390/genes11101138] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/20/2020] [Accepted: 09/25/2020] [Indexed: 12/12/2022] Open
Abstract
Cell repair machinery is responsible for protecting the genome from endogenous and exogenous effects that induce DNA damage. Mutations that occur in somatic cells lead to dysfunction in certain tissues or organs, while a violation of genomic integrity during the embryonic period often leads to death. A mammalian embryo’s ability to respond to damaged DNA and repair it, as well as its sensitivity to specific lesions, is still not well understood. In this review, we combine disparate data on repair processes in the early stages of preimplantation development in mammalian embryos.
Collapse
Affiliation(s)
- Evgenia V. Khokhlova
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia; (E.V.K.); (Z.S.F.); (J.V.S.)
- Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Russia
| | - Zoia S. Fesenko
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia; (E.V.K.); (Z.S.F.); (J.V.S.)
| | - Julia V. Sopova
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia; (E.V.K.); (Z.S.F.); (J.V.S.)
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Elena I. Leonova
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia; (E.V.K.); (Z.S.F.); (J.V.S.)
- Preclinical Research Center, University of Science and Technology, 1 Olympic Ave, 354340 Sochi, Russia
- Correspondence: ; Tel.: +8-(999)-232-92-58
| |
Collapse
|
18
|
Koga F, Kitagami S, Izumi A, Uemura T, Takayama O, Koga T, Mizoguchi T. Relationship between nutrition and reproduction. Reprod Med Biol 2020; 19:254-264. [PMID: 32684824 PMCID: PMC7360971 DOI: 10.1002/rmb2.12332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/16/2020] [Accepted: 05/21/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Recently, the relationship between nutrition and reproduction is being studied. In particular, when older women receive reproductive treatment, egg aging causes greater problems than organic factors. METHODS This study investigated the relationship between nutrition and reproduction with a focus on factors that cause aging, including oxidation, glycation, and chronic inflammation. A large volume of data concerning each nutrient's relationship with reproductive medicine was collected from a number of observational studies. MAIN FINDINGS The results showed that refined carbohydrates should be avoided and care should be taken to achieve proper intake of omega-3 fatty acids. Folic acid and vitamin D were also effective. For men, antioxidant measures are especially effective. The effects of antioxidants are related to insulin resistance, which causes chronic inflammation. CONCLUSION Recent research has shown that rather than meal content, meal intervals are more important for improving insulin resistance. Future research should examine lifestyle-related nutrition factors and their relationships to reproductive treatment.
Collapse
|
19
|
Salian SR, Uppangala S, Cheredath A, D’Souza F, Kalthur G, Nayak VC, Anderson RA, Adiga SK. Early prepubertal cyclophosphamide exposure in mice results in long-term loss of ovarian reserve, and impaired embryonic development and blastocyst quality. PLoS One 2020; 15:e0235140. [PMID: 32574203 PMCID: PMC7310698 DOI: 10.1371/journal.pone.0235140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/09/2020] [Indexed: 01/11/2023] Open
Abstract
Background Due to improved treatment, there is an increasing focus on the reproductive potential of survivors of childhood cancer. Cytotoxic chemotherapy accelerates the decline in the number of primordial follicles within the mammalian ovary at all ages, but effects on the developmental potential of remaining oocytes following prepubertal cancer treatment are unclear. Objectives To investigate whether cyclophosphamide (CY) exposure in the prepubertal period in female mice influences ovarian function and the functional competence of oocytes in adulthood. Methods This study used Swiss albino mice as the experimental model. Female mice were treated with 200 mg/kg CY on either postnatal day 14 (CY14), 21 (CY21) or 28 (CY28) i.e at a prepubertal and 2 young postpubertal ages. At 14 weeks of life, ovarian function, functional competence of oocytes, and embryo quality were assessed. Results The number of primordial follicles decreased significantly in CY14 and CY21 groups compared to control (p < 0.01). The number of oocytes from superovulated was 8.5 ± 1.4, 24.1 ± 2.9 and 26.8 ± 2.1 in CY14, CY21 and CY28 respectively which was significantly lower than control (50.2 ± 3.2; p < 0.001). In vitro culture of CY14 embryos demonstrated only 55.4% blastocyst formation (p < 0.0001) and reduced ability of inner cell mass (ICM) to proliferate in vitro (p < 0.05) at 120 and 216 h post insemination respectively. On the other hand, ICM proliferation was unaltered in 2 young postpubertal ages. Conclusion Our results indicate long-term effects on the developmental competence of oocytes exposed to CY in early but not adult life. These data provide a mechanism whereby long-term fertility can be impaired after chemotherapy exposure, despite the continuing presence of follicles within the ovary, and support the need for fertility preservation in prepubertal girls before alkylating agent exposure.
Collapse
Affiliation(s)
- Sujith Raj Salian
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Shubhashree Uppangala
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Aswathi Cheredath
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Fiona D’Souza
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Guruprasad Kalthur
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Vinod C. Nayak
- Department of Forensic Medicine, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Richard A. Anderson
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Satish Kumar Adiga
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
- * E-mail:
| |
Collapse
|
20
|
Makri D, Efstathiou P, Michailidou E, Maalouf WE. Apoptosis triggers the release of microRNA miR-294 in spent culture media of blastocysts. J Assist Reprod Genet 2020; 37:1685-1694. [PMID: 32440932 PMCID: PMC7376808 DOI: 10.1007/s10815-020-01796-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 04/24/2020] [Indexed: 01/01/2023] Open
Abstract
Purpose To study whether members of the miR-290-295 cluster in spent culture medium (SCM) of embryos are correlated with morphokinetics and apoptosis. Methods Cryopreserved 1-cell stage mouse embryos were cultured to the blastocyst stage, development was monitored by time-lapse, 59 SCM were collected, and miR-291a and miR-294 were detected with polymerase chain reaction (PCR). Blastocysts were immuno-stained for sexing (H2AK119ub) and for apoptosis (TUNEL). Each embryo and SCM were individually processed. Correlations were run between the miRNAs and developmental events (t2, t3, t4, t5, t8, tSB, tB, ECC2, ECC3, s2, s3, dB) and apoptosis (apoptotic cells/total cell number %). MiR-294 SCM and cell levels were compared in 40 blastocysts. Apoptosis was induced in 15 blastocysts with UV radiation and SCM samples were analyzed for miR-294. Results MiR-291a and miR-294 are released in variable levels by mouse blastocysts. Their release is similar between male and female embryos. No significant correlations were found between these miRNAs and development. MiR-294 was significantly positively correlated with apoptosis (r = 0.560, p < 0.001). Cellular expression was lower in blastocysts that released miR-294 in high levels compared with null, low, and medium release embryos (p < 0.01). UV radiation caused apoptosis which triggered higher secretion of miR-294 in 15 blastocysts versus 13 control embryos (p < 0.01). Conclusion(s) MicroRNAs are important regulators of preimplantation development. Apoptosis triggers the release of miR-294 by blastocysts which possibly serves a secretory role for embryo-maternal communication. SCM miRNA analysis is possible for individually cultured embryos and future studies can investigate miRNAs as noninvasive markers of embryo quality. Electronic supplementary material The online version of this article (10.1007/s10815-020-01796-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dimitra Makri
- School of Medicine, Division of Child Health, Obstetrics, and Gynaecology, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Panagiota Efstathiou
- School of Medicine, Division of Child Health, Obstetrics, and Gynaecology, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Eftychia Michailidou
- School of Medicine, Division of Child Health, Obstetrics, and Gynaecology, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Walid E Maalouf
- School of Medicine, Division of Child Health, Obstetrics, and Gynaecology, Queen's Medical Centre, University of Nottingham, Nottingham, UK.
| |
Collapse
|
21
|
Lombó M, Fernández-Díez C, González-Rojo S, Herráez MP. Genetic and epigenetic alterations induced by bisphenol A exposure during different periods of spermatogenesis: from spermatozoa to the progeny. Sci Rep 2019; 9:18029. [PMID: 31792261 PMCID: PMC6889327 DOI: 10.1038/s41598-019-54368-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022] Open
Abstract
Exposure to bisphenol A (BPA) has been related to male reproductive disorders. Since this endocrine disruptor also displays genotoxic and epigenotoxic effects, it likely alters the spermatogenesis, a process in which both hormones and chromatin remodeling play crucial roles. The hypothesis of this work is that BPA impairs early embryo development by modifying the spermatic genetic and epigenetic information. Zebrafish males were exposed to 100 and 2000 μg/L BPA during early spermatogenesis and during the whole process. Genotoxic and epigenotoxic effects on spermatozoa (comet assay and immunocytochemistry) as well as progeny development (mortality, DNA repairing activity, apoptosis and epigenetic profile) were evaluated. Exposure to 100 µg/L BPA during mitosis slightly increased sperm chromatin fragmentation, enhancing DNA repairing activity in embryos. The rest of treatments promoted high levels of sperm DNA damage, triggering apoptosis in early embryo and severely impairing survival. Regarding epigenetics, histone acetylation (H3K9Ac and H3K27Ac) was similarly enhanced in spermatozoa and embryos from males exposed to all the treatments. Therefore, BPA male exposure jeopardizes embryonic survival and development due to the transmission of a paternal damaged genome and of a hyper-acetylated histone profile, both alterations depending on the dose of the toxicant and the temporal window of exposure.
Collapse
Affiliation(s)
- Marta Lombó
- Department of Molecular Biology, Faculty of Biology and Environmental Sciences, Universidad de León, Campus de Vegazana, León, 24071, Spain
| | - Cristina Fernández-Díez
- Instituto Ganadero de Motaña (IGM), Finca Marzanas-Grulleros Vega de Infanzones, León, 24346, Spain
| | - Silvia González-Rojo
- Department of Molecular Biology, Faculty of Biology and Environmental Sciences, Universidad de León, Campus de Vegazana, León, 24071, Spain
| | - María Paz Herráez
- Department of Molecular Biology, Faculty of Biology and Environmental Sciences, Universidad de León, Campus de Vegazana, León, 24071, Spain.
| |
Collapse
|
22
|
Kermi C, Aze A, Maiorano D. Preserving Genome Integrity During the Early Embryonic DNA Replication Cycles. Genes (Basel) 2019; 10:genes10050398. [PMID: 31137726 PMCID: PMC6563053 DOI: 10.3390/genes10050398] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/15/2019] [Indexed: 02/06/2023] Open
Abstract
During the very early stages of embryonic development chromosome replication occurs under rather challenging conditions, including a very short cell cycle, absence of transcription, a relaxed DNA damage response and, in certain animal species, a highly contracted S-phase. This raises the puzzling question of how the genome can be faithfully replicated in such a peculiar metabolic context. Recent studies have provided new insights into this issue, and unveiled that embryos are prone to accumulate genetic and genomic alterations, most likely due to restricted cellular functions, in particular reduced DNA synthesis quality control. These findings may explain the low rate of successful development in mammals and the occurrence of diseases, such as abnormal developmental features and cancer. In this review, we will discuss recent findings in this field and put forward perspectives to further study this fascinating question.
Collapse
Affiliation(s)
- Chames Kermi
- Laboratoire Surveillance et Stabilité du Génome, Institut de Génétique Humaine, UMR9002, CNRS, Université de Montpellier, 34090 Montpellier, France.
- Department of Chemical and Systems Biology, Stanford University School of Medicine, 318 Campus Drive, Stanford, CA 94305-5441, USA.
| | - Antoine Aze
- Laboratoire Surveillance et Stabilité du Génome, Institut de Génétique Humaine, UMR9002, CNRS, Université de Montpellier, 34090 Montpellier, France.
| | - Domenico Maiorano
- Laboratoire Surveillance et Stabilité du Génome, Institut de Génétique Humaine, UMR9002, CNRS, Université de Montpellier, 34090 Montpellier, France.
| |
Collapse
|
23
|
Pellestor F, Gatinois V. Chromoanasynthesis: another way for the formation of complex chromosomal abnormalities in human reproduction. Hum Reprod 2019; 33:1381-1387. [PMID: 30325427 DOI: 10.1093/humrep/dey231] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Indexed: 12/24/2022] Open
Abstract
Chromoanasynthesis has been described as a novel cause of massive constitutional chromosomal rearrangements. Based on DNA replication machinery defects, chromoanasynthesis is characterized by the presence of chromosomal duplications and triplications locally clustered on one single chromosome, or a few chromosomes, associated with various other types of structural rearrangements. Two distinct mechanisms have been described for the formation of these chaotic genomic disorders, i.e. the fork stalling and template switching and the microhomology-mediated break-induced replication. Micronucleus-based processes have been evidenced as a causative mechanism, thus, highlighting the close connection between segregation errors and structural rearrangements. Accumulating data indicate that chromoanasynthesis is operating in human germline cells and during early embryonic development. The development of new tools for quantifying chromoanasynthesis events should provide further insight into the impact of this catastrophic cellular phenomenon in human reproduction.
Collapse
Affiliation(s)
- Franck Pellestor
- Unit of Chromosomal Genetics, Department of Medical Genetics, Arnaud de Villeneuve Hospital, Montpellier CHU, Montpellier, France
| | - Vincent Gatinois
- Unit of Chromosomal Genetics, Department of Medical Genetics, Arnaud de Villeneuve Hospital, Montpellier CHU, Montpellier, France
| |
Collapse
|
24
|
Chiu YH, Chavarro JE, Souter I. Diet and female fertility: doctor, what should I eat? Fertil Steril 2019; 110:560-569. [PMID: 30196938 DOI: 10.1016/j.fertnstert.2018.05.027] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 05/23/2018] [Indexed: 12/15/2022]
Abstract
Fecundity is the capacity to produce offspring. Identifying dietary factors that influence human fecundity is of major clinical and public health significance. This review focuses on the evidence from epidemiologic literature for the relationships between key nutritional factors and female reproductive potential. According to existing data, women trying to achieve pregnancy are encouraged to increase consumption of whole grains, omega-3 fatty acids, fish, and soy and to reduce consumption of trans fats and red meat. In addition, a daily multivitamin that contains folic acid before and during pregnancy may not only prevent birth defects, but also improve the chance of achieving and maintaining a pregnancy. In contrast, there is limited evidence supporting an association between vitamin D and human fecundity outcomes despite promising evidence from nonhuman studies. Questions for future research included the roles of other types of fat (especially omega-6 and monounsaturated fats) and protein (especially white meat and seafood) on female fertility; particular attention should also be paid to exposure to environmental contaminants in foods. Although much work remains, this review accrued best available evidence to provide practical dietary recommendations for women trying to conceive.
Collapse
Affiliation(s)
- Yu-Han Chiu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Jorge E Chavarro
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Irene Souter
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Harvard Medical School, Massachusetts General Hospital Fertility Center, Boston, Massachusetts.
| |
Collapse
|
25
|
Spent embryo culture medium metabolites are related to the in vitro attachment ability of blastocysts. Sci Rep 2018; 8:17025. [PMID: 30451915 PMCID: PMC6242932 DOI: 10.1038/s41598-018-35342-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 10/29/2018] [Indexed: 12/14/2022] Open
Abstract
The metabolomic profile of an embryo culture medium can aid in the advanced prediction of embryonic developmental potential and genetic integrity. But it is not known if this technology can be used to determine the in vitro potential of inner cell mass (ICM) in adherence and proliferation. Here, we investigated the developmental potential of mouse 2-cell embryos carrying cisplatin-induced DNA lesions (IDL), beyond blastocyst stage using ICM outgrowth assay. The genetic integrity of ICM cells was determined by comet assay. The metabolic signatures of spent medium were recorded 84 hours post injection of hCG (hpi-hCG), and after 96 hours of extended in vitro culture (Ex 96) by NMR spectroscopy. We observed that blastocysts that lack the ability to adhere in vitro had an increased requirement of pyruvate (p < 0.01), lactate (p < 0.01), and were accompanied by a significant reduction of pyruvate-alanine ratio in the culture medium. We propose that the aforementioned metabolites from 84 hpi-hCG spent medium be further explored using appropriate experimental models, to prove their potential as biomarkers in the prediction of implantation ability of in vitro derived human embryos in clinical settings.
Collapse
|
26
|
McIntyre D, Desoye G, Dunne F, Simeoni U, Visser GHA, Kapur A, Hod M. FIGO analysis of research priorities in hyperglycemia in pregnancy. Diabetes Res Clin Pract 2018; 145:5-14. [PMID: 29596947 DOI: 10.1016/j.diabres.2018.03.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/27/2018] [Accepted: 03/09/2018] [Indexed: 01/21/2023]
Abstract
Hyperglycemia in pregnancy (HIP) is recognized as a major underlying cause of pregnancy complications and a contributing cause to health risks throughout the subsequent life of both mothers and babies, with amplification of the global epidemic of non-communicable diseases. Although some aspects of these associations are well described, detailed understanding of basic pathophysiologic mechanisms is lacking. Improved fundamental scientific knowledge must be developed to allow logical strategies for prevention and treatment. During pregnancy, much work is required to replace current empirical approaches to diagnosis and treatment of HIP with evidence based protocols, pragmatically adapted to differing health care and health economic contexts. Further, a life cycle approach to HIP, the risk of immediate pregnancy complications and later health risks to mother and baby must be developed and implemented across a wide range of health care environments. This document aims to outline key focus areas for further basic, epidemiologic, clinical and implementation research in this important area.
Collapse
Affiliation(s)
- David McIntyre
- Endocrinology and Obstetric Medicine, Mater Health Services, Head of UQ Mater Clinical Unit, University of Queensland, Whitty Building Level 1, Raymond Terrace, South Brisbane, Qld 4101, Australia. http://www.mater.org.au
| | - Gernot Desoye
- Department of Obstetrics and Gynecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria.
| | - Fidelma Dunne
- Clinical Sciences Institute, National University of Ireland Galway, Consultant Endocrinologist, Galway University Hospitals, Galway, Ireland.
| | - Umberto Simeoni
- Division of Pediatrics & DOHaD Lab, Department Woman-Mother-Child, Centre Hospitalier Universitaire Vaudois, Rue du Bugnon 46, CH-1011 Lausanne, Switzerland.
| | - Gerard H A Visser
- Department Obstetrics, University Medical Center, Utrecht, The Netherlands.
| | - Anil Kapur
- World Diabetes Foundation, Krogshøjvej 30A, 2880 Bagsværd, Denmark
| | - Moshe Hod
- Rabin Medical Center, Tel-Aviv University, European Association of Perinatal Medicine (EAPM), FIGO Hyperglycemia in Pregnancy (HIP) Working Group, FIGO Maternal and Offspring Health and NCD Prevention Committee, Israel
| |
Collapse
|
27
|
Kimberland ML, Hou W, Alfonso-Pecchio A, Wilson S, Rao Y, Zhang S, Lu Q. Strategies for controlling CRISPR/Cas9 off-target effects and biological variations in mammalian genome editing experiments. J Biotechnol 2018; 284:91-101. [DOI: 10.1016/j.jbiotec.2018.08.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/06/2018] [Accepted: 08/20/2018] [Indexed: 12/26/2022]
|
28
|
Fernández-Díez C, González-Rojo S, Lombó M, Herráez MP. Tolerance to paternal genotoxic damage promotes survival during embryo development in zebrafish ( Danio rerio). Biol Open 2018; 7:7/5/bio030130. [PMID: 29712649 PMCID: PMC5992526 DOI: 10.1242/bio.030130] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Spermatozoa carry DNA damage that must be repaired by the oocyte machinery upon fertilization. Different strategies could be adopted by different vertebrates to face the paternal genotoxic damage. Mammals have strong sperm selection mechanisms and activate a zygotic DNA damage response (DDR) (including cell cycle arrest, DNA repair and alternative apoptosis) in order to guarantee the genomic conformity of the reduced progeny. However, external fertilizers, with different reproductive strategies, seem to proceed distinctively. Previous results from our group showed a downregulation of apoptotic activity in trout embryos with a defective DNA repairing ability, suggesting that mechanisms of tolerance to damaged DNA could be activated in fish to maintain cell survival and to progress with development. In this work, zebrafish embryos were obtained from control or UV-irradiated sperm (carrying more than 10% of fragmented DNA but still preserving fertilization ability). DNA repair (γH2AX and 53BP1 foci), apoptotic activity, expression of genes related to DDR and malformation rates were analyzed throughout development. Results showed in the progeny from damaged sperm, an enhanced repairing activity at the mid-blastula transition stage that returned to its basal level at later stages, rendering at hatching a very high rate of multimalformed larvae. The study of transcriptional and post-translational activity of tp53 (ZDF-GENE-990415-270) revealed the activation of an intense DDR in those progenies. However, the downstream pro-apoptotic factor noxa (ZDF-GENE-070119-3) showed a significant downregulation, whereas the anti-apoptotic gene bcl2 (ZDF-GENE-051015-1) was upregulated, triggering a repressive apoptotic scenario in spite of a clear genomic instability. This repression can be explained by the observed upregulation of p53 isoform Δ113p53, which is known to enhance bcl2 transcription. Our results showed that tp53 is involved in DNA damage tolerance (DDT) pathways, allowing the embryo survival regardless of the paternal DNA damage. DDT could be an evolutionary mechanism in fish: tolerance to unrepaired sperm DNA could introduce new mutations, some of them potentially advantageous to face a changing environment. Summary: In fish embryos, genomic instability generated by fertilization with DNA damaged sperm activates mechanisms of DNA damage tolerance, which seems to be mediated by Δ113p53 expression, promoting survival.
Collapse
Affiliation(s)
- Cristina Fernández-Díez
- Department of Molecular Biology, Faculty of Biology, Universidad de León, Campus de Vegazana, s/n 24071, León, Spain
| | - Silvia González-Rojo
- Department of Molecular Biology, Faculty of Biology, Universidad de León, Campus de Vegazana, s/n 24071, León, Spain
| | - Marta Lombó
- Department of Molecular Biology, Faculty of Biology, Universidad de León, Campus de Vegazana, s/n 24071, León, Spain
| | - M Paz Herráez
- Department of Molecular Biology, Faculty of Biology, Universidad de León, Campus de Vegazana, s/n 24071, León, Spain
| |
Collapse
|
29
|
Tšuiko O, Jatsenko T, Parameswaran Grace LK, Kurg A, Vermeesch JR, Lanner F, Altmäe S, Salumets A. A speculative outlook on embryonic aneuploidy: Can molecular pathways be involved? Dev Biol 2018; 447:3-13. [PMID: 29391166 DOI: 10.1016/j.ydbio.2018.01.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 12/27/2017] [Accepted: 01/22/2018] [Indexed: 01/21/2023]
Abstract
The journey of embryonic development starts at oocyte fertilization, which triggers a complex cascade of events and cellular pathways that guide early embryogenesis. Recent technological advances have greatly expanded our knowledge of cleavage-stage embryo development, which is characterized by an increased rate of whole-chromosome losses and gains, mixoploidy, and atypical cleavage morphokinetics. Embryonic aneuploidy significantly contributes to implantation failure, spontaneous miscarriage, stillbirth or congenital birth defects in both natural and assisted human reproduction. Essentially, early embryo development is strongly determined by maternal factors. Owing to considerable limitations associated with human oocyte and embryo research, the use of animal models is inevitable. However, cellular and molecular mechanisms driving the error-prone early stages of development are still poorly described. In this review, we describe known events that lead to aneuploidy in mammalian oocytes and preimplantation embryos. As the processes of oocyte and embryo development are rigorously regulated by multiple signal-transduction pathways, we explore the putative role of signaling pathways in genomic integrity maintenance. Based on the existing evidence from human and animal data, we investigate whether critical early developmental pathways, like Wnt, Hippo and MAPK, together with distinct DNA damage response and DNA repair pathways can be associated with embryo genomic instability, a question that has, so far, remained largely unexplored.
Collapse
Affiliation(s)
- Olga Tšuiko
- Department of Biomedicine, Institute of Bio- and Translational Medicine, University of Tartu, Tartu 50411, Estonia; Competence Centre on Health Technologies, Tartu 50410, Estonia
| | | | - Lalit Kumar Parameswaran Grace
- Department of Women's and Children's Health, Division of Obstetrics and Gynecology, Karolinska Institutet, Karolinska University Hospital, Stockholm 17176, Sweden
| | - Ants Kurg
- Department of Biotechnology, Institute of Molecular and Cell Biology, University of Tartu, Tartu 51010, Estonia
| | - Joris Robert Vermeesch
- Laboratory of Cytogenetics and Genome Research, Center of Human Genetics, KU Leuven, Leuven 3000, Belgium
| | - Fredrik Lanner
- Department of Clinical Science, Intervention, and Technology, Karolinska Institutet, Stockholm 14186, Sweden
| | - Signe Altmäe
- Competence Centre on Health Technologies, Tartu 50410, Estonia; Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, Granada 18071, Spain.
| | - Andres Salumets
- Department of Biomedicine, Institute of Bio- and Translational Medicine, University of Tartu, Tartu 50411, Estonia; Competence Centre on Health Technologies, Tartu 50410, Estonia; Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu 51014, Estonia; Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki 00029, Finland
| |
Collapse
|
30
|
Bittner L, Wyck S, Herrera C, Siuda M, Wrenzycki C, van Loon B, Bollwein H. Negative effects of oxidative stress in bovine spermatozoa on in vitro development and DNA integrity of embryos. Reprod Fertil Dev 2018; 30:1359-1368. [DOI: 10.1071/rd17533] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 03/22/2018] [Indexed: 11/23/2022] Open
Abstract
Oxidative stress in spermatozoa has effects on subsequent embryo development. The aim of the present study was to elucidate whether sperm oxidative stress results in increased DNA damage in the embryo. To this end, bovine spermatozoa were incubated for 1 h at 37°C without or with 100 µM H2O2, resulting in non-oxidised (NOX-S) and oxidised (OX-S) spermatozoa respectively. Non-incubated spermatozoa served as the control group (CON-S). After IVF, developmental rates 30, 46 and 60 h and 7 days after IVF were assessed. DNA damage was analysed in embryos using the comet assay and a DNA damage marker (γH2AX immunostaining); the apoptotic index was determined in blastocysts. Exposure of spermatozoa to H2O2 induced a significant amount of sperm chromatin damage. The use of OX-S in IVF resulted in significantly reduced cleavage and blastocyst rates compared with the use of CON-S and NOX-S. Furthermore, in embryos resulting from the use of OX-S, a developmental delay was evident 30 and 46 h after IVF. γH2AX immunostaining was lower in blastocysts than in early embryos. In blastocysts, the comet and apoptotic indices were significantly higher in embryos resulting from the use of OX-S than CON-S and NOX-S. In conclusion, oxidative stress in spermatozoa induces developmental abnormalities and is a source of DNA damage in the resulting embryos.
Collapse
|
31
|
Kiratli S, Yuncu M, Kose K, Ozkavukcu S. A comparative evaluation of migration sedimentation method for sperm preparation. Syst Biol Reprod Med 2017; 64:122-129. [DOI: 10.1080/19396368.2017.1402100] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Sevil Kiratli
- Department of Histology and Embryology, Gaziantep University School of Medicine, Gaziantep, Turkey
| | - Mehmet Yuncu
- Department of Histology and Embryology, Gaziantep University School of Medicine, Gaziantep, Turkey
| | - Kenan Kose
- Department of Biostatistics, Ankara University School of Medicine, Ankara, Turkey
| | - Sinan Ozkavukcu
- Centre for Assisted Reproduction, Department of Obstetrics and Gynaecology, Ankara University School of Medicine, Ankara, Turkey
| |
Collapse
|
32
|
Garolla A, Ghezzi M, Cosci I, Sartini B, Bottacin A, Engl B, Di Nisio A, Foresta C. FSH treatment in infertile males candidate to assisted reproduction improved sperm DNA fragmentation and pregnancy rate. Endocrine 2017; 56:416-425. [PMID: 27465288 DOI: 10.1007/s12020-016-1037-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 06/23/2016] [Indexed: 12/27/2022]
Abstract
The purpose of this study is to evaluate whether follicle-stimulating hormone treatment improves sperm DNA parameters and pregnancy outcome in infertile male candidates to in-vitro fertilization.Observational study in 166 infertile male partners of couples undergoing in-vitro fertilization. Eighty-four patients were receiving follicle-stimulating hormone treatment (cases) and 82 refused treatment (controls). Semen parameters, sexual hormones, and sperm nucleus (fluorescence in-situ hybridization, acridine orange, TUNEL, and γH2AX) were evaluated at baseline (T0) and after 3 months (T1), when all subjects underwent assisted reproduction techniques. Statistical analysis was performed by analysis of variance.Compared to baseline, cases showed significant improvements in seminal parameters and DNA fragmentation indexes after follicle-stimulating hormone therapy (all P < 0.05), whereas no changes were observed in controls. Within cases, follicle-stimulating hormone treatment allowed to perform intrauterine insemination in 35 patients with a pregnancy rate of 23.2 %. Intracytoplasmic sperm injection was performed in all controls and in 49 patients from cases, with pregnancy rates of 23.2 and 40.8 %, respectively (P < 0.05). After 3 months (T0 vs. T1) of follicle-stimulating hormone therapy, cases with positive outcome had reduced DNA fragmentation index and lower double strand breaks (P < 0.05 and P < 0.001 vs. negative outcome, respectively).In this observational study, we showed that follicle-stimulating hormone treatment improves sperm DNA fragmentation, which in turn leads to increased pregnancy rates in infertile males undergoing in-vitro fertilization. In particular, double strand breaks (measured with γH2AX test) emerged as the most sensible parameter to follicle-stimulating hormone treatment in predicting reproductive outcome.
Collapse
Affiliation(s)
- Andrea Garolla
- Unit of Andrology and Reproductive Medicine, Department of Medicine, University of Padova, via Modena 9, Padova, 35121, Italy.
| | - Marco Ghezzi
- Unit of Andrology and Reproductive Medicine, Department of Medicine, University of Padova, via Modena 9, Padova, 35121, Italy
| | - Ilaria Cosci
- Unit of Andrology and Reproductive Medicine, Department of Medicine, University of Padova, via Modena 9, Padova, 35121, Italy
| | - Barbara Sartini
- Unit of Andrology and Reproductive Medicine, Department of Medicine, University of Padova, via Modena 9, Padova, 35121, Italy
| | - Alberto Bottacin
- Unit of Andrology and Reproductive Medicine, Department of Medicine, University of Padova, via Modena 9, Padova, 35121, Italy
| | - Bruno Engl
- Obstetrics and Gynecology Unit, Azienda Sanitaria Alto Adige, via Ospedale 11, Brunico, 39031, Italy
| | - Andrea Di Nisio
- Unit of Andrology and Reproductive Medicine, Department of Medicine, University of Padova, via Modena 9, Padova, 35121, Italy
| | - Carlo Foresta
- Unit of Andrology and Reproductive Medicine, Department of Medicine, University of Padova, via Modena 9, Padova, 35121, Italy
| |
Collapse
|
33
|
Faustino LR, Carvalho AA, Silva CMG, Rossetto R, Lopes CAP, van Tilburg MF, Carneiro PBM, Báo SN, Moura AAA, Bordignon V, Figueiredo JR, Rodrigues APR. Assessment of DNA damage in goat preantral follicles after vitrification of the ovarian cortex. Reprod Fertil Dev 2017; 27:440-8. [PMID: 25481978 DOI: 10.1071/rd13164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 11/23/2013] [Indexed: 12/14/2022] Open
Abstract
Effective methods for gamete preservation should have low impact on DNA integrity. The present study investigated the effects of vitrification of goat ovarian tissues on the occurrence of DNA fragmentation and DNA double-stand breaks using the terminal deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick end-labelling (TUNEL) assay and detection of phosphorylated histone H2AX (γH2AX), respectively. Goat ovaries were collected at a local abattoir and 12 tissue fragments were prepared from each ovarian pair. Tissue fragments were used as fresh control samples or were cultured in vitro, vitrified or vitrified and cultured. Vitrification was performed using the Ovarian Tissue Cryosystem. Fragments from all groups (control and treatments) were processed for histology, transmission electron microscopy, TUNEL assay and immunofluorescence. Compared with fresh control samples, a lower percentage of morphologically normal follicles was detected in the vitrification followed by culture treatment group (P<0.05). Normal follicular ultrastructure was observed in all groups. Immunofluorescence revealed the presence of γH2AX foci in few oocytes and ovarian stromal cells. TUNEL-positive follicles were found in samples without significant differences among groups (P>0.05). In conclusion, the vitrification protocol used in the present study did not increase DNA damage in preantral follicles enclosed in goat ovarian tissues.
Collapse
Affiliation(s)
- Luciana R Faustino
- Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), Faculty of Veterinary, State University of Ceará, Av. Paranjana, 1700, Campus do Itaperi, Fortaleza, CE 60740-930, Brazil
| | - Adeline A Carvalho
- Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), Faculty of Veterinary, State University of Ceará, Av. Paranjana, 1700, Campus do Itaperi, Fortaleza, CE 60740-930, Brazil
| | - Cleidson M G Silva
- Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), Faculty of Veterinary, State University of Ceará, Av. Paranjana, 1700, Campus do Itaperi, Fortaleza, CE 60740-930, Brazil
| | - Rafael Rossetto
- Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), Faculty of Veterinary, State University of Ceará, Av. Paranjana, 1700, Campus do Itaperi, Fortaleza, CE 60740-930, Brazil
| | - Cláudio A P Lopes
- Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), Faculty of Veterinary, State University of Ceará, Av. Paranjana, 1700, Campus do Itaperi, Fortaleza, CE 60740-930, Brazil
| | - Maurício F van Tilburg
- Laboratory of Animal Physiology, Department of Animal Science, Federal University of Ceará, Av. Mister Hull, s/n Campus do Pici, Fortaleza, CE 60021-970, Brazil
| | - Pedro B M Carneiro
- Institute of Marine Science (LABOMAR), Federal University of Ceará, Av. Abolição, 3207, Meireles, Fortaleza, CE 60165-081, Brazil
| | - Sônia N Báo
- Laboratory of Electron Microscopy, Department of Cell Biology, University of Brasilia, Campus Darcy Ribeiro, Asa Norte, Brasília, DF 70919-970, Brazil
| | - Arlindo A A Moura
- Laboratory of Animal Physiology, Department of Animal Science, Federal University of Ceará, Av. Mister Hull, s/n Campus do Pici, Fortaleza, CE 60021-970, Brazil
| | - Vilceu Bordignon
- Department of Animal Science, McGill University, 21,111 Lakeshore Road, Ste. Anne de Bellevue, Quebec, H9X 3V9, Canada
| | - José R Figueiredo
- Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), Faculty of Veterinary, State University of Ceará, Av. Paranjana, 1700, Campus do Itaperi, Fortaleza, CE 60740-930, Brazil
| | - Ana Paula R Rodrigues
- Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), Faculty of Veterinary, State University of Ceará, Av. Paranjana, 1700, Campus do Itaperi, Fortaleza, CE 60740-930, Brazil
| |
Collapse
|
34
|
Wang X, Liu D, He D, Suo S, Xia X, He X, Han JDJ, Zheng P. Transcriptome analyses of rhesus monkey preimplantation embryos reveal a reduced capacity for DNA double-strand break repair in primate oocytes and early embryos. Genome Res 2017; 27:567-579. [PMID: 28223401 PMCID: PMC5378175 DOI: 10.1101/gr.198044.115] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 02/10/2017] [Indexed: 12/31/2022]
Abstract
Preimplantation embryogenesis encompasses several critical events including genome reprogramming, zygotic genome activation (ZGA), and cell-fate commitment. The molecular basis of these processes remains obscure in primates in which there is a high rate of embryo wastage. Thus, understanding the factors involved in genome reprogramming and ZGA might help reproductive success during this susceptible period of early development and generate induced pluripotent stem cells with greater efficiency. Moreover, explaining the molecular basis responsible for embryo wastage in primates will greatly expand our knowledge of species evolution. By using RNA-seq in single and pooled oocytes and embryos, we defined the transcriptome throughout preimplantation development in rhesus monkey. In comparison to archival human and mouse data, we found that the transcriptome dynamics of monkey oocytes and embryos were very similar to those of human but very different from those of mouse. We identified several classes of maternal and zygotic genes, whose expression peaks were highly correlated with the time frames of genome reprogramming, ZGA, and cell-fate commitment, respectively. Importantly, comparison of the ZGA-related network modules among the three species revealed less robust surveillance of genomic instability in primate oocytes and embryos than in rodents, particularly in the pathways of DNA damage signaling and homology-directed DNA double-strand break repair. This study highlights the utility of monkey models to better understand the molecular basis for genome reprogramming, ZGA, and genomic stability surveillance in human early embryogenesis and may provide insights for improved homologous recombination-mediated gene editing in monkey.
Collapse
Affiliation(s)
- Xinyi Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China.,Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Denghui Liu
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dajian He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China.,Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Shengbao Suo
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xian Xia
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiechao He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Jing-Dong J Han
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ping Zheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| |
Collapse
|
35
|
Segerer G, Hadamek K, Zundler M, Fekete A, Seifried A, Mueller MJ, Koentgen F, Gessler M, Jeanclos E, Gohla A. An essential developmental function for murine phosphoglycolate phosphatase in safeguarding cell proliferation. Sci Rep 2016; 6:35160. [PMID: 27731369 PMCID: PMC5059750 DOI: 10.1038/srep35160] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/26/2016] [Indexed: 12/20/2022] Open
Abstract
Mammalian phosphoglycolate phosphatase (PGP) is thought to target phosphoglycolate, a 2-deoxyribose fragment derived from the repair of oxidative DNA lesions. However, the physiological role of this activity and the biological function of the DNA damage product phosphoglycolate is unknown. We now show that knockin replacement of murine Pgp with its phosphatase-inactive PgpD34N mutant is embryonically lethal due to intrauterine growth arrest and developmental delay in midgestation. PGP inactivation attenuated triosephosphate isomerase activity, increased triglyceride levels at the expense of the cellular phosphatidylcholine content, and inhibited cell proliferation. These effects were prevented under hypoxic conditions or by blocking phosphoglycolate release from damaged DNA. Thus, PGP is essential to sustain cell proliferation in the presence of oxygen. Collectively, our findings reveal a previously unknown mechanism coupling a DNA damage repair product to the control of intermediary metabolism and cell proliferation.
Collapse
Affiliation(s)
- Gabriela Segerer
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Strasse 9, D-97078 Würzburg, Germany.,Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Strasse 2, D-97080 Würzburg, Germany
| | - Kerstin Hadamek
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Strasse 9, D-97078 Würzburg, Germany.,Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Strasse 2, D-97080 Würzburg, Germany
| | - Matthias Zundler
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Strasse 9, D-97078 Würzburg, Germany.,Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Strasse 2, D-97080 Würzburg, Germany
| | - Agnes Fekete
- Institute of Pharmaceutical Biology, University of Würzburg, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany
| | - Annegrit Seifried
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Strasse 9, D-97078 Würzburg, Germany.,Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Strasse 2, D-97080 Würzburg, Germany
| | - Martin J Mueller
- Institute of Pharmaceutical Biology, University of Würzburg, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany
| | - Frank Koentgen
- Ozgene Pty Ltd, PO Box 1128, Bentley DC, WA 6983, Australia
| | - Manfred Gessler
- Theodor-Boveri-Institute/Biocenter, Developmental Biochemistry, Am Hubland, University of Würzburg, D-97074 Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, University of Würzburg, Josef-Schneider-Strasse 6, D-97080 Würzburg, Germany
| | - Elisabeth Jeanclos
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Strasse 9, D-97078 Würzburg, Germany.,Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Strasse 2, D-97080 Würzburg, Germany
| | - Antje Gohla
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Strasse 9, D-97078 Würzburg, Germany.,Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Strasse 2, D-97080 Würzburg, Germany
| |
Collapse
|
36
|
Witt KD, Beresford L, Bhattacharya S, Brian K, Coomarasamy A, Cutting R, Hooper R, Kirkman-Brown J, Khalaf Y, Lewis SE, Pacey A, Pavitt S, West R, Miller D, Cutting R. Hyaluronic Acid Binding Sperm Selection for assisted reproduction treatment (HABSelect): study protocol for a multicentre randomised controlled trial. BMJ Open 2016; 6:e012609. [PMID: 27855103 PMCID: PMC5073628 DOI: 10.1136/bmjopen-2016-012609] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION The selection of a sperm with good genomic integrity is an important consideration for improving intracytoplasmic sperm injection (ICSI) outcome. Current convention selects sperm by vigour and morphology, but preliminary evidence suggests selection based on hyaluronic acid binding may be beneficial. The aim of the Hyaluronic Acid Binding Sperm Selection (HABSelect) trial is to determine the efficacy of hyaluronic acid (HA)-selection of sperm versus conventionally selected sperm prior to ICSI on live birth rate (LBR). The mechanistic aim is to assess whether and how the chromatin state of HA-selected sperm corresponds with clinical outcomes-clinical pregnancy rate (CPR), LBR and pregnancy loss (PL). METHODS AND ANALYSIS Couples attending UK Centres will be approached, eligibility screening performed and informed consent sought. Randomisation will occur within 24 hours prior to ICSI treatment. Participants will be randomly allocated 1:1 to the intervention arm (physiological intracytoplasmic sperm injection, PICSI) versus the control arm using conventional methods (ICSI). The primary clinical outcome is LBR ≥37 weeks' gestation with the mechanistic study determining LBR's relationship with sperm DNA integrity. Secondary outcomes will determine this for CPR and PL. Only embryologists performing the procedure will be aware of the treatment allocation. Steps will be taken to militate against biases arising from embryologists being non-blinded. Randomisation will use a minimisation algorithm to balance for key prognostic variables. The trial is powered to detect a 5% difference (24-29%: p=0.05) in LBR ≥37 weeks' gestation. Selected residual sperm samples will be tested by one or more assays of DNA integrity. ETHICS AND DISSEMINATION HABSelect is a UK NIHR-EME funded study (reg no 11/14/34; IRAS REF. 13/YH/0162). The trial was designed in partnership with patient and public involvement to help maximise patient benefits. Trial findings will be reported as per CONSORT guidelines and will be made available in lay language via the trial web site (http://www.habselect.org.uk/). TRIAL REGISTRATION NUMBER ISRCTN99214271; Pre-results.
Collapse
Affiliation(s)
- K D Witt
- Department: Centre for Primary Care & Public Health, Queen Mary University of London, London, UK
| | - L Beresford
- Department: Centre for Primary Care & Public Health, Queen Mary University of London, London, UK
| | - S Bhattacharya
- School of Medicine and Dentistry, University of Aberdeen, Aberdeen, UK
| | - K Brian
- Charity Registration No. 1099960 (InfertilityNetworkUK), London, UK
| | - A Coomarasamy
- Centre for Human Reproductive Science, University of Birmingham, Birmingham Women's Fertility Centre, Birmingham Women's NHS Foundation Trust, Birmingham, UK
| | - Rachel Cutting
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds, UK
| | - R Hooper
- Department: Centre for Primary Care & Public Health, Queen Mary University of London, London, UK
| | - J Kirkman-Brown
- Centre for Human Reproductive Science, University of Birmingham, Birmingham Women's Fertility Centre, Birmingham Women's NHS Foundation Trust, Birmingham, UK
| | - Y Khalaf
- Assisted Conception Unit, Guy's and St Thomas's Hospital, London, UK
| | - S E Lewis
- Queen's University Belfast, Institute of Pathology, Belfast, UK
| | - A Pacey
- Department of Human Metabolism, University of Sheffield, Sheffield, UK
| | - S Pavitt
- Dental Translational and Clinical Research Unit, School of Dentistry, University of Leeds, Leeds, UK
| | - R West
- Leeds Institute of Health Sciences, University of Leeds, Leeds, UK
| | - D Miller
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds, UK
| | | |
Collapse
|
37
|
Tulay P, Jaroudi S, Doshi A, SenGupta SB. Functional assessment for elimination of mismatches in nuclear and whole cell extracts obtained from mouse and human blastocysts. Syst Biol Reprod Med 2016; 62:415-422. [PMID: 27686340 DOI: 10.1080/19396368.2016.1232447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Preimplantation embryos may have an increased risk of having mismatches due to the rates of cell proliferation and DNA replication. Elimination of mismatches in human gametes and embryos has not been investigated. In this study we developed a sensitive functional assay to examine the repair or elimination of mismatches in both commercially available cell extracts and extracts obtained from preimplantation embryos. Heteroduplex molecules were constructed using synthetic oligonucleotides. Efficiency of the repair of mismatches was semi-quantitatively analysed by exposure to nuclear/whole cell extracts (as little as 2.5 µg) and extracts obtained from pooled mouse and human blastocysts to investigate the repair capacity in human embryos. A cell free in vitro assay was successfully developed to analyze the repair of mismatches using heteroduplex complexes. The assay was further optimized to analyze repair of mismatches in cell extracts obtained from oocytes and blastocysts using minute amounts of protein. The efficiency of mismatch repair was examined in both mouse and human blastocysts (2.5 µg). The blastocysts were observed to have a lower repair efficiency compared to commercially available nuclear and whole cell extracts. In conclusion, a sensitive, easy, and fast in vitro technique was developed to detect the repair of mismatch efficiency in embryos.
Collapse
Affiliation(s)
- Pinar Tulay
- a Department of Medical Genetics , Faculty of Medicine, Near East University , Nicosia , Cyprus.,b Preimplantation Genetics Group, Institute for Women's Health , University College London , London , UK
| | - Souraya Jaroudi
- b Preimplantation Genetics Group, Institute for Women's Health , University College London , London , UK
| | - Alpesh Doshi
- c The Centre for Reproductive and Genetic Health , University College Hospital , London , UK
| | - Sioban B SenGupta
- b Preimplantation Genetics Group, Institute for Women's Health , University College London , London , UK
| |
Collapse
|
38
|
Pan F, Zhao J, Zhou T, Kuang Z, Dai H, Wu H, Sun H, Zhou X, Wu X, Hu Z, He L, Shen B, Guo Z. Mutation of DNA Polymerase β R137Q Results in Retarded Embryo Development Due to Impaired DNA Base Excision Repair in Mice. Sci Rep 2016; 6:28614. [PMID: 27358192 PMCID: PMC4928080 DOI: 10.1038/srep28614] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 06/06/2016] [Indexed: 11/09/2022] Open
Abstract
DNA polymerase β (Pol β), a key enzyme in the DNA base excision repair (BER) pathway, is pivotal in maintaining the integrity and stability of genomes. One Pol β mutation that has been identified in tumors, R137Q (arginine to glutamine substitution), has been shown to lower polymerase activity, and impair its DNA repair capacity. However, the exact functional deficiency associated with this polymorphism in living organisms is still unknown. Here, we constructed Pol β R137Q knock-in mice, and found that homozygous knock-in mouse embryos were typically small in size and had a high mortality rate (21%). These embryonic abnormalities were caused by slow cell proliferation and increased apoptosis. In R137Q knock-in mouse embryos, the BER efficiency was severely impaired, which subsequently resulted in double-strand breaks (DSBs) and chromosomal aberrations. Furthermore, R137Q mouse embryo fibroblasts (MEFs) were more sensitive to DNA-damaging reagents, such as methyl methanesulfonate (MMS) and H2O2. They displayed a higher percentage of DSBs, and were more likely to undergo apoptosis. Our results indicate that R137 is a key amino acid site that is essential for proper Pol β functioning in maintaining genomic stability and embryo development.
Collapse
Affiliation(s)
- Feiyan Pan
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Jing Zhao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Ting Zhou
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Zhihui Kuang
- The Second Hospital of Nanjing, The Second Affiliated Hospital of Southeast University, 1-1 Zhongfu Road, Nanjing, 210003, China
| | - Huifang Dai
- Departments of Radiation Biology and Molecular Medicine, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, 91010, USA
| | - Huan Wu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Hongfang Sun
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Xiaolong Zhou
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Xuping Wu
- The Second Hospital of Nanjing, The Second Affiliated Hospital of Southeast University, 1-1 Zhongfu Road, Nanjing, 210003, China
| | - Zhigang Hu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Lingfeng He
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Binghui Shen
- Departments of Radiation Biology and Molecular Medicine, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, 91010, USA
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| |
Collapse
|
39
|
Men NT, Kikuchi K, Furusawa T, Dang-Nguyen TQ, Nakai M, Fukuda A, Noguchi J, Kaneko H, Viet Linh N, Xuan Nguyen B, Tajima A. Expression of DNA repair genes in porcine oocytes before and after fertilization by ICSI using freeze-dried sperm. Anim Sci J 2016; 87:1325-1333. [PMID: 26988944 DOI: 10.1111/asj.12554] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/04/2015] [Accepted: 08/19/2015] [Indexed: 11/30/2022]
Abstract
Boar sperm freeze-dried with trehalose showed a protective effect against sperm DNA fragmentation. However, normal fertilization and embryonic development were not improved. Damaged sperm may activate maternal DNA repair genes when injected into oocytes. Therefore, we investigated the expression profile of some DNA repair genes in porcine oocytes after intra-cytoplasmic sperm injection. First, the expression levels of MGMT, UDG, XPC, MSH2, XRCC6 and RAD51 genes that are concerned with different types of DNA repair were examined in in vitro mature (IVM) oocytes injected with ejaculated sperm, or freeze-dried sperm with or without trehalose. Quantitative reverse transcription polymerase chain reaction revealed that expression of six DNA repair genes in the oocytes at 4 h after injection did not differ among the four groups. Next, we investigated the gene expression levels of these genes at different stages of maturation. The relative expression levels of UDG and XPC were significantly up-regulated in mature oocytes compared with earlier stages. Furthermore, there was an increased tendency in relative expression of MSH2 and RAD51. These results suggested two possible mechanisms that messenger RNA of DNA repair genes are either accumulated during IVM to be ready for fertilization or increased expression levels of DNA repair genes in oocytes caused by suboptimal IVM conditions.
Collapse
Affiliation(s)
- Nguyen Thi Men
- Division of Animal Sciences, National Institute of Agrobiological Sciences, Tsukuba, Japan. .,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan. .,Laboratory of Embryo Technology, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam.
| | - Kazuhiro Kikuchi
- Division of Animal Sciences, National Institute of Agrobiological Sciences, Tsukuba, Japan.,The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| | - Tadashi Furusawa
- Genetically Modified Organism Research Center, National Institute of Agrobiological Sciences, Tsukuba, Japan
| | | | - Michiko Nakai
- Genetically Modified Organism Research Center, National Institute of Agrobiological Sciences, Tsukuba, Japan
| | - Atsunori Fukuda
- Agrogenomics Research Center, National Institute of Agrobiological Sciences, Tsukuba, Japan
| | - Junko Noguchi
- Division of Animal Sciences, National Institute of Agrobiological Sciences, Tsukuba, Japan
| | - Hiroyuki Kaneko
- Division of Animal Sciences, National Institute of Agrobiological Sciences, Tsukuba, Japan
| | - Nguyen Viet Linh
- Laboratory of Embryo Technology, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Bui Xuan Nguyen
- Laboratory of Embryo Technology, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Atsushi Tajima
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
40
|
Machado RA, Moreira HSB, de Aquino SN, Martelli-Junior H, de Almeida Reis SR, Persuhn DC, Wu T, Yuan Y, Coletta RD. Interactions between RAD51 rs1801321 and maternal cigarette smoking as risk factor for nonsyndromic cleft lip with or without cleft palate. Am J Med Genet A 2015; 170A:536-539. [PMID: 26507587 DOI: 10.1002/ajmg.a.37281] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/05/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Renato Assis Machado
- Department of Oral Diagnosis, School of Dentistry, State University of Campinas, Piracicaba, São Paulo, Brazil
| | - Helenara Salvati Bertolossi Moreira
- Department of Oral Diagnosis, School of Dentistry, State University of Campinas, Piracicaba, São Paulo, Brazil.,Department of Physiotherapy, State University of Western Paraná, Paraná, Brazil
| | - Sibele Nascimento de Aquino
- Department of Oral Diagnosis, School of Dentistry, State University of Campinas, Piracicaba, São Paulo, Brazil.,Stomatology Clinic, Dental School, State University of Montes Claros, Montes Claros, Minas Gerais, Brazil
| | - Hercilio Martelli-Junior
- Stomatology Clinic, Dental School, State University of Montes Claros, Montes Claros, Minas Gerais, Brazil.,Center for Rehabilitation of Craniofacial Anomalies, Dental School, University of José Rosário Vellano, Minas Gerais, Brazil
| | | | - Darlene Camati Persuhn
- Molecular Biology Department, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Tao Wu
- Peking University School of Public Health, Beijing, China
| | - Yuan Yuan
- Peking University School of Public Health, Beijing, China
| | - Ricardo D Coletta
- Department of Oral Diagnosis, School of Dentistry, State University of Campinas, Piracicaba, São Paulo, Brazil
| |
Collapse
|
41
|
Gaskins AJ, Chiu YH, Williams PL, Ford JB, Toth TL, Hauser R, Chavarro JE. Association between serum folate and vitamin B-12 and outcomes of assisted reproductive technologies. Am J Clin Nutr 2015; 102:943-50. [PMID: 26354529 PMCID: PMC4588741 DOI: 10.3945/ajcn.115.112185] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 08/04/2015] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Preconceptional folate and vitamin B-12 have been linked to beneficial reproductive outcomes in both natural pregnancies and those after assisted reproductive technology (ART) treatment. OBJECTIVE The objective of the study was to evaluate the associations of serum folate and vitamin B-12 with ART outcomes. DESIGN This analysis included a random sample of 100 women (154 ART cycles) participating in a prospective cohort study [Environment and Reproductive Health (EARTH)] at the Massachusetts General Hospital Fertility Center (2007-2013). Serum folate and vitamin B-12 were measured in blood samples collected between days 3 and 9 of treatment. Generalized estimating equations with adjustment for age, BMI, and race were used to evaluate the association of serum folate and vitamin B-12 with ART outcomes. RESULTS Women in the highest quartile of serum folate (>26.3 ng/mL) had 1.62 (95% CI: 0.99, 2.65) times the probability of live birth compared with women in the lowest quartile (<16.6 ng/mL). Women in the highest quartile of serum vitamin B-12 (>701 pg/mL) had 2.04 (95% CI: 1.14, 3.62) times the probability of live birth compared with women in the lowest quartile (<439 pg/mL). Suggestive evidence of an interaction was observed; women with serum folate and vitamin B-12 concentrations greater than the median had 1.92 (95% CI: 1.12, 3.29) times the probability of live birth compared with women with folate and vitamin B-12 concentrations less than or equal to the median. This translated into an adjusted difference in live birth rates of 26% (95% CI: 10%, 48%; P = 0.02). CONCLUSION Higher serum concentrations of folate and vitamin B-12 before ART treatment were associated with higher live birth rates among a population exposed to folic acid fortification. This trial was registered at clinicaltrials.gov as NCT00011713.
Collapse
Affiliation(s)
| | | | | | - Jennifer B Ford
- Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Thomas L Toth
- Vincent Obstetrics and Gynecology, Massachusetts General Hospital and Harvard Medical School, Boston, MA; and
| | - Russ Hauser
- Epidemiology, and Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA; Vincent Obstetrics and Gynecology, Massachusetts General Hospital and Harvard Medical School, Boston, MA; and
| | - Jorge E Chavarro
- Departments of Nutrition, Epidemiology, and Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
42
|
Prediction model for aneuploidy in early human embryo development revealed by single-cell analysis. Nat Commun 2015; 6:7601. [PMID: 26151134 PMCID: PMC4506544 DOI: 10.1038/ncomms8601] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 05/22/2015] [Indexed: 01/08/2023] Open
Abstract
Aneuploidies are prevalent in the human embryo and impair proper development, leading to cell cycle arrest. Recent advances in imaging and molecular and genetic analyses are postulated as promising strategies to unveil the mechanisms involved in aneuploidy generation. Here we combine time-lapse, complete chromosomal assessment and single-cell RT-qPCR to simultaneously obtain information from all cells that compose a human embryo until the approximately eight-cell stage (n=85). Our data indicate that the chromosomal status of aneuploid embryos (n=26), including those that are mosaic (n=3), correlates with significant differences in the duration of the first mitotic phase when compared with euploid embryos (n=28). Moreover, gene expression profiling suggests that a subset of genes is differentially expressed in aneuploid embryos during the first 30 h of development. Thus, we propose that the chromosomal fate of an embryo is likely determined as early as the pronuclear stage and may be predicted by a 12-gene transcriptomic signature.
Collapse
|
43
|
Abstract
Thyroid hormones (THs) have been shown to improve in vitro embryo production in cattle by increasing blastocyst formation rate, and the average cell number of blastocysts and by significantly decreasing apoptosis rate. To better understand those genetic aspects that may underlie enhanced early embryo development in the presence of THs, we characterized the bovine embryonic transcriptome at the blastocyst stage, and examined differential gene expression profiles using a bovine-specific microarray. We found that 1212 genes were differentially expressed in TH-treated embryos when compared with non-treated controls (>1.5-fold at P < 0.05). In addition 23 and eight genes were expressed uniquely in control and treated embryos, respectively. The expression of genes specifically associated with metabolism, mitochondrial function, cell differentiation and development were elevated. However, TH-related genes, including those encoding TH receptors and deiodinases, were not differentially expressed in treated embryos. Furthermore, the over-expression of 52 X-chromosome linked genes in treated embryos suggested a delay or escape from X-inactivation. This study highlights the significant impact of THs on differential gene expression in the early embryo; the identification of TH-responsive genes provides an insight into those regulatory pathways activated during development.
Collapse
|
44
|
Fernández-Díez C, González-Rojo S, Montfort J, Le Cam A, Bobe J, Robles V, Pérez-Cerezales S, Herráez MP. Inhibition of zygotic DNA repair: transcriptome analysis of the offspring in trout (Oncorhynchus mykiss). Reproduction 2015; 149:101-11. [DOI: 10.1530/rep-14-0382] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Zygotic repair of the paternal genome is a key event after fertilization. Spermatozoa accumulate DNA strand breaks during spermatogenesis and can suffer additional damage by different factors, including cryopreservation. Fertilization with DNA-damaged spermatozoa (DDS) is considered to promote implantation failures and abortions, but also long-term effects on the progeny that could be related with a defective repair. Base excision repair (BER) pathway is considered the most active in zygotic DNA repair, but healthy oocytes contain enzymes for all repairing pathways. In this study, the effects of the inhibition of the BER pathway in the zygote were analyzed on the progeny obtained after fertilization with differentially DDS. Massive gene expression (GE; 61 657 unique probes) was analyzed after hatching using microarrays. Trout oocytes are easily fertilized with DDS and the high prolificacy allows live progeny to be obtained even with a high rate of abortions. Nevertheless, the zygotic inhibition of Poly (ADP-ribose) polymerase, upstream of BER pathway, resulted in 810 differentially expressed genes (DEGs) after hatching. DEGs are related with DNA repair, apoptosis, telomere maintenance, or growth and development, revealing a scenario of impaired DNA damage signalization and repair. Downregulation of the apoptotic cascade was noticed, suggesting a selection of embryos tolerant to residual DNA damage during embryo development. Our results reveal changes in the progeny from defective repairing zygotes including higher malformations rate, weight gain, longer telomeres, and lower caspase 3/7 activity, whose long-term consequences should be analyzed in depth.
Collapse
|
45
|
Lamparter C, Winn LM. Tissue-specific effects of valproic acid on DNA repair genes and apoptosis in postimplantation mouse embryos. Toxicol Sci 2014; 141:59-67. [PMID: 24913804 PMCID: PMC4833099 DOI: 10.1093/toxsci/kfu105] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 05/21/2014] [Indexed: 11/13/2022] Open
Abstract
Exposure to the anticonvulsant drug valproic acid (VPA) is associated with an increased risk of congenital malformations. Although the mechanisms contributing to its teratogenicity are poorly understood, VPA has been shown to induce DNA double strand breaks (DSB) and to increase homologous recombination in vitro. The objective of the present study was to determine whether in utero exposure to VPA alters the frequency of intrachromosomal recombination and the expression of several genes involved in DSB repair in pKZ1 mouse embryos. Pregnant pKZ1 transgenic mice (GD 9.0) were administered VPA (500 mg/kg s.c.) and embryos were extracted and microdissected into the head, heart, and trunk regions 1, 3, 6, and 24 h after injection. Quantitative PCR was used to measure the tissue-specific expression of lacZ, a surrogate measure of recombination, Xrcc4, Rad51, Brca1, and Brca2, with Western blotting used to quantify Rad51, cleaved caspase-3 and cleaved-PARP protein. Increased recombination was only observed in the embryonic head following 6-h VPA exposure. VPA had no effect on Xrcc4 expression. Rad51, Brca1, and Brca2 expression rapidly decreased in head and trunk tissues after 1-h VPA exposure, followed by a subsequent increase in all tissues, although it was generally attenuated in the head and not due to differences in endogenous levels. Cleaved caspase-3 and cleaved-PARP expression was increased in all tissues 3 h following VPA exposure. This study indicates that the tissue-specific expression of several genes involved in DSB repair is altered following exposure to VPA and may be contributing to increased apoptosis.
Collapse
Affiliation(s)
- Christina Lamparter
- Graduate Program in Pharmacology and Toxicology, Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Louise M Winn
- Graduate Program in Pharmacology and Toxicology, Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada School of Environmental Studies, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
46
|
Phospho-Cdc25 correlates with activating G2/M checkpoint in mouse zygotes fertilized with hydrogen peroxide-treated mouse sperm. Mol Cell Biochem 2014; 396:41-8. [PMID: 25012723 DOI: 10.1007/s11010-014-2140-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 06/23/2014] [Indexed: 02/05/2023]
Abstract
The presence of oxidative stress in sperm cryopreservation induces sperm DNA damage. Our previous study has discovered that γH2AX, the DNA-damaged marker, was activated in the early mouse embryos fertilized with hydrogen peroxide (H2O2)-treated sperm. Furthermore, we found that checkpoint proteins ATM and Chk1 were phosphorylated and activated in the early mouse embryos. On the basis of previous researches, we examined the effects of sperm DNA damage on cell cycle arrest in mouse zygotes fertilized with H2O2-treated sperm. Development of fertilized eggs arrested at the PN disappearance stage. At 19 and 24 hours post-insemination (hpi), the percentage of zygotes at the PN disappearance stage was higher in H2O2-treated group compared to the control group. Immunofluorescence staining revealed Phospho-Cdc25C (Ser216) and Phospho-Cdc25B (Ser323) in or surrounding a single pronucleus, following insemination with H2O2-treated sperm. Our study suggests that fertilization with DNA-damaged sperm results in cell cycle arrest mediated by G2/M checkpoint activation in one of the pronuclei in mouse zygotes fertilized with H2O2-treated sperm; Phospho-Cdc25C and Phospho-Cdc25B correlate with activating G2/M checkpoint in zygotes fertilized with H2O2-treated sperm.
Collapse
|
47
|
Bazrgar M, Gourabi H, Yazdi PE, Vazirinasab H, Fakhri M, Hassani F, Valojerdi MR. DNA repair signalling pathway genes are overexpressed in poor-quality pre-implantation human embryos with complex aneuploidy. Eur J Obstet Gynecol Reprod Biol 2014; 175:152-6. [DOI: 10.1016/j.ejogrb.2014.01.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 09/25/2013] [Accepted: 01/04/2014] [Indexed: 11/26/2022]
|
48
|
Nuclear reprogramming by interphase cytoplasm of two-cell mouse embryos. Nature 2014; 509:101-4. [PMID: 24670652 PMCID: PMC4124901 DOI: 10.1038/nature13134] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 02/06/2014] [Indexed: 11/08/2022]
Abstract
Successful mammalian cloning using somatic cell nuclear transfer (SCNT) into unfertilized, metaphase II (MII)-arrested oocytes attests to the cytoplasmic presence of reprogramming factors capable of inducing totipotency in somatic cell nuclei. However, these poorly defined maternal factors presumably decline sharply after fertilization, as the cytoplasm of pronuclear-stage zygotes is reportedly inactive. Recent evidence suggests that zygotic cytoplasm, if maintained at metaphase, can also support derivation of embryonic stem (ES) cells after SCNT, albeit at low efficiency. This led to the conclusion that critical oocyte reprogramming factors present in the metaphase but not in the interphase cytoplasm are 'trapped' inside the nucleus during interphase and effectively removed during enucleation. Here we investigated the presence of reprogramming activity in the cytoplasm of interphase two-cell mouse embryos (I2C). First, the presence of candidate reprogramming factors was documented in both intact and enucleated metaphase and interphase zygotes and two-cell embryos. Consequently, enucleation did not provide a likely explanation for the inability of interphase cytoplasm to induce reprogramming. Second, when we carefully synchronized the cell cycle stage between the transplanted nucleus (ES cell, fetal fibroblast or terminally differentiated cumulus cell) and the recipient I2C cytoplasm, the reconstructed SCNT embryos developed into blastocysts and ES cells capable of contributing to traditional germline and tetraploid chimaeras. Last, direct transfer of cloned embryos, reconstructed with ES cell nuclei, into recipients resulted in live offspring. Thus, the cytoplasm of I2C supports efficient reprogramming, with cell cycle synchronization between the donor nucleus and recipient cytoplasm as the most critical parameter determining success. The ability to use interphase cytoplasm in SCNT could aid efforts to generate autologous human ES cells for regenerative applications, as donated or discarded embryos are more accessible than unfertilized MII oocytes.
Collapse
|
49
|
Abstract
Genomic instability is a characteristic of most cancer cells. It is an increased tendency of genome alteration during cell division. Cancer frequently results from damage to multiple genes controlling cell division and tumor suppressors. It is known that genomic integrity is closely monitored by several surveillance mechanisms, DNA damage checkpoint, DNA repair machinery and mitotic checkpoint. A defect in the regulation of any of these mechanisms often results in genomic instability, which predisposes the cell to malignant transformation. Posttranslational modifications of the histone tails are closely associated with regulation of the cell cycle as well as chromatin structure. Nevertheless, DNA methylation status is also related to genomic integrity. We attempt to summarize recent developments in this field and discuss the debate of driving force of tumor initiation and progression.
Collapse
Affiliation(s)
- Yixin Yao
- Department of Environmental Medicine, New York University Langone Medical Center, Tuxedo, New York, 10987, USA
| | - Wei Dai
- Department of Environmental Medicine, New York University Langone Medical Center, Tuxedo, New York, 10987, USA. ; Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, Tuxedo, New York, 10987, USA
| |
Collapse
|
50
|
|